Util fit
thmd.util.fit
¶
Modules:
Functions:
-
curve_intersect_shapely
–find the intersection points between 2 lines
-
polyfit
–Polynomial fitting for y = f(x) relation, which returns uncertainties of coefficients.
-
find_slope
–Compute slope of a linear relation y = A + B*x.
-
find_roots
–find roots for y = f(x) relation in polynomial form.
-
find_extrema
–find extrema points (der=0) for y = f(x) relation in polynomial form.
-
find_convergence
–y is a function of x, then find value of x that y converge with a tolerance < tol.
-
extrapolate
–
curve_intersect_shapely(line1, line2)
¶
find the intersection points between 2 lines Args: line1 (array like): Nx2 arrays, contains data points of curve 1 line2 (array like): Nx2 arrays, contains data points of curve 2
Returns:
-
Points
(array like
) –Nx2 arrays, contains data points of intersection points
polyfit(x, y, deg=1, sigma_y=None, uncert=False, **kwargs)
¶
Polynomial fitting for y = f(x) relation, which returns uncertainties of coefficients. The fitted polynomial(s) are in the form
p(x) = a0 + a1*x + a2*x^2 + ... + an*x^n
Parameters:
-
x,y
(array
) –1D array of x and y data
-
deg
(int
, default:1
) –degree of polynomial
-
sigma_y
(array
, default:None
) –1D array of standard deviation of y data. Use in weighted least square fitting.
-
uncert
(bool
, default:False
) –return uncertainties of coefficients. Defaults to False.
-
**kwargs
–additional arguments, adapt all args from
np.polyfit
Returns:
-
pars
(array
) –1D array of coefficients
-
uncert
(array
) –1D array of standard deviation of coefficients
find_slope(x, y)
¶
Compute slope of a linear relation y = A + B*x.
Parameters:
-
x
(list
) –a list/array of x value
-
y
(list
) –a list/array of y value
Return
slope (float): the slope to linear relation
find_roots(x, y, order=1)
¶
find roots for y = f(x) relation in polynomial form.
Parameters:
-
x
(list
) –a list/array of x value
-
y
(list
) –a list/array of y value
-
order
(int
, default:1
) –order of polynomial. Defaults to 1.
Returns:
-
roots
(list
) –list of roots
find_extrema(x, y, order=2, retun_fit=False)
¶
find extrema points (der=0) for y = f(x) relation in polynomial form.
Parameters:
-
x
(list
) –a list/array of x value
-
y
(list
) –a list/array of y value
-
order
(int
, default:2
) –order of polynomial. Defaults to 2.
-
retun_fit
(bool
, default:False
) –return fitted params. Defaults to False.
Returns:
-
p
(list
) –list of flex points.
find_convergence(x, y, tol=1e-06, grid_size=None, convergence_side='right')
¶
y is a function of x, then find value of x that y converge with a tolerance < tol.
Parameters:
-
x
(list
) –a list/array of x values
-
y
(list
) –a list/array of y values
-
tol
(float
, default:1e-06
) –tolerance of the slope (dy/dx). Defaults to 1e-6.
-
grid_size
(float
, default:None
) –set grid size of x if need to interpolate finer data. Defaults to None.
-
convergence_side
(str
, default:'right'
) –find the first x on the left or right side. Defaults to "right".
Returns:
-
–
best_x, best_y (float): found x and y value that y converge with a tolerance < tol.
Notes
Value df['dy'] = df['y'].diff()
depends on grid size. Should use df['dy'] = df['y'].diff()/ df['x'].diff()
.
extrapolate(x, y, left_side: list = None, right_side: list = None, grid_size=0.1) -> tuple[list, list]
¶
curve_intersect
¶
Functions:
-
curve_intersect_shapely
–find the intersection points between 2 lines
curve_intersect_shapely(line1, line2)
¶
find the intersection points between 2 lines Args: line1 (array like): Nx2 arrays, contains data points of curve 1 line2 (array like): Nx2 arrays, contains data points of curve 2
Returns:
-
Points
(array like
) –Nx2 arrays, contains data points of intersection points
___curve_intersect_numpy(curve1, curve2, degree=3, bounds=None)
¶
find the intersection points between 2 curves
Parameters:
-
curve1
(array like
) –Nx2 arrays in form (x,y), contains data points of curve 1
-
curve2
(array like
) –Nx2 arrays in form (x,y), contains data points of curve 2
-
degree
(int
, default:3
) –degree of polynomial function to fit the curve
-
bounds
(tuple
, default:None
) –(min, max) of x, to select points in bounds
Returns:
-
Points
(array like
) –Nx2 arrays, contains data points of intersection points
Refs
fit_root
¶
Functions:
-
polyfit
–Polynomial fitting for y = f(x) relation, which returns uncertainties of coefficients.
-
find_slope
–Compute slope of a linear relation y = A + B*x.
-
find_roots
–find roots for y = f(x) relation in polynomial form.
-
find_extrema
–find extrema points (der=0) for y = f(x) relation in polynomial form.
