
Josh Patterson &
Adam Gibson

Deep
Learning
A PRACTITIONER'S APPROACH

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Josh Patterson and Adam Gibson

Deep Learning
A Practitioner’s Approach

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-91425-0

[M]

Deep Learning
by Josh Patterson and Adam Gibson

Copyright © 2017 Josh Patterson and Adam Gibson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Tim McGovern
Production Editor: Nicholas Adams
Copyeditor: Bob Russell, Octal Publishing, Inc.
Proofreader: Christina Edwards

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2017: First Edition

Revision History for the First Edition
2017-07-27: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491914250 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Deep Learning, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491914250
http://www.allitebooks.org

For my sons Ethan, Griffin, and Dane: Go forth, be persistent, be bold.

—J. Patterson

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. xiii

1. A Review of Machine Learning. 1
The Learning Machines 1

How Can Machines Learn? 2
Biological Inspiration 4
What Is Deep Learning? 6
Going Down the Rabbit Hole 7

Framing the Questions 8
The Math Behind Machine Learning: Linear Algebra 8

Scalars 9
Vectors 9
Matrices 10
Tensors 10
Hyperplanes 10
Relevant Mathematical Operations 11
Converting Data Into Vectors 11
Solving Systems of Equations 13

The Math Behind Machine Learning: Statistics 15
Probability 16
Conditional Probabilities 18
Posterior Probability 19
Distributions 19
Samples Versus Population 22
Resampling Methods 22
Selection Bias 22
Likelihood 23

How Does Machine Learning Work? 23

v

www.allitebooks.com

http://www.allitebooks.org

Regression 23
Classification 25
Clustering 26
Underfitting and Overfitting 26
Optimization 27
Convex Optimization 29
Gradient Descent 30
Stochastic Gradient Descent 32
Quasi-Newton Optimization Methods 33
Generative Versus Discriminative Models 33

Logistic Regression 34
The Logistic Function 35
Understanding Logistic Regression Output 35

Evaluating Models 36
The Confusion Matrix 36

Building an Understanding of Machine Learning 40

2. Foundations of Neural Networks and Deep Learning. 41
Neural Networks 41

The Biological Neuron 43
The Perceptron 45
Multilayer Feed-Forward Networks 50

Training Neural Networks 56
Backpropagation Learning 57

Activation Functions 65
Linear 66
Sigmoid 66
Tanh 67
Hard Tanh 68
Softmax 68
Rectified Linear 69

Loss Functions 71
Loss Function Notation 71
Loss Functions for Regression 72
Loss Functions for Classification 75
Loss Functions for Reconstruction 77

Hyperparameters 78
Learning Rate 78
Regularization 79
Momentum 79
Sparsity 80

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

3. Fundamentals of Deep Networks. 81
Defining Deep Learning 81

What Is Deep Learning? 81
Organization of This Chapter 91

Common Architectural Principles of Deep Networks 92
Parameters 92
Layers 93
Activation Functions 93
Loss Functions 95
Optimization Algorithms 96
Hyperparameters 100
Summary 105

Building Blocks of Deep Networks 105
RBMs 106
Autoencoders 112
Variational Autoencoders 114

4. Major Architectures of Deep Networks. 117
Unsupervised Pretrained Networks 118

Deep Belief Networks 118
Generative Adversarial Networks 121

Convolutional Neural Networks (CNNs) 125
Biological Inspiration 126
Intuition 126
CNN Architecture Overview 128
Input Layers 130
Convolutional Layers 130
Pooling Layers 140
Fully Connected Layers 140
Other Applications of CNNs 141
CNNs of Note 141
Summary 142

Recurrent Neural Networks 143
Modeling the Time Dimension 143
3D Volumetric Input 146
Why Not Markov Models? 148
General Recurrent Neural Network Architecture 149
LSTM Networks 150
Domain-Specific Applications and Blended Networks 159

Recursive Neural Networks 160
Network Architecture 160
Varieties of Recursive Neural Networks 161

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Applications of Recursive Neural Networks 161
Summary and Discussion 162

Will Deep Learning Make Other Algorithms Obsolete? 162
Different Problems Have Different Best Methods 162
When Do I Need Deep Learning? 163

5. Building Deep Networks. 165
Matching Deep Networks to the Right Problem 165

Columnar Data and Multilayer Perceptrons 166
Images and Convolutional Neural Networks 166
Time-series Sequences and Recurrent Neural Networks 167
Using Hybrid Networks 169

The DL4J Suite of Tools 169
Vectorization and DataVec 170
Runtimes and ND4J 170

Basic Concepts of the DL4J API 172
Loading and Saving Models 172
Getting Input for the Model 173
Setting Up Model Architecture 173
Training and Evaluation 174

Modeling CSV Data with Multilayer Perceptron Networks 175
Setting Up Input Data 178
Determining Network Architecture 178
Training the Model 181
Evaluating the Model 181

Modeling Handwritten Images Using CNNs 182
Java Code Listing for the LeNet CNN 183
Loading and Vectorizing the Input Images 185
Network Architecture for LeNet in DL4J 186
Training the CNN 190

Modeling Sequence Data by Using Recurrent Neural Networks 191
Generating Shakespeare via LSTMs 191
Classifying Sensor Time-series Sequences Using LSTMs 200

Using Autoencoders for Anomaly Detection 207
Java Code Listing for Autoencoder Example 207
Setting Up Input Data 211
Autoencoder Network Architecture and Training 211
Evaluating the Model 213

Using Variational Autoencoders to Reconstruct MNIST Digits 214
Code Listing to Reconstruct MNIST Digits 214
Examining the VAE Model 217

Applications of Deep Learning in Natural Language Processing 221

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Learning Word Embedding Using Word2Vec 221
Distributed Representations of Sentences with Paragraph Vectors 227
Using Paragraph Vectors for Document Classification 231

6. Tuning Deep Networks. 237
Basic Concepts in Tuning Deep Networks 237

An Intuition for Building Deep Networks 238
Building the Intuition as a Step-by-Step Process 239

Matching Input Data and Network Architectures 240
Summary 241

Relating Model Goal and Output Layers 242
Regression Model Output Layer 242
Classification Model Output Layer 243

Working with Layer Count, Parameter Count, and Memory 246
Feed-Forward Multilayer Neural Networks 246
Controlling Layer and Parameter Counts 247
Estimating Network Memory Requirements 250

Weight Initialization Strategies 251
Using Activation Functions 253

Summary Table for Activation Functions 255
Applying Loss Functions 256
Understanding Learning Rates 258

Using the Ratio of Updates-to-Parameters 259
Specific Recommendations for Learning Rates 260

How Sparsity Affects Learning 263
Applying Methods of Optimization 263

SGD Best Practices 265
Using Parallelization and GPUs for Faster Training 265

Online Learning and Parallel Iterative Algorithms 266
Parallelizing SGD in DL4J 269
GPUs 272

Controlling Epochs and Mini-Batch Size 273
Understanding Mini-Batch Size Trade-Offs 274

How to Use Regularization 275
Priors as Regularizers 275
Max-Norm Regularization 276
Dropout 277
Other Regularization Topics 279

Working with Class Imbalance 280
Methods for Sampling Classes 282
Weighted Loss Functions 282

Dealing with Overfitting 283

Table of Contents | ix

Using Network Statistics from the Tuning UI 284
Detecting Poor Weight Initialization 287
Detecting Nonshuffled Data 288
Detecting Issues with Regularization 290

7. Tuning Specific Deep Network Architectures. 293
Convolutional Neural Networks (CNNs) 293

Common Convolutional Architectural Patterns 294
Configuring Convolutional Layers 297
Configuring Pooling Layers 303
Transfer Learning 304

Recurrent Neural Networks 306
Network Input Data and Input Layers 307
Output Layers and RnnOutputLayer 308
Training the Network 309
Debugging Common Issues with LSTMs 311
Padding and Masking 312
Evaluation and Scoring With Masking 313
Variants of Recurrent Network Architectures 314

Restricted Boltzmann Machines 314
Hidden Units and Modeling Available Information 315
Using Different Units 316
Using Regularization with RBMs 317

DBNs 317
Using Momentum 318
Using Regularization 319
Determining Hidden Unit Count 319

8. Vectorization. 321
Introduction to Vectorization in Machine Learning 321

Why Do We Need to Vectorize Data? 322
Strategies for Dealing with Columnar Raw Data Attributes 325
Feature Engineering and Normalization Techniques 327

Using DataVec for ETL and Vectorization 334
Vectorizing Image Data 336

Image Data Representation in DL4J 337
Image Data and Vector Normalization with DataVec 339

Working with Sequential Data in Vectorization 340
Major Variations of Sequential Data Sources 340
Vectorizing Sequential Data with DataVec 341

Working with Text in Vectorization 347
Bag of Words 348

x | Table of Contents

TF-IDF 349
Comparing Word2Vec and VSM Comparison 353

Working with Graphs 354

9. Using Deep Learning and DL4J on Spark. 357
Introduction to Using DL4J with Spark and Hadoop 357

Operating Spark from the Command Line 360
Configuring and Tuning Spark Execution 362

Running Spark on Mesos 363
Running Spark on YARN 364
General Spark Tuning Guide 367
Tuning DL4J Jobs on Spark 371

Setting Up a Maven Project Object Model for Spark and DL4J 372
A pom.xml File Dependency Template 374
Setting Up a POM File for CDH 5.X 378
Setting Up a POM File for HDP 2.4 378

Troubleshooting Spark and Hadoop 379
Common Issues with ND4J 380

DL4J Parallel Execution on Spark 381
A Minimal Spark Training Example 383

DL4J API Best Practices for Spark 385
Multilayer Perceptron Spark Example 387

Setting Up MLP Network Architecture for Spark 390
Distributed Training and Model Evaluation 390
Building and Executing a DL4J Spark Job 392

Generating Shakespeare Text with Spark and Long Short-Term Memory 392
Setting Up the LSTM Network Architecture 395
Training, Tracking Progress, and Understanding Results 396

Modeling MNIST with a Convolutional Neural Network on Spark 397
Configuring the Spark Job and Loading MNIST Data 400
Setting Up the LeNet CNN Architecture and Training 401

A. What Is Artificial Intelligence?. 405

B. RL4J and Reinforcement Learning. 417

C. Numbers Everyone Should Know. 441

D. Neural Networks and Backpropagation: A Mathematical Approach. 443

E. Using the ND4J API. 449

Table of Contents | xi

F. Using DataVec. 463

G. Working with DL4J from Source. 475

H. Setting Up DL4J Projects. 477

I. Setting Up GPUs for DL4J Projects. 483

J. Troubleshooting DL4J Installations. 487

Index. 495

xii | Table of Contents

Preface

What’s in This Book?
The first four chapters of this book are focused on enough theory and fundamentals
to give you, the practitioner, a working foundation for the rest of the book. The last
five chapters then work from these concepts to lead you through a series of practical
paths in deep learning using DL4J:

• Building deep networks
• Advanced tuning techniques
• Vectorization for different data types
• Running deep learning workflows on Spark

DL4J as Shorthand for Deeplearning4j

We use the names DL4J and Deeplearning4j interchangeably in this
book. Both terms refer to the suite of tools in the Deeplearning4j
library.

We designed the book in this manner because we felt there was a need for a book cov‐
ering “enough theory” while being practical enough to build production-class deep
learning workflows. We feel that this hybrid approach to the book’s coverage fits this
space well.

Chapter 1 is a review of machine learning concepts in general as well as deep learning
in particular, to bring any reader up to speed on the basics needed to understand the
rest of the book. We added this chapter because many beginners can use a refresher
or primer on these concepts and we wanted to make the project accessible to the larg‐
est audience possible.

Chapter 2 builds on the concepts from Chapter 1 and gives you the foundations of
neural networks. It is largely a chapter in neural network theory but we aim to

xiii

present the information in an accessible way. Chapter 3 further builds on the first two
chapters by bringing you up to speed on how deep networks evolved from the funda‐
mentals of neural networks. Chapter 4 then introduces the four major architectures
of deep networks and provides you with the foundation for the rest of the book.

In Chapter 5, we take you through a number of Java code examples using the techni‐
ques from the first half of the book. Chapters 6 and 7 examine the fundamentals of
tuning general neural networks and then how to tune specific architectures of deep
networks. These chapters are platform-agnostic and will be applicable to the practi‐
tioner of any deep learning library. Chapter 8 is a review of the techniques of vectori‐
zation and the basics on how to use DataVec (DL4J’s ETL and vectorization workflow
tool). Chapter 9 concludes the main body of the book with a review on how to use
DL4J natively on Spark and Hadoop and illustrates three real examples that you can
run on your own Spark clusters.

The book has many Appendix chapters for topics that were relevant yet didn’t fit
directly in the main chapters. Topics include:

• Artificial Intelligence
• Using Maven with DL4J projects
• Working with GPUs
• Using the ND4J API
• and more

Who Is “The Practitioner”?
Today, the term “data science” has no clean definition and often is used in many dif‐
ferent ways. The world of data science and artificial intelligence (AI) is as broad and
hazy as any terms in computer science today. This is largely because the world of
machine learning has become entangled in nearly all disciplines.

This widespread entanglement has historical parallels to when the World Wide Web
(90s) wove HTML into every discipline and brought many new people into the land
of technology. In the same way, all types—engineers, statisticians, analysts, artists—
are entering the machine learning fray every day. With this book, our goal is to
democratize deep learning (and machine learning) and bring it to the broadest audi‐
ence possible.

If you find the topic interesting and are reading this preface—you are the practitioner,
and this book is for you.

xiv | Preface

Who Should Read This Book?
As opposed to starting out with toy examples and building around those, we chose to
start the book with a series of fundamentals to take you on a full journey through
deep learning.

We feel that too many books leave out core topics that the enterprise practitioner
often needs for a quick review. Based on our machine learning experiences in the
field, we decided to lead-off with the materials that entry-level practitioners often
need to brush up on to better support their deep learning projects.

You might want to skip Chapters 1 and 2 and get right to the deep learning funda‐
mentals. However, we expect that you will appreciate having the material up front so
that you can have a smooth glide path into the more difficult topics in deep learning
that build on these principles. In the following sections, we suggest some reading
strategies for different backgrounds.

The Enterprise Machine Learning Practitioner
We split this category into two subgroups:

• Practicing data scientist
• Java engineer

The practicing data scientist
This group typically builds models already and is fluent in the realm of data sci‐
ence. If this is you, you can probably skip Chapter 1 and you’ll want to lightly skim
Chapter 2. We suggest moving on to Chapter 3 because you’ll probably be ready to
jump into the fundamentals of deep networks.

The Java engineer
Java engineers are typically tasked with integrating machine learning code with pro‐
duction systems. If this is you, starting with Chapter 1 will be interesting for you
because it will give you a better understanding of the vernacular of data science.
Appendix E should also be of keen interest to you because integration code for model
scoring will typically touch ND4J’s API directly.

The Enterprise Executive
Some of our reviewers were executives of large Fortune 500 companies and appreci‐
ated the content from the perspective of getting a better grasp on what is happening
in deep learning. One executive commented that it had “been a minute” since college,
and Chapter 1 was a nice review of concepts. If you’re an executive, we suggest that

Preface | xv

you begin with a quick skim of Chapter 1 to reacclimate yourself to some terminol‐
ogy. You might want to skip the chapters that are heavy on APIs and examples, how‐
ever.

The Academic
If you’re an academic, you likely will want to skip Chapters 1 and 2 because graduate
school will have already covered these topics. The chapters on tuning neural net‐
works in general and then architecture-specific tuning will be of keen interest to you
because this information is based on research and transcends any specific deep learn‐
ing implementation. The coverage of ND4J will also be of interest to you if you prefer
to do high-performance linear algebra on the Java Virtual Machine (JVM).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords. Also used for module and package names,
and to show commands or other text that should be typed literally by the user
and the output of commands.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xvi | Preface

This element signifies a warning or caution.

Using Code Examples
Supplemental material (virtual machine, data, scripts, and custom command-line
tools, etc.) is available for download at https://github.com/deeplearning4j/oreilly-book-
dl4j-examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Deep Learning: A Practitioner’s
Approach by Josh Patterson and Adam Gibson (O’Reilly). Copyright 2017 Josh Patter‐
son and Adam Gibson, 978-1-4919-1425-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Administrative Notes
In Java code examples, we often omit the import statements. You can see the full
import listings in the actual code repository. The API information for DL4J, ND4J,
DataVec, and more is available on this website:

http://deeplearning4j.org/documentation

You can find all code examples at:

https://github.com/deeplearning4j/oreilly-book-dl4j-examples

For more resources on the DL4J family of tools, check out this website:

http://deeplearning4j.org

Preface | xvii

https://github.com/deeplearning4j/oreilly-book-dl4j-examples
https://github.com/deeplearning4j/oreilly-book-dl4j-examples
mailto:permissions@oreilly.com
http://deeplearning4j.org/documentation
https://github.com/deeplearning4j/oreilly-book-dl4j-examples
http://deeplearning4j.org

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com. If you find any errors or glaring omissions, if you find anything
confusing, or if you have any ideas for improving the book, please email Josh Patter‐
son at jpatterson@floe.tv.

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/deep_learning_oreilly.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Follow Josh Patterson on Twitter: @jpatanooga

xviii | Preface

http://oreilly.com/safari
http://www.oreilly.com/safari
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://bit.ly/deep_learning_oreilly
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://twitter.com/jpatanooga

Follow Adam Gibson on Twitter: @agibsonccc

Acknowledgments
Josh
I relied on many folks far smarter than myself to help shape the ideas and review the
content in this book. No project the size of DL4J operates in a vacuum, and I relied
on many of the community experts and engineers at Skymind to construct many of
the ideas and guidelines in this book.

Little did I know that hacking on what became DL4J with Adam (after a chance meet‐
ing at MLConf) would end up as a book. To be fair, while I was there from the begin‐
ning on DL4J, Adam did far more commits than I ever did. So, to Adam I am
considerably grateful in the commitment to the project, commitment to the idea of
deep learning on the JVM, and to staying the course during some considerably uncer‐
tain early days. And, yes, you were right: ND4J was a good idea.

Writing can be a long, lonely path and I’d like to specifically thank Alex Black for his
considerable efforts, not only in reviewing the book, but also for contributing content
in the appendixes. Alex’s encyclopedia-like knowledge of neural network published
literature was key in crafting many of the small details of this book and making sure
that all the big and little things were correct. Chapters 6 and 7 just wouldn’t be half of
what they became without Alex Black.

Susan Eraly was key in helping construct the loss function section and contributed
appendix material, as well (many of the equations in this book owe a debt of correct‐
ness to Susan), along with many detailed review notes. Melanie Warrick was key in
reviewing early drafts of the book, providing feedback, and providing notes for the
inner workings of Convolutional Neural Networks (CNNs).

David Kale was a frequent ad hoc reviewer and kept me on my toes about many key
network details and paper references. Dave was always there to provide the academ‐
ic’s view on how much rigor we needed to provide while understanding what kind of
audience we were after.

James Long was a critical ear for my rants on what should or should not be in the
book, and was able to lend a practical viewpoint from a practicing statistician’s point
of view. Many times there was not a clear correct answer regarding how to communi‐
cate a complex topic, and James was my sounding board for arguing the case from
multiple sides. Whereas David Kale and Alex Black would frequently remind me of
the need for mathematical rigor, James would often play the rational devil’s advocate
in just how much of it we needed before we “drown the reader in math.”

Preface | xix

https://twitter.com/agibsonccc

Vyacheslav “Raver” Kokorin added quality insight to the development of the Natural
Language Processing (NLP) and Word2Vec examples.

I’d like to make note of the support we received from our CEO at Skymind, Chris
Nicholson. Chris supported this book at every turn and in no small part helped us
with the needed time and resources to make this happen.

I would like to thank the people who contributed appendix chapters: Alex Black
(Backprop, DataVec), Vyacheslav “Raver” Kokorin (GPUs), Susan Eraly (GPUs), and
Ruben Fiszel (Reinforcement Learning). Other reviewers of the book at various stages
include Grant Ingersol, Dean Wampler, Robert Chong, Ted Malaska, Ryan Geno, Lars
George, Suneel Marthi, Francois Garillot, and Don Brown. Any errors that you might
discover in this book should be squarely placed on my doorstep.

I’d like to thank our esteemed editor, Tim McGovern, for the feedback, notes, and just
overall patience with a project that spanned years and grew by three chapters. I felt
like he gave us the space to get this right, and we appreciate it.

Following are some other folks I’d like to recognize who had an impact on my career
leading up to this book: my parents (Lewis and Connie), Dr. Andy Novobiliski (grad
school), Dr. Mina Sartipi (thesis advisor), Dr. Billy Harris (graduate algorithms), Dr.
Joe Dumas (grad school), Ritchie Carroll (creator of the openPDC), Paul Trachian,
Christophe Bisciglia and Mike Olson (for recruiting me to Cloudera), Malcom
Ramey (for my first real programming job), The University of Tennessee at Chatta‐
nooga, and Lupi’s Pizza (for feeding me through grad school).

Last, and especially not least, I’d like to thank my wife Leslie and my sons Ethan,
Griffin, and Dane for their patience while I worked late, often, and sometimes on
vacation.

Adam
I would like to thank my team at Skymind for all the work they piled on in assisting
with review of the book and content as we continued to iterate on the book. I would
especially like to thank Chris who tolerated my crazy idea of writing a book while
attempting to do a startup.

DL4J started in 2013 with a chance meeting with Josh at MLConf and it has grown in
to quite the project now used all over the world. DL4J has taken me all over the world
and has really opened my world up to tons of new experiences.

Firstly, I would like to thank my coauthor Josh Patterson who did the lion’s share of
the book and deserves much of the credit. He put in nights and weekends to get the
book out the door while I continued working on the codebase and continuing to
adapt the content to new features through the years.

xx | Preface

Echoing Josh, many of our team mates and contributors who joined early on such as
Alex, Melanie, Vyacheslav “Raver” Kokorin, and later on folks like Dave helping us as
an extra pair of eyes on the math due diligence.

Tim McGovern has been a great ear for some of my crazy ideas on content for
O’Reilly and was also amazing in letting me name the book.

Preface | xxi

CHAPTER 1

A Review of Machine Learning

To condense fact from the vapor of nuance
—Neal Stephenson, Snow Crash

The Learning Machines
Interest in machine learning has exploded over the past decade. You see machine
learning in computer science programs, industry conferences, and the Wall Street
Journal almost daily. For all the talk about machine learning, many conflate what it
can do with what they wish it could do. Fundamentally, machine learning is using
algorithms to extract information from raw data and represent it in some type of
model. We use this model to infer things about other data we have not yet modeled.

Neural networks are one type of model for machine learning; they have been around
for at least 50 years. The fundamental unit of a neural network is a node, which is
loosely based on the biological neuron in the mammalian brain. The connections
between neurons are also modeled on biological brains, as is the way these connec‐
tions develop over time (with “training”). We’ll dig deeper into how these models
work over the next two chapters.

In the mid-1980s and early 1990s, many important architectural advancements were
made in neural networks. However, the amount of time and data needed to get good
results slowed adoption, and thus interest cooled. In the early 2000s computational
power expanded exponentially and the industry saw a “Cambrian explosion” of com‐
putational techniques that were not possible prior to this. Deep learning emerged
from that decade’s explosive computational growth as a serious contender in the field,
winning many important machine learning competitions. The interest has not cooled
as of 2017; today, we see deep learning mentioned in every corner of machine
learning.

1

We’ll discuss our definition of deep learning in more depth in the section that follows.
This book is structured such that you, the practitioner, can pick it up off the shelf and
do the following:

• Review the relevant basic parts of linear algebra and machine learning
• Review the basics of neural networks
• Study the four major architectures of deep networks
• Use the examples in the book to try out variations of practical deep networks

We hope that you will find the material practical and approachable. Let’s kick off the
book with a quick primer on what machine learning is about and some of the core
concepts you will need to better understand the rest of the book.

How Can Machines Learn?
To define how machines can learn, we need to define what we mean by “learning.” In
everyday parlance, when we say learning, we mean something like “gaining knowl‐
edge by studying, experience, or being taught.” Sharpening our focus a bit, we can
think of machine learning as using algorithms for acquiring structural descriptions
from data examples. A computer learns something about the structures that represent
the information in the raw data. Structural descriptions are another term for the
models we build to contain the information extracted from the raw data, and we can
use those structures or models to predict unknown data. Structural descriptions (or
models) can take many forms, including the following:

• Decision trees
• Linear regression
• Neural network weights

Each model type has a different way of applying rules to known data to predict
unknown data. Decision trees create a set of rules in the form of a tree structure and
linear models create a set of parameters to represent the input data.

Neural networks have what is called a parameter vector representing the weights on
the connections between the nodes in the network. We’ll describe the details of this
type of model later on in this chapter.

2 | Chapter 1: A Review of Machine Learning

Machine Learning Versus Data Mining
Data mining has been around for many decades, and like many terms in machine
learning, it is misunderstood or used poorly. For the context of this book, we consider
the practice of “data mining” to be “extracting information from data.” Machine learn‐
ing differs in that it refers to the algorithms used during data mining for acquiring the
structural descriptions from the raw data. Here’s a simple way to think of data mining:

• To learn concepts
— we need examples of raw data

• Examples are made of rows or instances of the data
— Which show specific patterns in the data

• The machine learns concepts from these patterns in the data
— Through algorithms in machine learning

Overall, this process can be considered “data mining.”

Arthur Samuel, a pioneer in artificial intelligence (AI) at IBM and Stanford, defined
machine learning as follows:

[The f]ield of study that gives computers the ability to learn without being explicitly
programmed.

Samuel created software that could play checkers and adapt its strategy as it learned
to associate the probability of winning and losing with certain dispositions of the
board. That fundamental schema of searching for patterns that lead to victory or
defeat and then recognizing and reinforcing successful patterns underpins machine
learning and AI to this day.

The concept of machines that can learn to achieve goals on their own has captivated
us for decades. This was perhaps best expressed by the modern grandfathers of AI,
Stuart Russell and Peter Norvig, in their book Artificial Intelligence: A Modern
Approach:

How is it possible for a slow, tiny brain, whether biological or electronic, to perceive,
understand, predict, and manipulate a world far larger and more complicated than
itself?

This quote alludes to ideas around how the concepts of learning were inspired from
processes and algorithms discovered in nature. To set deep learning in context visu‐
ally, Figure 1-1 illustrates our conception of the relationship between AI, machine
learning, and deep learning.

The Learning Machines | 3

http://infolab.stanford.edu/pub/voy/museum/samuel.html
https://www2.eecs.berkeley.edu/Faculty/Homepages/russell.html
http://norvig.com
http://aima.cs.berkeley.edu
http://aima.cs.berkeley.edu

Figure 1-1. The relationship between AI and deep learning

The field of AI is broad and has been around for a long time. Deep learning is a sub‐
set of the field of machine learning, which is a subfield of AI. Let’s now take a quick
look at another of the roots of deep learning: how neural networks are inspired by
biology.

Biological Inspiration
Biological neural networks (brains) are composed of roughly 86 billion neurons con‐
nected to many other neurons.

Total Connections in the Human Brain

Researchers conservatively estimate there are more than 500 tril‐
lion connections between neurons in the human brain. Even the
largest artificial neural networks today don’t even come close to
approaching this number.

4 | Chapter 1: A Review of Machine Learning

1 Patterson. 2008. “TinyTermite: A Secure Routing Algorithm” and Sartipi and Patterson. 2009. “TinyTermite: A
Secure Routing Algorithm on Intel Mote 2 Sensor Network Platform.”

From an information processing point of view a biological neuron is an excitable unit
that can process and transmit information via electrical and chemical signals. A neu‐
ron in the biological brain is considered a main component of the brain, spinal cord
of the central nervous system, and the ganglia of the peripheral nervous system. As
we’ll see later in this chapter, artificial neural networks are far simpler in their compa‐
rative structure.