-
find_convergence
–y is a function of x, then find value of x that y converge with a tolerance < tol.
-
extrapolate
–
polyfit(x, y, deg=1, sigma_y=None, uncert=False, **kwargs)
¶
Polynomial fitting for y = f(x) relation, which returns uncertainties of coefficients. The fitted polynomial(s) are in the form
p(x) = a0 + a1*x + a2*x^2 + ... + an*x^n
Parameters:
-
x,y
(array
) –1D array of x and y data
-
deg
(int
, default:1
) –degree of polynomial
-
sigma_y
(array
, default:None
) –1D array of standard deviation of y data. Use in weighted least square fitting.
-
uncert
(bool
, default:False
) –return uncertainties of coefficients. Defaults to False.
-
**kwargs
–additional arguments, adapt all args from
np.polyfit
Returns:
-
pars
(array
) –1D array of coefficients
-
uncert
(array
) –1D array of standard deviation of coefficients
find_slope(x, y)
¶
Compute slope of a linear relation y = A + B*x.
Parameters:
-
x
(list
) –a list/array of x value
-
y
(list
) –a list/array of y value
Return
slope (float): the slope to linear relation
find_roots(x, y, order=1)
¶
find roots for y = f(x) relation in polynomial form.
Parameters:
-
x
(list
) –a list/array of x value
-
y
(list
) –a list/array of y value
-
order
(int
, default:1
) –order of polynomial. Defaults to 1.
Returns:
-
roots
(list
) –list of roots
find_extrema(x, y, order=2, retun_fit=False)
¶
find extrema points (der=0) for y = f(x) relation in polynomial form.
Parameters:
-
x
(list
) –a list/array of x value
-
y
(list
) –a list/array of y value
-
order
(int
, default:2
) –order of polynomial. Defaults to 2.
-
retun_fit
(bool
, default:False
) –return fitted params. Defaults to False.
Returns:
-
p
(list
) –list of flex points.
find_convergence(x, y, tol=1e-06, grid_size=None, convergence_side='right')
¶
y is a function of x, then find value of x that y converge with a tolerance < tol.
Parameters:
-
x
(list
) –a list/array of x values
-
y
(list
) –a list/array of y values
-
tol
(float
, default:1e-06
) –tolerance of the slope (dy/dx). Defaults to 1e-6.
-
grid_size
(float
, default:None
) –set grid size of x if need to interpolate finer data. Defaults to None.
-
convergence_side
(str
, default:'right'
) –find the first x on the left or right side. Defaults to "right".
Returns:
-
–
best_x, best_y (float): found x and y value that y converge with a tolerance < tol.
Notes
Value df['dy'] = df['y'].diff()
depends on grid size. Should use df['dy'] = df['y'].diff()/ df['x'].diff()
.
extrapolate(x, y, left_side: list = None, right_side: list = None, grid_size=0.1) -> tuple[list, list]
¶
___uncertainty_weighted_fit_linear(x, y, sigma_y=None)
¶
Compute uncertainties in coefficients A and B of y = A + B*x from the weighted least square fitting.
Apply when the measured data y_i has different uncertainties sigma_y_i, the weights w_i = 1/(sigma_y_i^2).
Parameters:
-
x,y
(array
) –1D array of x and y data
-
sigma_y
(array
, default:None
) –1D array of standard deviation of y data. Use in weighted least square fitting.
Returns:
-
pars
(array
) –1D array of coefficients A and B
-
uncertainties
(tuple
) –1D array (sigma_intercept, sigma_slope) of standard deviation of A and B
References
- Taylor_1997_An introduction to error analysis: the study of uncertainties in physical measurements, page 198.
- https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyfit.html
user_lmfit
¶
Classes:
-
UserLmfit
–The class contains set of objective function of fitting use by LMFIT package
UserLmfit
¶
The class contains set of objective function of fitting use by LMFIT package NOTEs: - defined function followed the convection of LMFIT: the first argument of the function is taken as the independent variable, held in independent_vars, and the rest of the functions positional arguments (and, in certain cases, keyword arguments – see below) are used for Parameter names. https://lmfit.github.io/lmfit-py/model.html - This Class defines curve-forms that are not vailable in LMFIT's built-in models
-
Attributes: swType : (default='RATIONAL') Type of witching function, r0, d0 : The r_0 parameter of the switching function
-
Methods: fFunc : compute & return value and derivation of sw function fDmax : estimate value of Dmax
Ex: func = thmd.CurveLib.Linear(x)
Methods:
-
Linear
–this func is available in LMFIT, just play as an example here
-
inverseTemperature
– -
ExpDecay
– -
sizeEffect
–system size-dependence on term N^(⅔
-
unNormalGaussian
–The unNormalize Gaussian function
-
NormalGaussian
–The Normalize Gaussian function
-
sum_2unNormalGaussian
–The sum of 2 Gaussian function
-
sum_3unNormalGaussian
–The sum of 3 Gaussian function
-
sum_4unNormalGaussian
–The sum of 4 Gaussian function
-
sum_5unNormalGaussian
–The sum of 5 Gaussian function
-
sum_2NormalGaussian
–The sum of 2 Gaussian function
-
sum_3NormalGaussian
–The sum of 3 Gaussian function
-
sum_4NormalGaussian
–The sum of 4 Gaussian function
-
sum_5NormalGaussian
–The sum of 5 Gaussian function
-
DoseResp
–Dose-response curve with variable Hill slope given by parameter 'p'.