Comparing Biological with Artificial

Biological neural networks are considerably more complex (several
orders of magnitude) than the artificial neural network versions!

There are two main properties of artificial neural networks that follow the general
idea of how the brain works. First is that the most basic unit of the neural network is
the artificial neuron (or node in shorthand). Artificial neurons are modeled on the
biological neurons of the brain, and like biological neurons, they are stimulated by
inputs. These artificial neurons pass on some—but not all—information they receive
to other artificial neurons, often with transformations. As we progress through this
chapter, we’ll go into detail about what these transformations are in the context of
neural networks.

Second, much as the neurons in the brain can be trained to pass forward only signals
that are useful in achieving the larger goals of the brain, we can train the neurons of a
neural network to pass along only useful signals. As we move through this chapter
we’ll build on these ideas and see how artificial neural networks are able to model
their biological counterparts through bits and functions.

Biological Inspiration Across Computer Science
Biological inspiration is not limited to artificial neural networks in computer science.
Over the past 50 years, academic research has explored other topics in nature for
computational inspiration, such as the following:

• Ants
• Termites1

• Bees
• Genetic algorithms

Ant colonies, for instance, have been by researchers to be a powerful decentralized
computer in which no single ant is a central point of failure. Ants constantly switch

The Learning Machines | 5

http://scholar.utc.edu/theses/184/
http://www.aaai.org/ocs/index.php/IAAI/IAAI09/paper/viewFile/235/1030
http://www.aaai.org/ocs/index.php/IAAI/IAAI09/paper/viewFile/235/1030
https://mitpress.mit.edu/books/ant-colony-optimization

tasks to find near optimal solutions for load balancing through meta-heuristics such
as quantitative stigmergy. Ant colonies are able to perform midden tasks, defense,
nest construction, and forage for food while maintaining a near-optimal number of
workers on each task based on the relative need with no individual ant directly coor‐
dinating the work.

What Is Deep Learning?
Deep learning has been a challenge to define for many because it has changed forms
slowly over the past decade. One useful definition specifies that deep learning deals
with a “neural network with more than two layers.” The problematic aspect to this
definition is that it makes deep learning sound as if it has been around since the
1980s. We feel that neural networks had to transcend architecturally from the earlier
network styles (in conjunction with a lot more processing power) before showing the
spectacular results seen in more recent years. Following are some of the facets in this
evolution of neural networks:

• More neurons than previous networks
• More complex ways of connecting layers/neurons in NNs
• Explosion in the amount of computing power available to train
• Automatic feature extraction

For the purposes of this book, we’ll define deep learning as neural networks with a
large number of parameters and layers in one of four fundamental network architec‐
tures:

• Unsupervised pretrained networks
• Convolutional neural networks
• Recurrent neural networks
• Recursive neural networks

There are some variations of the aforementioned architectures—a hybrid convolu‐
tional and recurrent neural network, for example–as well. For the purpose of this
book, we’ll consider the four listed architectures as our focus.

Automatic feature extraction is another one of the great advantages that deep learning
has over traditional machine learning algorithms. By feature extraction, we mean that
the network’s process of deciding which characteristics of a dataset can be used as
indicators to label that data reliably. Historically, machine learning practitioners have
spent months, years, and sometimes decades of their lives manually creating exhaus‐
tive feature sets for the classification of data. At the time of deep learning’s Big Bang
beginning in 2006, state-of-the-art machine learning algorithms had absorbed deca‐
des of human effort as they accumulated relevant features by which to classify input.
Deep learning has surpassed those conventional algorithms in accuracy for almost

6 | Chapter 1: A Review of Machine Learning

www.allitebooks.com

http://www.allitebooks.org

2 Gatys et. al, 2015. “A Neural Algorithm of Artistic Style.”

every data type with minimal tuning and human effort. These deep networks can
help data science teams save their blood, sweat, and tears for more meaningful tasks.

Going Down the Rabbit Hole
Deep learning has penetrated the computer science consciousness beyond most tech‐
niques in recent history. This is in part due to how it has shown not only top-flight
accuracy in machine learning modeling, but also demonstrated generative mechanics
that fascinate even the noncomputer scientist. One example of this would be the art
generation demonstrations for which a deep network was trained on a particular
famous painter’s works, and the network was able to render other photographs in the
painter’s unique style, as demonstrated in Figure 1-2.

Figure 1-2. Stylized images by Gatys et al., 20152

This begins to enter into many philosophical discussions, such as, “can machines be
creative?” and then “what is creativity?” We’ll leave those questions for you to ponder
at a later time. Machine learning has evolved over the years, like the seasons change:
subtle but steady until you wake up one day and a machine has become a champion
on Jeopardy or beat a Go Grand Master.

Can machines be intelligent and take on human-level intelligence? What is AI and
how powerful could it become? These questions have yet to be answered and will not

The Learning Machines | 7

http://arxiv.org/pdf/1508.06576v1.pdf

be completely answered in this book. We simply seek to illustrate some of the shards
of machine intelligence with which we can imbue our environment today through the
practice of deep learning.

For an Extended Discussion on AI

If you would like to read more about AI, take a look at Appendix A.

Framing the Questions
The basics of applying machine learning are best understood by asking the correct
questions to begin with. Here’s what we need to define:

• What is the input data from which we want to extract information (model)?
• What kind of model is most appropriate for this data?
• What kind of answer would we like to elicit from new data based on this model?

If we can answer these three questions, we can set up a machine learning workflow
that will build our model and produce our desired answers. To better support this
workflow, let’s review some of the core concepts we need to be aware of to practice
machine learning. Later, we’ll come back to how these come together in machine
learning and then use that information to better inform our understanding of both
neural networks and deep learning.

The Math Behind Machine Learning: Linear Algebra
Linear algebra is the bedrock of machine learning and deep learning. Linear algebra
provides us with the mathematical underpinnings to solve the equations we use to
build models.

A great primer on linear algebra is James E. Gentle’s Matrix Alge‐
bra: Theory, Computations, and Applications in Statistics.

Let’s take a look at some core concepts from this field before we move on starting
with the basic concept called a scalar.

8 | Chapter 1: A Review of Machine Learning

http://mason.gmu.edu/~jgentle/books/matbk/index.htm
http://mason.gmu.edu/~jgentle/books/matbk/index.htm

Scalars
In mathematics, when the term scalar is mentioned, we are concerned with elements
in a vector. A scalar is a real number and an element of a field used to define a vector
space.

In computing, the term scalar is synonymous with the term variable and is a storage
location paired with a symbolic name. This storage location holds an unknown quan‐
tity of information called a value.

Vectors
For our use, we define a vector as follows:

For a positive integer n, a vector is an n-tuple, ordered (multi)set or array of n numbers,
called elements or scalars.

What we’re saying is that we want to create a data structure called a vector via a pro‐
cess called vectorization. The number of elements in the vector is called the “order”
(or “length”) of the vector. Vectors also can represent points in n-dimensional space.
In the spatial sense, the Euclidean distance from the origin to the point represented
by the vector gives us the “length” of the vector.

In mathematical texts, we often see vectors written as follows:

x =

x1

x2

x3

. . .
xn

Or:

x = x1, x2, x3, . . . , xn

There are many different ways to handle the vectorization, and you can apply many
preprocessing steps, giving us different grades of effectiveness on the output models.
We cover more on the topic of converting raw data into vectors later in this chapter
and then more fully in Chapter 5.

The Math Behind Machine Learning: Linear Algebra | 9

Matrices
Consider a matrix to be a group of vectors that all have the same dimension (number
of columns). In this way a matrix is a two-dimensional array for which we have rows
and columns.

If our matrix is said to be an n × m matrix, it has n rows and m columns.
Figure 1-3 shows a 3 × 3 matrix illustrating the dimensions of a matrix. Matrices are a
core structure in linear algebra and machine learning, as we’ll show as we progress
through this chapter.

Figure 1-3. A 3 x 3 matrix

Tensors
A tensor is a multidimensional array at the most fundamental level. It is a more gen‐
eral mathematical structure than a vector. We can look at a vector as simply a subclass
of tensors.

With tensors, the rows extend along the y-axis and the columns along the x-axis.
Each axis is a dimension, and tensors have additional dimensions. Tensors also have a
rank. Comparatively, a scalar is of rank 0 and a vector is rank 1. We also see that a
matrix is rank 2. Any entity of rank 3 and above is considered a tensor.

Hyperplanes
Another linear algebra object you should be aware of is the hyperplane. In the field of
geometry, the hyperplane is a subspace of one dimension less than its ambient space.
In a three-dimensional space, the hyperplanes would have two dimensions. In two-
dimensional space we consider a one-dimensional line to be a hyperplane.

A hyperplane is a mathematical construct that divides an n-dimensional space into
separate “parts” and therefore is useful in applications like classification. Optimizing
the parameters of the hyperplane is a core concept in linear modeling, as you’ll see
further on in this chapter.

10 | Chapter 1: A Review of Machine Learning

Relevant Mathematical Operations
In this section, we briefly review common linear algebra operations you should know.

Dot product
A core linear algebra operation we see often in machine learning is the dot product.
The dot product is sometimes called the “scalar product” or “inner product." The dot
product takes two vectors of the same length and returns a single number. This is
done by matching up the entries in the two vectors, multiplying them, and then sum‐
ming up the products thus obtained. Without getting too mathematical (immedi‐
ately), it is important to mention that this single number encodes a lot of information.

To begin with, the dot product is a measure of how big the individual elements are in
each vector. Two vectors with rather large values can give rather large results, and two
vectors with rather small values can give rather small values. When the relative values
of these vectors are accounted for mathematically with something called normaliza‐
tion, the dot product is a measure of how similar these vectors are. This mathematical
notion of a dot product of two normalized vectors is called the cosine similarity.

Element-wise product
Another common linear algebra operation we see in practice is the element-wise prod‐
uct (or the “Hadamard product”). This operation takes two vectors of the same length
and produces a vector of the same length with each corresponding element multi‐
plied together from the two source vectors.

Outer product
This is known as the “tensor product” of two input vectors. We take each element of a
column vector and multiply it by all of the elements in a row vector creating a new
row in the resultant matrix.

Converting Data Into Vectors
In the course of working in machine learning and data science we need to analyze all
types of data. A key requirement is being able to take each data type and represent it
as a vector. In machine learning we use many types of data (e.g., text, time-series,
audio, images, and video).

So, why can’t we just feed raw data to our learning algorithm and let it handle every‐
thing? The issue is that machine learning is based on linear algebra and solving sets of
equations. These equations expect floating-point numbers as input so we need a way
to translate the raw data into sets of floating-point numbers. We’ll connect these con‐
cepts together in the next section on solving these sets of equations. An example of
raw data would be the canonical iris dataset:

The Math Behind Machine Learning: Linear Algebra | 11

http://archive.ics.uci.edu/ml/datasets/Iris

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica

Another example might be a raw text document:

Go, Dogs. Go!
Go on skates
or go by bike.

Both cases involve raw data of different types, yet both need some level of vectoriza‐
tion to be of the form we need to do machine learning. At some point, we want our
input data to be in the form of a matrix but we can convert the data to intermediate
representations (e.g., “svmlight” file format, shown in the code example that fol‐
lows). We want our machine learning algorithm’s input data to look more like the
serialized sparse vector format svmlight, as shown in the following example:

1.0 1:0.7500000000000001 2:0.41666666666666663 3:0.702127659574468 4:0.
 5652173913043479
2.0 1:0.6666666666666666 2:0.5 3:0.9148936170212765 4:0.6956521739130436
2.0 1:0.45833333333333326 2:0.3333333333333336 3:0.8085106382978723 4:0
 .7391304347826088
0.0 1:0.1666666666666665 2:1.0 3:0.021276595744680823
2.0 1:1.0 2:0.5833333333333334 3:0.9787234042553192 4:0.8260869565217392
1.0 1:0.3333333333333333 3:0.574468085106383 4:0.47826086956521746
1.0 1:0.7083333333333336 2:0.7500000000000002 3:0.6808510638297872 4:0
 .5652173913043479
1.0 1:0.916666666666667 2:0.6666666666666667 3:0.7659574468085107 4:0
 .5652173913043479
0.0 1:0.08333333333333343 2:0.5833333333333334 3:0.021276595744680823
2.0 1:0.6666666666666666 2:0.8333333333333333 3:1.0 4:1.0
1.0 1:0.9583333333333335 2:0.7500000000000002 3:0.723404255319149 4:0
 .5217391304347826
0.0 2:0.7500000000000002

This format can quickly be read into a matrix and a column vector for the labels (the
first number in each row in the preceding example). The rest of the indexed numbers
in the row are inserted into the proper slot in the matrix as “features” at runtime to
get ready for various linear algebra operations during the machine learning process.
We’ll discuss the process of vectorization in more detail in Chapter 8.

12 | Chapter 1: A Review of Machine Learning

Here’s a very common question: “why do machine learning algorithms want the data
represented (typically) as a (sparse) matrix?” To understand that, let’s make a quick
detour into the basics of solving systems of equations.

Solving Systems of Equations
In the world of linear algebra, we are interested in solving systems of linear equations
of the form:

Ax = b

where A is a matrix of our set of input row vectors and b is the column vector of
labels for each vector in the A matrix. If we take the first three rows of serialized
sparse output from the previous example and place the values in its linear algebra
form, it looks like this:

Column 1 Column 2 Column 3 Column 4

0.7500000000000001 0.41666666666666663 0.702127659574468 0.5652173913043479

0.6666666666666666 0.5 0.9148936170212765 0.6956521739130436

0.45833333333333326 0.3333333333333336 0.8085106382978723 0.7391304347826088

This matrix of numbers is our A variable in our equation, and each independent
value or value in each row is considered a feature of our input data.

What Is a Feature?
A feature in machine learning is any column value in the input matrix A that we’re
using as an independent variable. Features can be taken straight from the source data,
but most of the time we’re going to use some sort of transformation to get the raw
input data into a form that is more appropriate for modeling.

An example would be a column of input that has four different text labels in the
source data. We’d need to scan all of the input data and index the labels being used.
We’d then need to normalize these values (0, 1, 2, 3) between 0.0 and 1.0 based on
each label’s index for every row’s column value. These types of transforms greatly help
machine learning find better solutions to modeling problems. We’ll see more techni‐
ques for vectorization transforms in Chapter 5.

We want to find coefficients for each column in a given row for a predictor function
that give us the output b, or the label for each row. The labels from the serialized
sparse vectors we looked at earlier would be as follows:

The Math Behind Machine Learning: Linear Algebra | 13

Labels

1.0

2.0

2.0

The coefficients mentioned earlier become the x column vector (also called the
parameter vector) shown in Figure 1-4.

Figure 1-4. Visualizing the equation Ax = b

This system is said to be “consistent” if there exists a parameter vector x such that the
solution to this equation can be directly written as follows:

x = A−1b

It’s important to delineate the expression x = A-1b from the method of actually com‐
puting the solution. This expression only represents the solution itself. The variable
A-1 is the matrix A inverted and is computed through a process called matrix inver‐
sion. Given that not all matrices can be inverted, we’d like a method to solve this equa‐
tion that does not involve matrix inversion. One method is called matrix
decomposition. An example of matrix decomposition in solving systems of linear
equations is using lower upper (LU) decomposition to solve for the matrix A. Beyond
matrix decomposition, let’s take a look at the general methods for solving sets of lin‐
ear equations.

Methods for solving systems of linear equations
There are two general methods for solving a system of linear equations. The first is
called the “direct method,” in which we know algorithmically that there are a fixed
number of computations. The other approach is a class of methods known as iterative
methods, in which through a series of approximations and a set of termination condi‐
tions we can derive the parameter vector x. The direct class of methods is particularly
effective when we can fit all of the training data (A and b) in memory on a single
computer. Well-known examples of the direct method of solving sets of linear equa‐
tions are Gaussian Elimination and the Normal Equations.

14 | Chapter 1: A Review of Machine Learning

Iterative methods
The iterative class of methods is particularly effective when our data doesn’t fit into
the main memory on a single computer, and looping through individual records
from disk allows us to model a much larger amount of data. The canonical example
of iterative methods most commonly seen in machine learning today is Stochastic
Gradient Descent (SDG), which we discuss later in this chapter. Other techniques in
this space are Conjugate Gradient Methods and Alternating Least Squares (discussed
further in Chapter 3). Iterative methods also have been shown to be effective in scale-
out methods, for which we not only loop through local records, but the entire dataset
is sharded across a cluster of machines, and periodically the parameter vector is aver‐
aged across all agents and then updated at each local modeling agent (described in
more detail in Chapter 9).

Iterative methods and linear algebra
At the mathematical level, we want to be able to operate on our input dataset with
these algorithms. This constraint requires us to convert our raw input data into the
input matrix A. This quick overview of linear algebra gives us the “why” for going
through the trouble to vectorize data. Throughout this book, we show code examples
of converting the raw input data into the input matrix A, giving you the “how.” The
mechanics of how we vectorize our data also affects the results of the learning pro‐
cess. As we’ll see later in the book, how we handle data in the preprocess stage before
vectorization can create more accurate models.

The Math Behind Machine Learning: Statistics
Let’s review just enough statistics to let this chapter move forward. We need to high‐
light some basic concepts in statistics, such as the following:

• Probabilities
• Distributions
• Likelihood

There are also some other basic relationships we’d like to highlight in descriptive sta‐
tistics and inferential statistics. Descriptive statistics include the following:

• Histograms
• Boxplots
• Scatterplots
• Mean
• Standard deviation
• Correlation coefficient

The Math Behind Machine Learning: Statistics | 15

This contrasts with how inferential statistics are concerned with techniques for gener‐
alizing from a sample to a population. Here are some examples of inferential statis‐
tics:

• p-values
• credibility intervals

The relationship between probability and inferential statistics:

• Probability reasons from the population to the sample (deductive reasoning)
• Inferential statistics reason from the sample to the population

Before we can understand what a specific sample tells us about the source population,
we need to understand the uncertainty associated with taking a sample from a given
population.

Regarding general statistics, we won’t linger on what is an inherently broad topic
already covered in depth by other books. This section is in no way meant to serve as a
true statistics review; rather, it is designed to direct you toward relevant topics that
you can investigate in greater depth from other resources. With that disclaimer out of
the way, let’s begin by defining probability in statistics.

Probability
We define probability of an event E as a number always between 0 and 1. In this con‐
text, the value 0 infers that the event E has no chance of occurring, and the value 1
means that the event E is certain to occur. Many times we’ll see this probability
expressed as a floating-point number, but we also can express it as a percentage
between 0 and 100 percent; we will not see valid probabilities lower than 0 percent
and greater than 100 percent. An example would be a probability of 0.35 expressed as
35 percent (e.g., 0.35 x 100 == 35 percent).

The canonical example of measuring probability is observing how many times a fair
coin flipped comes up heads or tails (e.g., 0.5 for each side). The probability of the
sample space is always 1 because the sample space represents all possible outcomes
for a given trial. As we can see with the two outcomes (“heads” and its complement,
“tails”) for the flipped coin, 0.5 + 0.5 == 1.0 because the total probability of the sam‐
ple space must always add up to 1. We express the probability of an event as follows:

P(E) = 0.5

And we read this like so:
The probability of an event E is 0.5

16 | Chapter 1: A Review of Machine Learning

Probability Versus Odds, Explained
Many times practitioners new to statistics or machine learning will conflate the mean‐
ing of probability and odds. Before we proceed, let’s clarify this here.

The probability of an event E is defined as:

P(E) = (Chances for E) / (Total Chances)

We see this in the example of drawing an ace card (4) out of a deck of cards (52)
where we’d have this:

4/52 = 0.077

Conversely, odds are defined as:

(Chances for E) : (Chances Against E)

Now our card example becomes the “odds of drawing an ace”:

4 : (52 – 4) = 1/12 = 0.0833333...

The primary difference here is the choice of denominator (Total Chances versus
Chances Against) making these two distinct concepts in statistics.

Probability is at the center of neural networks and deep learning because of its role in
feature extraction and classification, two of the main functions of deep neural net‐
works. For a larger review of statistics, check out O’Reilly’s Statistics in a Nutshell: A
Desktop Quick Reference by Boslaugh and Watters.

Further Defining Probability: Bayesian Versus Frequentist
There are two different approaches in statistics called Bayesianism and frequentism.
The basic difference between the approaches is how probability is defined.

With frequentists, probability only has meaning in the context of repeating a meas‐
urement. As we measure something, we’ll see slight variations due to variances in the
equipment we use to collect data. As we measure something a large number of times,
the frequency of the given value indicates the probability of measuring that value.

With the Bayesian approach, we extend the idea of probability to cover aspects of cer‐
tainty about statements. The probability gives us a statement of our knowledge of
what the measurement result will be. For Bayesians, our own knowledge about an
event is fundamentally related to probability.

The Math Behind Machine Learning: Statistics | 17

http://shop.oreilly.com/product/0636920023074.do
http://shop.oreilly.com/product/0636920023074.do

Frequentists rely on many, many blind trials of an experiment before making state‐
ments about an estimate for a variable. Bayesians, on the other hand, deal in “beliefs”
(in mathematical terms, “distributions”) about the variable and update their beliefs
about the variable as new information comes in.

Conditional Probabilities
When we want to know the probability of a given event based on the existing pres‐
ence of another event occurring, we express this as a conditional probability. This is
expressed in literature in the form:

P(E | F)

where:

E is the event for which we’re interested in a probability.

F is the event that has already occurred.

An example would be expressing how a person with a healthy heart rate has a lower
probability of ICU death during a hospital visit:

P(ICU Death | Poor Heart Rate) > P(ICU Death | Healthy Heart Rate)

Sometimes, we’ll hear the second event, F, referred to as the “condition.” Conditional
probability is interesting in machine learning and deep learning because we’re often
interested in when multiple things are happening and how they interact. We’re inter‐
ested in conditional probabilities in machine learning in the context in which we’d
learn a classifier by learning

P (E | F)

where E is our label and F is a number of attributes about the entity for which we’re
predicting E. An example would be predicting mortality (here, E) given that measure‐
ments taken in the ICU for each patient (here, F).

18 | Chapter 1: A Review of Machine Learning

Bayes’s Theorem
One of the more common applications of conditional probabilities is Bayes’s theorem
(or Bayes’s formula). In the field of medicine, we see it used to calculate the probabil‐
ity that a patient who tests positive on a test for a specific disease actually has the dis‐
ease.

We define Bayes’s formula for any two events, A and B, as:

P A B = P B A P A
P B

Posterior Probability
In Bayesian statistics, we call the posterior probability of the random event the condi‐
tional probability we assign after the evidence is considered. Posterior probability dis‐
tribution is defined as the probability distribution of an unknown quantity
conditional on the evidence collected from an experiment treated as a random vari‐
able. We see this concept in action with softmax activation functions (explained later
in this chapter), in which raw input values are converted to posterior probabilities.

Distributions
A probability distribution is a specification of the stochastic structure of random vari‐
ables. In statistics, we rely on making assumptions about how the data is distributed
to make inferences about the data. We want a formula that specifies how frequent val‐
ues of observations in the distribution are and how values can be taken by points in
the distribution. A common distribution is known as the normal distribution (also
called Gaussian distribution, or the bell curve). We like to fit a dataset to a distribution
because if the dataset is reasonably close to the distribution, we can make assump‐
tions based on the theoretical distribution in how we operate with the data.

We classify distributions as continuous or discrete. A discrete distribution has data
that can assume only certain values. In a continuous distribution, data can be any
value within the range. An example of a continuous distribution would be normal
distribution. An example of a discrete distribution would be binomial distribution.

Normal distribution allows us to assume sampling distributions of statistics (e.g.,
“sample mean”) are normally distributed under specified conditions. The normal dis‐
tribution (see Figure 1-5), or Gaussian distribution, was named after the eighteenth-
century mathematician and physicist Karl Gauss. Normal distribution is defined by
its mean and standard deviation and has generally the same shape across all varia‐
tions.

The Math Behind Machine Learning: Statistics | 19

Figure 1-5. Examples of normal distributions

Other relevant distributions in machine learning include the following:

• Binomial distribution
• Inverse Gaussian distribution
• Log normal distribution

Distribution of the training data in machine learning is important to understand how
to vectorize the data for modeling.

20 | Chapter 1: A Review of Machine Learning

Central Limit Theorem
If the sample size is sufficiently large, the sampling distribution of the sample mean
approximates the normal distribution. This holds true despite the distribution of the
population from which the samples were collected.

Based on this fact, we can make statistical inferences using tests based on the approxi‐
mate normality of the mean. We see this hold true regardless of whether the sample is
drawn from a population that is not normally distributed.

In computer science, we see this used where an algorithm repeatedly draws samples
of specified size from a nonnormal population. When we graph the histogram of the
sample population of the draws from a normal distribution, we can see this effect in
action.

A long-tailed distribution (such as Zipf, power laws, and Pareto distributions) is a
scenario in which a high-frequency population is followed by a low-frequency popu‐
lation that gradually decreases in asymptotic fashion. These distributions were dis‐
covered by Benoit Mandelbrot in the 1950s and later popularized by the writer Chris
Anderson in his book The Long Tail: Why the Future of Business is Selling Less of More.

An example would be ranking the items a retailer sells among which a few items are
exceptionally popular and then we see a large number of unique items with relatively
small quantities sold. This rank-frequency distribution (primarily of popularity or
“how many were sold”) often forms power laws. From this perspective, we can con‐
sider them to be long-tailed distributions.

We see these long-tailed distributions manifested in the following:

Earthquake damage
The damage becomes worse as the scale of the quake increases, so worse case
shifts.

Crop yields
We sometimes see events outside of the historical record, whereas our model
tends to be tuned around the mean.

Predicting fatality post ICU visit
We can have events far outside the scope of what happens inside the ICU visit
that affect mortality.

These examples are relevant in the context of this book for classification problems
because most statistical models depend on inference from lots of data. If the more
interesting events occur out in the tail of the distribution and we don’t have this rep‐
resented in the training sample data, our model might perform unpredictably. This
effect can be enhanced in nonlinear models such as neural networks. We’d consider

The Math Behind Machine Learning: Statistics | 21

this situation the special case of the “in sample/out of sample” problem. Even a seas‐
oned machine learning practitioner can be surprised at how well a model performs
on a skewed training data sample yet fails to generalize well on the larger population
of data.

Long-tailed distributions deal with the real possibility of events occurring that are five
times the standard deviation. We must be mindful to get a decent representation of
events in our training data to prevent overfitting the training data. We’ll look in
greater detail at ways to do this later when we talk about overfitting and then in
Chapter 4 on tuning.

Samples Versus Population
A population of data is defined as all of the units we’d like to study or model in our
experiment. An example would be defining our population of study as “all Java pro‐
grammers in the state of Tennessee.”

A sample of data is a subset of the population of data that hopefully represents the
accurate distribution of the data without introducing sampling bias (e.g., skewing the
sample distribution based on how we sampled the population).

Resampling Methods
Bootstrapping and cross-validation are two common methods of resampling in statis‐
tics that are useful to machine learning practitioners. In the context of machine learn‐
ing with bootstrapping, we’re drawing random samples from another sample to
generate a new sample that has a balance between the number of samples per class.
This is useful when we’d like to model against a dataset with highly unbalanced
classes.

Cross-validation (also called rotation estimation) is a method to estimate how well a
model generalizes on a training dataset. In cross-validation we split the training data‐
set into N number of splits and then separate the splits into training and test groups.
We train on the training group of splits and then test the model on the test group of
splits. We rotate the splits between the two groups many times until we’ve exhausted
all the variations. There is no hard number for the number of splits to use but
researchers have found 10 splits to work well in practice. It also is common to see a
separate portion of the held-out data used as a validation dataset during training.