-
BiDoseResp
–Biphasic Dose Response Function,
-
Carreau
–Carreau-Yasuda model to describe pseudoplastic flow with asymptotic viscosities at zero and infinite shear rates
-
Cross
–Cross model to describe pseudoplastic flow with asymptotic viscosities at zero and infinite shear rates
-
GammaCFD
–Gamma cumulative distribution function
Linear(x, a0, a1)
¶
this func is available in LMFIT, just play as an example here
inverseTemperature(x, a, b)
¶
ExpDecay(x, A, lambd)
¶
sizeEffect(x, a, b)
¶
system size-dependence on term N^(⅔
unNormalGaussian(x, amp, cen, sig)
¶
The unNormalize Gaussian function
NormalGaussian(x, amp, cen, sig)
¶
The Normalize Gaussian function
sum_2unNormalGaussian(x, amp1, amp2, cen1, cen2, sig1, sig2)
¶
The sum of 2 Gaussian function
sum_3unNormalGaussian(x, amp1, amp2, amp3, cen1, cen2, cen3, sig1, sig2, sig3)
¶
The sum of 3 Gaussian function
sum_4unNormalGaussian(x, amp1, amp2, amp3, amp4, cen1, cen2, cen3, cen4, sig1, sig2, sig3, sig4)
¶
The sum of 4 Gaussian function
sum_5unNormalGaussian(x, amp1, amp2, amp3, amp4, amp5, cen1, cen2, cen3, cen4, cen5, sig1, sig2, sig3, sig4, sig5)
¶
The sum of 5 Gaussian function
sum_2NormalGaussian(x, amp1, amp2, cen1, cen2, sig1, sig2)
¶
The sum of 2 Gaussian function
sum_3NormalGaussian(x, amp1, amp2, amp3, cen1, cen2, cen3, sig1, sig2, sig3)
¶
The sum of 3 Gaussian function
sum_4NormalGaussian(x, amp1, amp2, amp3, amp4, cen1, cen2, cen3, cen4, sig1, sig2, sig3, sig4)
¶
The sum of 4 Gaussian function
sum_5NormalGaussian(x, amp1, amp2, amp3, amp4, amp5, cen1, cen2, cen3, cen4, cen5, sig1, sig2, sig3, sig4, sig5)
¶
The sum of 5 Gaussian function
DoseResp(x, A1=-3.3, A2=-2.9, LOGx0=480000, p=1.2)
¶
Dose-response curve with variable Hill slope given by parameter 'p'. Origin's Category: Pharmacology * Params: Names=A1,A2,LOGx0,p Meanings=bottom asymptote,top asymptote, center, hill slope Initiate params: pars = mod.make_params(A1=-3.3, A2=-2.9, LOGx0=480000, p=1.2)
BiDoseResp(x, A1=-3.3, A2=-2.9, LOGx01=175000, LOGx02=480000, h1=0.1, h2=0.2, p=0.5)
¶
Biphasic Dose Response Function, Origin's Category: Pharmacology * Params: Names=A1, A2, LOGx01, LOGx02, h1, h2, p Meanings=Bottom, Top, 1st EC50, 2nd EC50, slope1, slope2, proportion Initiate params: pars = mod.make_params(A1=0, A2=100, LOGx01=-8, LOGx02=-4, h1=0.8, h2=1.2, p=0.5)
Carreau(x, A1=60, A2=3, t=3.0, a=2.2, n=0.3)
¶
Carreau-Yasuda model to describe pseudoplastic flow with asymptotic viscosities at zero and infinite shear rates Origin's Category: Rheology * Params: Names = A1,A2,t,a,n >0 (lower bound) Meanings = zero shear viscosity,infinite shear viscosity,time constant,transition control factor,power index Initiate params: pars = mod.make_params(A1=-3.3, A2=-2.9, t=2.0, a=2.2, n=0.2)
Cross(x, A1=0.1, A2=3, t=1000, m=0.9)
¶
Cross model to describe pseudoplastic flow with asymptotic viscosities at zero and infinite shear rates Origin's Category: Rheology * Params: Names = A1,A2,t,m >0 (lower bound) Meanings = zero shear viscosity,infinite shear viscosity,time constant,power index Initiate params: pars = mod.make_params(A1=0.1, A2=3, t=1000, m=0.9)
GammaCFD(x, y0, A1, a, b)
¶
Gamma cumulative distribution function Origin's Category: Statistics * Params: Names = y0,A1,a,b (A1,a,b >0) Meanings = Offset,Amplitude,Shape,Scale Initiate params: pars = mod.make_params(A1=0.1, A2=3, t=1000, m=0.9)