Selection Bias
In selection bias we’re dealing with a sampling method that does not have proper ran‐
domization and skews the sample in a way such that the sample is not representative
of the population we’d like to model. We need to be aware of selection bias when

22 | Chapter 1: A Review of Machine Learning

resampling datasets so that we don’t introduce bias into our models that will lower
our model’s accuracy on data from the larger population.

Likelihood
When we discuss the likeliness that an event will occur yet do not specifically refer‐
ence its numeric probability, we’re using the informal term, likelihood. Typically,
when we use this term, we’re talking about an event that has a reasonable probability
of happening but still might not. There also might be factors not yet observed that
will influence the event, as well. Informally, likelihood is also used as a synonym for
probability.

How Does Machine Learning Work?
In a previous section on solving systems of linear equations, we introduced the basics
of solving Ax = b. Fundamentally, machine learning is based on algorithmic techni‐
ques to minimize the error in this equation through optimization.

In optimization, we are focused on changing the numbers in the x column vector
(parameter vector) until we find a good set of values that gives us the closest out‐
comes to the actual values. Each weight in the weight matrix will be adjusted after the
loss function calculates the error (based on the actual outcome, as shown earlier, as
the b column vector) produced by the network. An error matrix attributing some
portion of the loss to each weight will be multiplied by the weights themselves.

We discuss SDG further on in this chapter as one of the major methods to perform
machine learning optimization, and then we’ll connect these concepts to other opti‐
mization algorithms as the book progresses. We’ll also cover the basics of hyperpara‐
meters such as regularization and learning rate.

Regression
Regression refers to functions that attempt to predict a real value output. This type of
function estimates the dependent variable by knowing the independent variable. The
most common class of regression is linear regression, based on the concepts we’ve pre‐
viously described in modeling systems of linear equations. Linear regression attempts
to come up with a function that describes the relationship between x and y, and, for
known values of x, predicts values of y that turn out to be accurate.

Setting up the model
The prediction of a linear regression model is the linear combination of coefficients
(from the parameter vector x) and then input variables (features from the input vec‐
tor). We can model this by using the following equation:

How Does Machine Learning Work? | 23

y = a + Bx

where a is the y-intercept, B is the input features, and x is the parameter vector.

This equation expands to the following:

y = a + b0 * x0 + b1 * x1 + . . . + bn * xn

A simple example of a problem that linear regression solves would be predicting how
much we’d spend per month on gasoline based on the length of our commute. Here,
what you pay at the tank is a function of how far you drive. The gas cost is the depen‐
dent variable and the length of the commute is the independent variable. It’s reason‐
able to keep track of these two quantities and then define a function, like so:

cost = f (distance)

This allows us to reasonably predict our gasoline spending based on mileage. In this
example, we’d consider distance to be our independent variable and cost to be the
dependent variable in our model f.

Here are some other examples of linear regression modeling:

• Predicting weight as a function of height
• Predicting a house’s sale price based on its square footage

Visualizing linear regression
Visually, we can represent linear regression as finding a line that comes as close to as
many points as possible in a scatterplot of data, as demonstrated in Figure 1-6.

Figure 1-6. Linear regression plotted

24 | Chapter 1: A Review of Machine Learning

Fitting is defining a function f(x) that produces y-values close to the measured or real-
world y values. The line produced by y = f(x) comes close to the scattered coordi‐
nates, the pairs of dependent and independent variables.

Relating the linear regression model
We can relate this function to the earlier equation, Ax = b, where A is the features
(e.g., “weight” or “square footage”) for all of the input examples that we want to
model. Each input record is a row in the matrix A. The column vector b is the out‐
comes for all of the input records in the A matrix. Using an error function and an
optimization method (e.g., SGD), we can find a set of x parameters such that we min‐
imize the error across all of the predictions versus the true outcomes.

Using SGD, as we discussed earlier, we’d have three components to solve for our
parameter vector x:

A hypothesis about the data
The inner product of the parameter vector x and the input features (as displayed
above)

A cost function
Squared error (prediction – actual) of prediction

An update function
The derivative of the squared error loss function (cost function)

While linear regression deals with straight lines, nonlinear curve fitting handles
everything else, most notably curves that deal with x to higher exponents than 1.
(That’s why we hear machine learning sometimes described as “curve fitting.”) An
absolute fit would hit every dot on a scatterplot. Ironically, absolute fit is usually a
very poor outcome, because it means your model has trained too perfectly on the
training set, and has almost no predictive power beyond the data it has seen (e.g.,
does not generalize well), as we previously discussed.

Classification
Classification is modeling based on delineating classes of output based on some set of
input features. If regression give us an outcome of "how much,” classification gives us
an outcome of "what kind.” The dependent variable y is categorical rather than
numerical.

The most basic form of classification is a binary classifier that only has a single output
with two labels (two classes: 0 and 1, respectively). The output can also be a floating-
point number between 0.0 and 1.0 to indicate a classification below absolute certain‐
tity. In this case, we need to determine a threshold (typically 0.5) at which we
delineate between the two classes. These classes are often referred to as positive classi‐

How Does Machine Learning Work? | 25

fication in the literature (e.g., 1.0) and then negative (e.g., 0.0) classifications. We’ll
talk more about this in “Evaluating Models” on page 36.

Examples of binary classification include:

• Classifying whether someone has a disease or not
• Classifying an email as spam or not spam
• Classifying a transaction as fraudulent or nominal

Beyond two labels, we can have classification models that have N labels for which
we’d score each of the output labels, and then the label with the highest score is the
output label. We’ll discuss this further as we talk about neural networks with multiple
outputs versus neural networks with a single output (binary classification). We’ll also
discuss classification more in this chapter when we talk about logistic regression and
then dive into the full architecture of neural networks.

Recommendation

Recommendation is the process of suggesting items to users of a
system based on similar other users or other items they have
looked at before. One of the more famous variations of recommen‐
dation algorithms is called Collaborative Filtering made famous by
Amazon.com.

Clustering
Clustering is an unsupervised learning technique that involves using a distance meas‐
ure and iteratively moving similar items more closely together. At the end of the pro‐
cess, the items clustered most densely around n centroids are considered to be
classified in that group. K-means clustering is one of the more famous variations of
clustering in machine learning.

Underfitting and Overfitting
As we mentioned earlier, optimization algorithms first attempt to solve the problem
of underfitting; that is, of taking a line that does not approximate the data well and
making it approximate the data better. A straight line cutting across a curving scatter‐
plot would be a good example of underfitting, as is illustrated in Figure 1-7.

26 | Chapter 1: A Review of Machine Learning

www.allitebooks.com

http://www.allitebooks.org

Figure 1-7. Underfitting and overfitting in machine learning

If the line fits the data too well, we have the opposite problem, called “overfitting.”
Solving underfitting is the priority, but much effort in machine learning is spent
attempting not to overfit the line to the data. When we say a model overfits a dataset,
we mean that it may have a low error rate for the training data, but it does not gener‐
alize well to the overall population of data in which we’re interested.

Another way of explaining overfitting is by thinking about probable distributions of
data. The training set of data that we’re trying to draw a line through is just a sample
of a larger unknown set, and the line we draw will need to fit the larger set equally
well if it is to have any predictive power. We must assume, therefore, that our sample
is loosely representative of a larger set.

Optimization
The aforementioned process of adjusting weights to produce more and more accurate
guesses about the data is known as parameter optimization. You can think of this pro‐
cess as a scientific method. You formulate a hypothesis, test it against reality, and
refine or replace that hypothesis again and again to better describe events in the
world.

Every set of weights represents a specific hypothesis about what inputs mean; that is,
how they relate to the meanings contained in one’s labels. The weights represent con‐
jectures about the correlations between networks’ input and the target labels they
seek to guess. All possible weights and their combinations can be described as the
hypothesis space of this problem. Our attempt to formulate the best hypothesis is a
matter of searching through that hypothesis space, and we do so by using error and
optimization algorithms. The more input parameters we have, the larger the search
space of our problem. Much of the work of learning is deciding which parameters to
ignore and which to hear.

How Does Machine Learning Work? | 27

The Decision Boundary and Hyperplanes

When we mention the “decision boundary,” we’re talking about the
n-dimensional hyperplane created by the parameter vector in lin‐
ear modeling.

Fitting lines to data by gauging their cost (i.e., their distance from the ground-truth
data points) is at the center of machine learning. The line should more or less fit the
data, and it does so by minimizing the aggregate distance of all points from the line.
You minimize the sum of the difference between the line at point x and the target
point y to which it corresponds. In a three-dimensional space, you can imagine the
error-scape of hills and valleys, and picture your algorithm as a blind hiker who feels
for the slope. An optimization algorithm, like gradient descent, is what informs the
hiker which direction is downhill so that she knows where to step.

The goal is to find the weights that minimize the difference between what your net‐
work predicts (b , or the dot-product of A and x) and what your test set knows to be
true (b), as we saw earlier in Figure 1-4. he parameter vector (x) above is where you
would find the weights. The accuracy of a network is a function of its input and
parameters, and the speed at which it becomes accurate is a function of its hyperpara‐
meters.

Hyperparameters

In machine learning, we have both model parameters and then we
have parameters we tune to make networks train better and faster.
These tuning parameters are called hyperparameters, and they deal
with controlling optimization function and model selection during
training with our learning algorithm.

Convergence

Convergence refers to an optimization algorithm finding values for
a parameter vector that gives our optimization algorithm the small‐
est error possible across all training examples. The optimization
algorithm is said to “converge” on the solution iteratively after it
tries several different variations of the parameters.

Following are the three important functions at work in machine learning optimiza‐
tion:

Parameters
Transform input to help determine the classifications a network infers

Loss function
Gauges how well it classifies (minimizes error) at each step

28 | Chapter 1: A Review of Machine Learning

Optimization function
Guides it toward the points of least error

Now, let’s take a closer look at one subclass of optimization called convex optimiza‐
tion.

Convex Optimization
In convex optimization, learning algorithms deal with convex cost functions. If the x-
axis represents a single weight, and the y-axis represents that cost, the cost will
descend as low as 0 at one point on the x-axis and rise exponentially on either side as
the weight strays away from its ideal in two directions.

Figure 1-8 demonstrates that we also can turn the idea of a cost function upside
down.

Figure 1-8. Visualizing convex functions

Another way to relate parameters to the data is with a maximum likelihood estima‐
tion, or MLE. The MLE traces a parabola whose edges point downward, with likeli‐
hood measured on the vertical axis, and a parameter on the horizontal. Each point on
the parabola measures the likelihood of the data, given a certain set of parameters.
The goal of MLE is to iterate over possible parameters until it finds the set that makes
the given data most likely.

In a sense, maximum likelihood and minimum cost are two sides of the same coin.
Calculating the cost function of two weights against the error (which puts us in a

How Does Machine Learning Work? | 29

three-dimensional space) will produce something that looks more like a sheet held at
each corner and drooping convexly in the middle—a rather bowl-shaped function.
The slopes of these convex curves allow our algorithm a hint as to what direction to
take the next parameter step, as we’ll see in the gradient descent optimization algo‐
rithm discussed next.

Gradient Descent
In gradient descent, we can imagine the quality of our network’s predictions (as a
function of the weight/parameter values) as a landscape. The hills represent locations
(parameter values or weights) that give a lot of prediction error; valleys represent
locations with less error. We choose one point on that landscape at which to place our
initial weight. We then can select the initial weight based on domain knowledge (if
we’re training a network to classify a flower species we know petal length is impor‐
tant, but color isn’t). Or, if we’re letting the network do all the work, we might choose
the initial weights randomly.

The purpose is to move that weight downhill, to areas of lower error, as quickly as
possible. An optimization algorithm like gradient descent can sense the actual slope
of the hills with regard to each weight; that is, it knows which direction is down. Gra‐
dient descent measures the slope (the change in error caused by a change in the
weight) and takes the weight one step toward the bottom of the valley. It does so by
taking a derivative of the loss function to produce the gradient. The gradient gives the
algorithm the direction for the next step in the optimization algorithm, as depicted in
Figure 1-9.

Figure 1-9. Showing weight changes toward global minimum in SGD

30 | Chapter 1: A Review of Machine Learning

The derivative measures “rate of change” of a function. In convex optimization, we’re
looking for the point at which the derivative is equal to 0 for the function. This point
is also known as the stationary point of the function or the minimum point. In optimi‐
zation, we consider optimizing a function to be minimizing a function (outside of
inverting the cost function).

What Is Gradient?
Gradient is defined as the generalization of the derivative of a function in one dimen‐
sion to a function f in several dimensions. It is represented as a vector of n partial
derivatives of the function f. It is useful in optimization in that the gradient points in
the direction of the greatest rate of increase of the function for which the magnitude
is the slope of the graph in that direction.

Gradient descent calculates the slope of the loss function by taking a derivative, which
should be a familiar term from calculus. On a two-dimensional loss function, the
derivative would simply be the tangent of any point on the parabola; that is, the
change in y over the change in x, rise over run.

As we know from trigonometry, a tangent is just a ratio: the opposite side (which
measures vertical change) over the adjacent side (which measures horizontal change)
of a right triangle.

One definition of a curve is a line of constantly changing slope. The slope of each
point on the curve is represented by the tangent line touching that point. Because
slopes are derived from two points, how exactly does one find the slope of one point
on a curve? We find the derivative by calculating the slope of a line between two
points on the curve separated by a small distance and then slowing decreasing that
distance until it approaches zero. In calculus, this is a limit.

This process of measuring loss and changing the weight by one step in the direction
of less error is repeated until the weight arrives at a point beyond which it cannot go
lower. It stops in the trough, the point of greatest accuracy. When using a convex loss
function (typically in linear modeling), we see a loss function that has only a global
minimum.

You can think of linear modeling in terms of three components to solve for our
parameter vector x:

• A hypothesis about the data; for example, “the equation we use to make a predic‐
tion in the model.”

• A cost function. Also called a loss function; for example, “sum of squared errors.”
• An update function; we take the derivative of the loss function.

How Does Machine Learning Work? | 31

Our hypothesis is the combination of the learned parameters x and the input values
(features) that gives us a classification or real valued (regression) output. The cost
function tells us how far we are from the global minimum of the loss function, and
we use the derivative of the loss function as the update function to change the param‐
eter vector x.

Taking the derivative of the loss function indicates for each parameter in x the degree
to which we need to adjust the parameter to get closer to the 0-point on the loss
curves. We’ll look more closely at these equations later on in this chapter when we
show how they work for both linear regression and logistic regression (classification).

However, in other nonlinear problems we don’t always get such a clean loss
curve. The problem with these other nonlinear hypothetical landscapes is that there
might be several valleys, and gradient descent’s mechanism for taking the weight
lower cannot know if it has reached the lowest valley or simply the lowest point in a
higher valley, so to speak. The lowest point in the lowest valley is known as the global
minimum, whereas the nadirs of all other valleys are known as local minima. If gradi‐
ent descent reaches a local minimum, it is effectively trapped, and this is one draw‐
back of the algorithm. We’ll look at ways to overcome this issue in Chapter 6 when we
examine hyperparameters and learning rate.

A second problem that gradient descent encounters is with non-normalized features.
When we write “non-normalized features,” we mean features that can be measured by
very different scales. If you have one dimension measured in the millions, and
another in decimals, gradient descent will have a difficult time finding the steepest
slope to minimize error.

Dealing with Normalization

In Chapter 8 we take an extended look at methods of normalization
in the context of vectorization and illustrate some ways to better
deal with this issue.

Stochastic Gradient Descent
In gradient descent we’d calculate the overall loss across all of the training examples
before calculating the gradient and updating the parameter vector. In SGD, we com‐
pute the gradient and parameter vector update after every training sample. This has
been shown to speed up learning and also parallelizes well as we’ll talk about more
later in the book. SGD is an approximation of “full batch” gradient descent.

Mini-batch training and SGD
Another variant of SGD is to use more than a single training example to compute the
gradient but less than the full training dataset. This variant is referred to as the mini-

32 | Chapter 1: A Review of Machine Learning

batch size of training with SGD and has been shown to be more performant than
using only single training instances. Applying mini-batch to stochastic gradient
descent has also shown to lead to smoother convergence because the gradient is com‐
puted at each step it uses more training examples to compute the gradient.

As the mini-batch size increases the gradient computed is closer to the “true” gradient
of the entire training set. This also gives us the advantage of better computational effi‐
ciency. If our mini-batch size is too small (e.g., 1 training record), we’re not using
hardware as effectively as we could, especially for situations such as GPUs. Con‐
versely, making the mini-batch size larger (beyond a point) can be inefficient, as well,
because we can produce the same gradient with less computational effort (in some
cases) with regular gradient descent.

Quasi-Newton Optimization Methods
Quasi-Newton optimization methods are iterative algorithms that involve a series of
“line searches.” Their distinguishing feature with respect to other optimization meth‐
ods is how they choose the search direction. These methods are discussed further in
later chapters of the book.

The Jacobian and the Hessian
The Jacobian is an m × n matrix containing the first-order partial derivatives of vec‐
tors with respect to vectors.

The Hessian is the square matrix of second-order partial derivatives of a function.
This matrix describes the local curvature of a function of many variables. We see the
Hessian matrix used in large-scale optimization problems using Newton-type meth‐
ods because they are the coefficients of the quadratic term of a local Taylor expansion.
In practice, the Hessian can be computationally difficult to compute. We tend to see
quasi-Newton algorithms used instead that approximate the Hessian. An example of
this class of quasi-Newton optimization algorithm would be L-BFGS, which we cover
in greater detail in Chapter 2.

We won’t reference the Jacobian and the Hessian matricies much in this book, but we
want the reader to be aware of them and their place in the wider scope of the machine
learning landscape.

Generative Versus Discriminative Models
We can generate different types of output from a model depending on what type of
model we set up. The two major types are generative models and discriminative mod‐
els. Generative models understand how the data was created in order to generate a
type of response or output. Discriminative models are not concerned with how the

How Does Machine Learning Work? | 33

data was created and simply give us a classification or category for a given input sig‐
nal. Discriminative models focus on closely modeling the boundary between classes
and can yield a more nuanced representation of this boundary than a generative
model. Discriminative models are typically used for classification in machine learn‐
ing.

A generative model learns the joint probability distribution p(x, y), whereas a dis‐
criminative model learns the conditional probability distribution p(y|x). The distribu‐
tion p(y|x) is the natural distribution for taking input x and producing an output (or
classification) y, hence the name “discriminative model.” With generative models
learning the distribution p(x,y), we see them used to generate likely output, given a
certain input. Generative models are typically set up as probabilistic graphical models
which capture the subtle relations in the data.

Logistic Regression
Logistic regression is a well-known type of classification in linear modeling. It works
for both binary classification as well as for multiple labels in the form of multinomial
logistic regression. Logistic regression is a regression model (technically) in which the
dependent variable is categorical (e.g., “classification”). The binary logistic model is
used to estimate the probability of a binary response based on a set of one or more
input variables (independent variables or “features”). This output is the statistical
probability of a category, given certain input predictors.

Similar to linear regression, we can express a logistic regression modeling problem in
the form of Ax = b, where A is the feature (e.g., “weight” or “square footage”) for all of
the input examples we want to model. Each input record is a row in the matrix A, and
the column vector b is the outcomes for all of the input records in the A matrix. Using
a cost function and an optimization method, we can find a set of x parameters such
that we minimize the error across all of the predictions versus the true outcomes.

Again, we’ll use SGD to set up this optimization problem and we have three compo‐
nents to solve for our parameter vector x:

A hypothesis about the data
f x = 1

1 + e−θx

A cost function
“max likelihood estimation”

An update function
A derivative of the cost function

In this case, the input comprises independent variables (e.g., the input columns or
“features”), whereas the output is the dependent variables (e.g., “label scores”). An

34 | Chapter 1: A Review of Machine Learning

easy way to think about it is logistic regression function pairs input values with
weights to determine whether an outcome is likely. Let’s take a closer look at the logis‐
tic function.

The Logistic Function
In logistic regression we define the logistic function (“hypothesis”) as follows:

f x = 1

1 + e−θx

This function is useful in logistic regression because it takes any input in the range of
negative to positive infinity and maps it to output in the range of 0.0 to 1.0. This
allows us to interpret the output value as a probability. Figure 1-10 shows a plot of the
logistic function equation.

Figure 1-10. Plot of the logistic function

This function is known as a continuous log-sigmoid function with a range of 0.0 to 1.0.
We’ll see this function covered again later in “Activation Functions” on page 65.

Understanding Logistic Regression Output
The logistic function is often denoted with the Greek letter sigma, or σ, because the
relationship between x and y on a two-dimensional graph resembles an elongated,
wind-blown “s” whose maximum and minimum asymptotically approach 1 and 0,
respectively.

Logistic Regression | 35

If y is a function of x, and that function is sigmoidal or logistic, the more x increases,
the closer we come to 1/1, because e to the power of an infinitely large negative num‐
ber approaches zero; in contrast, the more x decreases below zero, the more the
expression (1 + e–θx) grows, shrinking the entire quotient. Because (1 + e–θx) is in the
denominator, the larger it becomes, the closer the quotient itself comes to zero.

With logistic regression, f(x) represents the probability that y equals 1 (i.e., is true)
given each input x. If we are attempting to estimate the probability that an email is
spam, and f(x) happens to equal 0.6, we could paraphrase that by saying y has a 60
percent of being 1, or the email has a 60 percent chance of being spam, given the
input. If we define machine learning as a method to infer unknown outputs from
known inputs, the parameter vector x in a logistic regression model determines the
strength and certainty of our deductions.

The Logit Transformation

The logit function is the inverse of the logistic function (“logistic
transform”).

Evaluating Models
Evaluating models is the process of understanding how well they give the correct clas‐
sification and then measuring the value of the prediction in a certain context. Some‐
times, we only care how often a model gets any prediction correct; other times, it’s
important that the model gets a certain type of prediction correct more often than the
others. In this section, we cover topics like bad positives, harmless negatives, unbal‐
anced classes, and unequal costs for predictions. Let’s take a look at the basic tool for
evaluating models: the confusion matrix.

The Confusion Matrix
The confusion matrix (see Figure 1-11)—also called a table of confusion—is a table of
rows and columns that represents the predictions and the actual outcomes (labels) for
a classifier. We use this table to better understand how well the model or classifier is
performing based on giving the correct answer at the appropriate time.

36 | Chapter 1: A Review of Machine Learning

Figure 1-11. The confusion matrix

We measure these answers by counting the number of the following:

• True positives
— Positive prediction
— Label was positive

• False positives
— Positive prediction
— Label was negative

• True negatives
— Negative prediction
— Label was negative

• False negatives
— Negative prediction
— Label was positive

In traditional statistics a false positive is also known as “type I error” and a false nega‐
tive is known as a “type II error.” By tracking these metrics, we can achieve a more
detailed analysis on the performance of the model beyond the basic percentage of
guesses that were correct. We can calculate different evaluations of the model based
on combinations of the aforementioned four counts in the confusion matrix, as
shown here:

 Accuracy: 0.94
 Precision: 0.8662
 Recall: 0.8955
 F1 Score: 0.8806

Evaluating Models | 37

In the preceding example, we can see four different common measures in the evalua‐
tion of machine learning models. We’ll cover each of them shortly, but for now, let’s
begin with the basics of evaluating model sensitivity versus model specificity.

Sensitivity versus specificity
Sensitivity and specificity are two different measures of a binary classification model.
The true positive rate measures how often we classify an input record as the positive
class and its the correct classification. This also is called sensitivity, or recall; an exam‐
ple would be classifying a patient as having a condition who was actually sick. Sensi‐
tivity quantifies how well the model avoids false negatives.

Sensitivity = TP / (TP + FN)

If our model was to classify a patient from the previous example as not having the
condition and she actually did not have the condition then this would be considered a
true negative (also called specificity). Specificity quantifies how well the model avoids
false positives.

Specificity = TN / (TN + FP)

Many times we need to evaluate the trade-off between sensitivity and specificity. An
example would be to have a model that detects serious illness in patients more fre‐
quently because of the high cost of misdiagnosing a truly sick patient. We’d consider
this model to have low specificity. A serious sickness could be a danger to the patient’s
life and to the others around him, so our model would be considered to have a high
sensitivity to this situation and its implications. In a perfect world, our model would
be 100 percent sensitive (i.e., all sick are detected) and 100 percent specific (i.e., no
one who is not sick is classified as sick).

Accuracy
Accuracy is the degree of closeness of measurements of a quantity to that quantity’s
true value.

Accuracy = (TP + TN) / (TP + FP + FN + TN)

Accuracy can be misleading in the quality of the model when the class imbalance is
high. If we simply classify everything as the larger class, our model will automatically
get a large number of its guesses correct and provide us with a high accuracy score yet
misleading indication of value based on a real application of the model (e.g., it will
never predict the smaller class or rare event).

38 | Chapter 1: A Review of Machine Learning

Precision
The degree to which repeated measurements under the same conditions give us the
same results is called precision in the context of science and statistics. Precision is
also known as the positive prediction value. Although sometimes used interchangeably
with “accuracy” in colloquial use, the terms are defined differently in the frame of the
scientific method.

Precision = TP / (TP + FP)

A measurement can be accurate yet not precise, not accurate but still precise, neither
accurate nor precise, or both accurate and precise. We consider a measurement to be
valid if it is both accurate and precise.

Recall
This is the same thing as sensitivity and is also known as the true positive rate or the
hit rate.

F1
In binary classification we consider the F1 score (or F-score, F-measure) to be a
measure of a model’s accuracy. The F1 score is the harmonic mean of both the preci‐
sion and recall measures (described previously) into a single score, as defined here:

F1 = 2TP / (2TP + FP + FN)

We see scores for F1 between 0.0 and 1.0, where 0.0 is the worst score and 1.0 is the
best score we’d like to see. The F1 score is typically used in information retrieval to see
how well a model retrieves relevant results. In machine learning, we see the F1 score
used as an overall score on how well our model is performing.

Context and interpreting scores
Context can play a role in how we evaluate our model and dictate when we use differ‐
ent types of scores, as described previously in this section. Class imbalance can play a
large role in dictating choice of evaluation score, and in many datasets, we’ll find that
the classes or label counts are not well balanced. Here are some typical domains in
which we see this:

• Web click prediction
• ICU mortality prediction
• Fraud detection

Evaluating Models | 39

In these contexts, an overall “percent correct” score can be misleading to the overall
value, in practical terms, of the model. An example of this would be the PhysioNet
Challenge dataset from 2012.

The goal of the challenge was to “predict in-hospital mortality with the greatest accu‐
racy using a binary classifier.” The difficulty and challenge in modeling this dataset is
that predicting that a patient will live is the easy part because the bulk of examples in
the dataset have outcomes in which the patient does live. Predicting death accurately
in this scenario is the goal; this is where the model has the most value in the context
of being clinically relevant in the real world. In this competition, the scores were cal‐
culate as follows:

Score = MIN(Precision, Recall)

This was set up such that it kept the contestants focused on not just predicting that
the patient would live most of the time and get a nice F1 score, but focus on predict‐
ing when the patient would die (keeping the focus on being clinically relevant). This
is a great example of how context can change how we evaluate our models.

Methods to Handle Class Imbalance

In Chapter 6 we illustrate practical ways to deal with class imbal‐
ance. We take a closer look at the different facets of class imbalance
and error distributions in the context of classification and regres‐
sion.

Building an Understanding of Machine Learning
In this chapter, we introduced the core concepts needed for practicing machine learn‐
ing. We looked at the core mathematical concepts of modeling based around the
equation:

Ax = b

We also looked at the core ideas of getting features into the matrix A, ways to change
the parameter vector x, and setting the outcomes in the vector b. We illustrated some
basic ways to change the parameter vector x to minimize the score (or “loss”) of the
objective function.

As we move forward in this book, we’ll continue to expand on these key con‐
cepts. We’ll see how neural networks and deep learning are based on these fundamen‐
tals but add more complex ways to create the A matrix, change the x parameter vector
through optimization methods, and measure loss during training. Let’s now move on
to Chapter 2, where we build further on these concepts with the basics of neural net‐
works.

40 | Chapter 1: A Review of Machine Learning

https://physionet.org/challenge/2012
https://physionet.org/challenge/2012

CHAPTER 2

Foundations of Neural Networks
and Deep Learning

With your feet in the air and your head on the ground
Try this trick and spin it, yeah
Your head will collapse
But there’s nothing in it
And you’ll ask yourself
Where is my mind

—The Pixies, “Where is My Mind?”

Neural Networks
Neural networks are a computational model that shares some properties with the ani‐
mal brain in which many simple units are working in parallel with no centralized
control unit. The weights between the units are the primary means of long-term
information storage in neural networks. Updating the weights is the primary way the
neural network learns new information.

In Chapter 1 we discussed modeling sets of equations in the form of the equation
Ax = b. In the context of neural networks, the A matrix is still the input data and the b
column vector is still the labels or outcomes for each row in the A matrix. The
weights on the neural network connections becomes x (the parameter vector).

The behavior of neural networks is shaped by its network architecture. A network’s
architecture can be defined (in part) by the following:

• Number of neurons
• Number of layers
• Types of connections between layers

41

The most well-known and simplest-to-understand neural network is the feed-
forward multilayer neural network. It has an input layer, one or many hidden layers,
and a single output layer. Each layer can have a different number of neurons and each
layer is fully connected to the adjacent layer. The connections between the neurons in
the layers form an acyclic graph, as illustrated in Figure 2-1.

Figure 2-1. Multilayer neural network topology

A feed-forward multilayer neural network can represent any function, given enough
artificial neuron units. It is generally trained by a learning algorithm called backpro‐
pagation learning. Backpropagation uses gradient descent (see Chapter 1) on the
weights of the connections in a neural network to minimize the error on the output
of the network.

Local Minima and Backpropagation

Backpropagation can become stuck in local minima, but in practice
it generally performs well.

Historically, backpropagation has been considered slow, but recent advances in com‐
putational power through parallelism and graphics processing units (GPUs) have
renewed interest in neural networks.

Much hubris and many words have been transmitted across the internet and in the
literature about the connection of neural networks to the human mind. Let’s separate
some signal from the vast noise and begin with the biological inspiration of artificial
neural networks.

42 | Chapter 2: Foundations of Neural Networks and Deep Learning

The Mechanistic View of the Mind

Rather than constructing a rigid tree that requires all inputs to be
one thing or another, we can construct a model that reflects a world
sending us partial, ambiguous information, from which we can
draw inferences with relative but not total certainty.
This aspect of neural networks represents a break from the mecha‐
nistic view of the mind, dominant in the early twentieth century,
which assumed that our brain interlocked with the world in a
deterministic way—like two gears meshing—with clear inputs lead‐
ing to clear outputs. Now, we assume that, based on incomplete
and sometimes contradictory information, humans find ways to
plunge forward and act. The human brain infers from probabilities
and so do neural networks.

We’ll provide a brief review of the biological neuron and then take a look at the early
precursor to modern neural networks: the perceptron. Building on our understanding
of the perceptron, we’ll then see how it evolved into the more generalized artificial
neuron that supports today’s modern feed-forward multilayer perceptrons. The cul‐
mination of this chapter will give you, the modern neural network practitioner, the
fundamentals to delve further into more exotic deep network architectures.

The Biological Neuron
The biological neuron (see Figure 2-2) is a nerve cell that provides the fundamental
functional unit for the nervous systems of all animals. Neurons exist to communicate
with one another, and pass electro-chemical impulses across synapses, from one cell
to the next, as long as the impulse is strong enough to activate the release of chemi‐
cals across a synaptic cleft. The strength of the impulse must surpass a minimum
threshold or chemicals will not be released.

Figure 2-2 presents the major parts of the nerve cell:

• Soma
• Dendrites
• Axons
• Synapses

The neuron is made up of a nerve cell consisting of a soma (cell body) that has many
dendrites but only one axon. The single axon can branch hundreds of times, however.
Dendrites are thin structures that arise from the main cell body. Axons are nerve
fibers with a special cellular extension that comes from the cell body.

Neural Networks | 43

Figure 2-2. The biological neuron

Synapses
Synapses are the connecting junction between axon and dendrites. The majority of
synapses send signals from the axon of a neuron to the dendrite of another neuron.
The exceptions for this case are when a neuron might lack dendrites, or a neuron
lacks an axon, or a synapse, which connects an axon to another axon.

Dendrites
Dendrites have fibers branching out from the soma in a bushy network around the
nerve cell. Dendrites allow the cell to receive signals from connected neighboring
neurons and each dendrite is able to perform multiplication by that dendrite’s weight
value. Here multiplication means an increase or decrease in the ratio of synaptic neu‐
rotransmitters to signal chemicals introduced into the dendrite.

Axons
Axons are the single, long fibers extending from the main soma. They stretch out
longer distances than dendrites and measure generally 1 centimeter in length (100
times the diameter of the soma). Eventually, the axon will branch and connect to
other dendrites. Neurons are able to send electrochemical pulses through cross-

44 | Chapter 2: Foundations of Neural Networks and Deep Learning

membrane voltage changes generating action potential. This signal travels along the
cell’s axon and activates synaptic connections with other neurons.

Information flow across the biological neuron
Synapses that increase the potential are considered excitatory, and those that decrease
the potential are considered inhibitory. Plasticity refers the long-term changes in
strength of connections in response to input stimulus. Neurons also have been shown
to form new connections over time and even migrate. These combined mechanics of
connection change drive the learning process in the biological brain.

From biological to artificial
The animal brain has been shown to be responsible for the fundamental components
of the mind. We can study the basic components of the brain and understand them.
Research has shown ways to map out functionality of the brain and track signals as
they move through neurons.

Convolutional Neural Networks and the Mammalian Vision System

Later in the book, we take a look at a deep network called a Convo‐
lutional Neural Network (CNN). A CNN’s image representation at
different layers is similar to how the brain processes visual infor‐
mation. Although this research is interesting, it does not mean that
a CNN gives us a full approximation of mammalian brain activity.

However, we still do not completely understand how this collection of decentralized
functional units provides the foundation for thought and the seat of consciousness.

The Seat of Consciousness

In the eighteenth century, the brain began to be recognized as the
“seat of consciousness.” By the late nineteenth century, animal
brains began to be mapped out to better understand its functional
regions. Previous locations of consciousness included the heart
and, oddly enough, the spleen.

Now that we’ve established the basics of how a biological neuron works, let’s take a
look at the first attempts at modeling the neuron with the advent of the perceptron.

The Perceptron
The perceptron is a linear model used for binary classification. In the field of neural
networks the perceptron is considered an artificial neuron using the Heaviside step
function for the activation function, both of which we’ll define further later in the

Neural Networks | 45

http://bit.ly/2sOwuo5
http://bit.ly/2sOwuo5

1 McCulloch and Pitts. 1943. “A logical calculus of the ideas immanent in nervous activity.”

chapter. The precursor to the perceptron was the Threshold Logic Unit (TLU) devel‐
oped by McCulloch and Pitts in 1943, which could learn the AND and OR logic func‐
tions. The perceptron training algorithm is considered a supervised learning
algorithm. Both the TLU and the perceptron were inspired by the biological neuron
as we’ll explore.

History of the perceptron
The perceptron was invented in 1957 at the Cornell Aeronautical Laboratory by
Frank Rosenblatt. It was funded by the US Office of Naval Research and was covered
by the New York Times:

[T]he embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence.

Obviously these predictions were a bit premature—as we’ve seen many times with the
promise of machine learning and AI. Early versions were intended to be implemented
as a physical machine rather than a software program. The first software implementa‐
tion was for the IBM 704, and then later it was implemented in the Mark I Perceptron
machine.

It also should be noted that McCulloch and Pitts introduced the basic concept of ana‐
lyzing neural activity in 19431 based on thresholds and weighted sums. These con‐
cepts were key in developing a model for later variations like the perceptron.

The Mark I Perceptron

The Mark I Perceptron was designed for image recognition for
military purposes by the US Navy. The Mark I Perceptron had 400
photocells connected to artificial neurons in the machine, and the
weights were implemented by potentiometers. Weight updates were
physically performed by electric motors.

Definition of the perceptron
The perceptron is a linear-model binary classifier with a simple input–output rela‐
tionship as depicted in Figure 2-3, which shows we’re summing n number of inputs
times their associated weights and then sending this “net input” to a step function
with a defined threshold. Typically with perceptrons, this is a Heaviside step function
with a threshold value of 0.5. This function will output a real-valued single binary
value (0 or a 1), depending on the input.

46 | Chapter 2: Foundations of Neural Networks and Deep Learning

http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
https://en.wikipedia.org/wiki/Frank_Rosenblatt

Figure 2-3. Single-layer perceptron

We can model the decision boundary and the classification output in the Heaviside
step function equation, as follows:

f x =
0 x < 0
1 x > = 0

To produce the net input to the activation function (here, the Heaviside step func‐
tion) we take the dot product of the input and the connection weights. We see this
summation in the left half of Figure 2-3 as the input to the summation function.
Table 2-1 provides an explanation of how the summation function is performed as
well as notes about the parameters involved in the summation function.

Table 2-1. The summation function parameters

Function parameter Description
w Vector of real-valued weights on the connections
w · x

Dot product (∑
i = 1

n
wixi)

n Number of inputs to the perceptron
b The bias term (input value does not affect its value; shifts decision boundary away from origin)

The output of the step function (activation function) is the output for the perceptron
and gives us a classification of the input values. If the bias value is negative, it forces

Neural Networks | 47

the learned weights sum to be a much greater value to get a 1 classification output.
The bias term in this capacity moves the decision boundary around for the model.
Input values do not affect the bias term, but the bias term is learned through the per‐
ceptron learning algorithm.

The Single-Layer Perceptron

The perceptron is more widely known as a “single-layer percep‐
tron” in neural network research to distinguish it from its successor
the “multilayer perceptron.”

As a basic linear classifier we consider the single-layer perceptron to be the simplest
form of the family of feed-forward neural networks.

Relating the Perceptron to the Biological Neuron

Although we don’t have a complete model for how the brain works,
we do see how the perceptron was modeled after the biological
neuron. In this case, we can see how the perceptron takes input
through connections with weights on them in a similar fashion to
how synapses pass information to other biological neurons.

The perceptron learning algorithm
The perceptron learning algorithm changes the weights in the perceptron model until
all input records are all correctly classified. The algorithm will not terminate if the
learning input is not linearly separable. A linearly separable dataset is one for which
we can find the values of a hyperplane that will cleanly divide the two classes of the
dataset.

The perceptron learning algorithm initializes the weight vector with small random
values or 0.0s at the beginning of training. The perceptron learning algorithm takes
each input record, as we can see in Figure 2-3, and computes the output classification
to check against the actual classification label. To produce the classification, the col‐
umns (features) are matched up to weights where n is the number of dimensions in
both our input and weights. The first input value is the bias input, which is always 1.0
because we don’t affect the bias input. The first weight is our bias term in this dia‐
gram. The dot product of the input vector and the weight vector gives us the input to
our activation function, as we’ve previously discussed.

If the classification is correct, no weight changes are made. If the classification is
incorrect, the weights are adjusted accordingly. Weights are updated between individ‐
ual training examples in an “online learning” fashion. This loop continues until all of
the input examples are correctly classified. If the dataset is not linearly separable, the

48 | Chapter 2: Foundations of Neural Networks and Deep Learning

training algorithm will not terminate. Figure 2-4 demonstrates a dataset that is not
linearly separable, the XOR logic function.

Figure 2-4. The XOR function

A basic perceptron (single-layer variant) cannot solve the XOR logic modeling prob‐
lem, illustrating an early limitation of the perceptron model.

Limitations of the early perceptron
After initial promise, the perceptron was found to be limited in the types of patterns
it could recognize. The initial inability to solve nonlinear (e.g., datasets that are not
linearly separable) problems was seen as a failure for the field of neural networks. The
1969 book Perceptrons by Minsky and Papert illustrated the limitations of the single-
layer perceptron. However, what the general industry did not widely realize was that a
multilayer perceptron could indeed solve the XOR problem, among many other non‐
linear problems.

AI Winter I: 1974–1980

The misunderstanding of the multilayer perceptron capabilities
was an early public setback that hurt interest in, and funding of,
neural networks for the next decade. It wasn’t until the resurgence
of neural networks in the mid-1980s that backpropagation became
popular (although backpropagation was originally discovered in
1974 by Webos) and neural networks enjoyed a second wave of
interest.

Neural Networks | 49

https://en.wikipedia.org/wiki/Perceptrons_(book)

Multilayer Feed-Forward Networks
The multilayer feed-forward network is a neural network with an input layer, one or
more hidden layers, and an output layer. Each layer has one or more artificial neu‐
rons. These artificial neurons are similar to their perceptron precursor yet have a dif‐
ferent activation function depending on the layer’s specific purpose in the network.
We’ll look more closely at the layer types in multilayer perceptrons later in the chap‐
ter. For now, let’s look more closely at this evolved artificial neuron that emerged
from the limitations of the single-layer perceptron.

Evolution of the artificial neuron
The artificial neuron of the multilayer perceptron is similar to its predecessor, the
perceptron, but it adds flexibility in the type of activation layer we can use. Figure 2-5
shows an updated diagram for the artificial neuron that is based on the perceptron.

Figure 2-5. Artificial neuron for a multilayer perceptron

This diagram is similar to Figure 2-3 for the single-layer perceptron, yet we notice a
more generalized activation function. We’ll develop this diagram further in a detailed
look at the artificial neuron as we proceed.

A Note About the Term “Neuron”

From this point throughout the remainder of the book, when we
use the term “neuron” we’re referring to the artificial neuron based
on Figure 2-5.

50 | Chapter 2: Foundations of Neural Networks and Deep Learning

The net input to the activation function is still the dot product of the weights and
input features yet the flexible activation function allows us to create different types
out of output values. This is a major contrast to the earlier perceptron design that
used a piecewise linear Heaviside step function as this improvement now allowed the
artificial neuron because express more complex activation output.

Artificial neuron input. The artificial neuron (see Figure 2-6) takes input that, based on
the weights on the connections, can be ignored (by a 0.0 weight on an input connec‐
tion) or passed on to the activation function. The activation function also has the
ability to filter out data if it does not provide a non-zero activation value as output.

Figure 2-6. Details of an artificial neuron in a multilayer perceptron neural network

We express the net input to a neuron as the weights on connections multiplied by
activation incoming on connection, as shown in Figure 2-6. For the input layer, we’re
just taking the feature at that specific index, and the activation function is linear (it
passes on the feature value). For hidden layers, the input is the activation from other
neurons. Mathematically, we can express the net input (total weighted input) of the
artificial neuron as

input_sumi = Wi · Ai

where Wi is the vector of all weights leading into neuron i and Ai is the vector of acti‐
vation values for the inputs to neuron i. Let’s build on this equation by accounting for
the bias term that is added per layer (explained further below):

input_sumi = Wi · Ai + b

Neural Networks | 51

To produce output from the neuron, we’d then wrap this net input with an activation
function g, as demonstrated in the following equation:

ai = g input_sumi

We can then expand this function with the definition of inputi:

ai = g Wi · Ai + b

This activation value for neuron i is the output value passed on to the next layer
through connections to other artificial neurons (multiplied by weights on connec‐
tions) as an input value.

Different Notations

An alternate notation for expressing the output of an artificial neu‐
ron we often see in research papers is as follows:

hw,b(x) = g(w · x + b)

This notation is slightly different from the previous equation
above. We show this alternate notation to illustrate how some
papers will use slightly different notations to explain these con‐
cepts, and we want you to be able to recognize the variants.

If our activation function is the sigmoid function, we’ll have this:

g z = 1

1 + e−z

This output will have the range [0, 1], which is the same output as the logistic
regression function.

Sigmoid Activation Functions in Practice

We list the sigmoid activation function here for historical demon‐
stration. As we’ll see later on in this book, the sigmoid activation
function has largely fallen out of favor.

The inputs are the data from which you want to produce information, and the con‐
nection weights and biases are the quantities that govern the activity, activating it or
not. As with the perceptron, there is a learning algorithm to change the weights and
bias value for each artificial neuron. During the training phase, the weights and biases

52 | Chapter 2: Foundations of Neural Networks and Deep Learning

change as the network learns. We’ll cover the learning algorithm for neural networks
later in the chapter.

Just as biological neurons don’t pass on every electro-chemical impulse they receive,
artificial neurons are not just wires or diodes passing on a signal. They are designed
to be selective. They filter the data they receive, and aggregate, convert, and transmit
only certain information to the next neuron(s) in the network. As these filters and
transformations work on data, they convert raw input data to useful information in
the context of the larger multilayer perceptron neural network. We illustrate this
effect more in the next section.

Artificial neurons can be defined by the kind of input they are able to receive (binary
or continuous) and the kind of transform (activation function) they use to produce
output. In DL4J, all neurons in a layer have the same activation function.

Connection weights. Weights on connections in a neural network are coefficients that
scale (amplify or minimize) the input signal to a given neuron in the network. In
common representations of neural networks, these are the lines/arrows going from
one point to another, the edges of the mathematical graph. Often, connections are
notated as w in mathematical representations of neural networks.

Biases. Biases are scalar values added to the input to ensure that at least a few nodes
per layer are activated regardless of signal strength. Biases allow learning to happen
by giving the network action in the event of low signal. They allow the network to try
new interpretations or behaviors. Biases are generally notated b, and, like weights,
biases are modified throughout the learning process.

Activation functions. The functions that govern the artificial neuron’s behavior are
called activation functions. The transmission of that input is known as forward propa‐
gation. Activation functions transform the combination of inputs, weights, and biases.
Products of these transforms are input for the next node layer. Many (but not all)
nonlinear transforms used in neural networks transform the data into a convenient
range, such as 0 to 1 or –1 to 1. When an artificial neuron passes on a nonzero value
to another artificial neuron, it is said to be activated.

Activations

Activations are the values passed on to the next layer from each
previous layer. These values are the output of the activation func‐
tion of each artificial neuron.

In “Activation Functions” on page 65 we’ll review the different types of activation
functions and their general function in the broader context of neural networks.

Neural Networks | 53

Activation Functions and Their Importance

Activation functions and their usage will be a continuing theme
throughout almost every chapter for the remainder of this book.
The DL4J library uses a layer-based architecture revolving around
different types of activation functions.

Comparing the biological neuron and the artificial neuron
If we loop back for a moment and think about the biological neuron on which the
artificial neuron is based, we can ask, “How close does the artificial variant match up
to the biological version?” The concepts match up with the input connection func‐
tionality being performed by dendrites in the biological neuron and the summation
functionality being provided by the soma. Finally, we see the activation function
being performed by the axon in the biological neuron.

Limitations of Comparisons

We note (again) that the biological neuron is still more complex
than the artificial variant. Research continues toward a better
understanding of the biological neuron’s function.

Feed-forward neural network architecture
Now that we understand the differences between the artificial neuron and the percep‐
tron, we can better understand the structure of the full multilayer feed-forward neu‐
ral network. With multilayer feed-forward neural networks, we have artificial
neurons arranged into groups called layers. Building on the layer concept, we see that
the multilayer neural network has the following:

• A single input layer
• One or many hidden layers, fully connected
• A single output layer

As Figure 2-7 depicts, the neurons in each layer (represented by the circles) are all
fully connected to all neurons in all adjacent layers.

The neurons in each layer all use the same type of activation function (most of the
time). For the input layer, the input is the raw vector input. The input to neurons of
the other layers is the output (activation) of the previous layer’s neurons. As data
moves through the network in a feed-forward fashion, it is influenced by the connec‐
tion weights and the activation function type. Let’s now take a look at the specifics of
each layer type.

54 | Chapter 2: Foundations of Neural Networks and Deep Learning

Figure 2-7. Fully connected multilayer feed-forward neural network topology

Input layer. This layer is how we get input data (vectors) fed into our network. The
number of neurons in an input layer is typically the same number as the input feature
to the network. Input layers are followed by one or more hidden layers (explained in
the next section). Input layers in classical feed-forward neural networks are fully con‐
nected to the next hidden layer, yet in other network architectures, the input layer
might not be fully connected.

Hidden layer. There are one or more hidden layers in a feed-forward neural network.
The weight values on the connections between the layers are how neural networks
encode the learned information extracted from the raw training data. Hidden layers
are the key to allowing neural networks to model nonlinear functions, as we saw from
the limitations of the single-layer perceptron networks.

Output layer. We get the answer or prediction from our model from the output layer.
Given that we are mapping an input space to an output space with the neural network
model, the output layer gives us an output based on the input from the input
layer. Depending on the setup of the neural network, the final output may be a real-
valued output (regression) or a set of probabilities (classification). This is controlled
by the type of activation function we use on the neurons in the output layer. The out‐
put layer typically uses either a softmax or sigmoid activation function for classifica‐
tion. We’ll discuss the difference between these two types of activation functions later
in the chapter.

Neural Networks | 55

Connections between layers. In a fully connected feed-foward network, the connec‐
tions between layers are the outgoing connections from all neurons in the previous
layer to all of the neurons in the next layer. We change these weights progressively as
our algorithm finds the best solution it can with the backpropagation learning algo‐
rithm. We can understand the weights mathematically by thinking of them as the
parameter vector in the earlier linear algebra section describing the machine learning
process as optimizing the parameter vector (e.g., “weights” here) to minimize error.

We’ve now covered the basic structure of feed-forward neural networks. The rest of
this chapter provides a more detailed look at the training mechanics of backpropaga‐
tion as well as specifics of activation functions. The chapter closes with a review of
common loss functions and hyperparameters.

Training Neural Networks
A well-trained artificial neural network has weights that amplify the signal and
dampen the noise. A bigger weight signifies a tighter correlation between a signal and
the network’s outcome. Inputs paired with large weights will affect the network’s
interpretation of the data more than inputs paired with smaller weights.

The process of learning for any learning algorithm using weights is the process of re-
adjusting the weights and biases, making some smaller and others larger, thereby
allocating significance to certain bits of information and minimizing other bits. This
helps our model learn which predictors (or features) are tied to which outcomes, and
adjusts the weights and biases accordingly.

In most datasets, certain features are strongly correlated with certain labels (e.g.,
square footage relates to the sale price of a house). Neural networks learn these rela‐
tionships blindly by making a guess based on the inputs and weights and then meas‐
uring how accurate the results are. The loss functions in optimization algorithms,
such as stochastic gradient descent (SGD), reward the network for good guesses and
penalize it for bad ones. SGD moves the parameters of the network toward making
good predictions and away from bad ones.

Another way to look at the learning process is to view labels as theories and the fea‐
ture set as evidence. Then, we can make the analogy that the network seeks to estab‐
lish the correlation between the theory and the evidence. The model attempts to
answer the question “which theory does the evidence support?” With these ideas in
mind, let’s take a look at the learning algorithm most commonly associated with neu‐
ral networks: backpropagation learning.

56 | Chapter 2: Foundations of Neural Networks and Deep Learning

Backpropagation Learning
Backpropagation is an important part of reducing error in a neural network model.
To explain backpropagation, we’ll return to our discussion about how information
circulates within a feed-foward neural network. Let’s look at how this learning algo‐
rithm works before we dive deeper into the mathematical notation and pseudocode
for backpropagation learning.

Origins of Backpropagation Learning

Backpropagation learning was first invented by Bryson and Ho in
1969. It was largely ignored in research and practice for neural net‐
work training until a resurgence in the mid-1980s.

Algorithm intuition
Backpropagation learning is similar to the perceptron learning algorithm. We want to
compute the input example’s output with a forward pass through the network. If the
output matches the label, we don’t do anything. If the output does not match the
label, we need to adjust the weights on the connections in the neural network.

To further illustrate general neural network learning, let’s take a look at the pseudo‐
code for the algorithm, as shown in Example 2-1.

Example 2-1. General neural network training pseudocode

function neural-network-learning(training-records) returns network
 network <- initialize weights (randomly)
 start loop
 for each example in training-records do
 network-output = neural-network-output(network, example)
 actual-output = observed outcome associated with example
 update weights in network based on
 { example, network-output, actual-output }
 end for
 end loop when all examples correctly predicted or hit stopping conditions
 return network

The key is to distribute the blame for the error and divide it between the contributing
weights. With the perceptron learning algorithm, it’s easy because there is only one
weight per input to influence the output value. With feed-forward multilayer net‐
works learning algorithms have a bigger challenge. There are many weights connect‐
ing each input to the output, so it becomes more difficult. Each weight contributes to
more than one output, so our learning algorithm must be more clever.

Training Neural Networks | 57

Backpropagation is a pragmatic approach to dividing the contribution of error for
each weight. It is similar to the perceptron learning algorithm. With backpropagation,
we’re trying to minimize the error between the label (or “actual”) output associated
with the training input and the value generated from the network output. In the next
section, we take a look at the mathematical notation that you will see in most litera‐
ture on neural networks for backpropagation of feed-forward neural networks.

A Caution on Learning Algorithms in Multilayer Networks

Learning algorithms for multilayer neural networks are neither
guaranteed to converge to a global optimum nor are they abso‐
lutely efficient. This is a direct effect of how learning a general
function from training examples is considered, in the worst case,
an intractable problem. Learning algorithms do, however, work
decently in practice with some decent hyperparameter tuning.

A closer look at backpropagation
For most of this book, we don’t intend to throw a lot of math at you. However, for the
topic of backpropagation and to better understand a core fundamental concept that
much of the book is based on, we feel we should provide a section that illustrates
these concepts down to the notation level.

A Note About Notation

This notation is similar to what you would see in a conference
paper on machine learning or in a well-known machine learning
textbook. Hopefully, we can explain the notation in a way that will
feel comfortable for you. Ideally, this will serve as a jump-off point
for you to explore many more neural network and deep learning
papers down the road.

Let’s zoom in on the previous diagram to focus on the input layer and the first hidden
layer. Figure 2-8 provides the view.

58 | Chapter 2: Foundations of Neural Networks and Deep Learning

Figure 2-8. Multilayer perceptron network zoomed-in with component labels

In Figure 2-8 we see our previous multilayer neural network diagram zoomed-in and
updated with some notation. We’ll use this notation for the rest of this section’s
explanation of backpropagation. Table 2-2 lists the notations in the figure.

Table 2-2. Neural network notation

Notation Meaning
i Index of artificial neuron
ni Neuron at index i

j Index of neuron in previous layer connecting to neuron i
ai Activation value of neuron i (output of neuron i)

Ai Vector of activation values for the inputs into neuron i
g Activation function
g’ Derivative of the activation function
Erri Difference between the network output and the actual output value for the training example

Wi Vector of weights leading into neuron i
W j, i Weight on the incoming connection from previous layer neuron j to neuron i

Training Neural Networks | 59

Notation Meaning
input _sumi Weighted sum of inputs to neuron i

input _sum j Weighted sum of inputs for neuron j in previous layer (used in backpropagation)

α Learning rate
Δ j Error term for connected neuron j in previous layer

Δi Error term for neuron i ; = Erri × g′ input _sumi

To further set the stage for explaining this algorithm, let’s take a look at the pseudo‐
code of the backpropagation learning algorithm, as shown in Example 2-2.

Example 2-2. Backpropagation algorithm for updating weights pseudocode

function backpropagation-algorithm
 (network, training-records, learning-rate) returns network
 network <- initialize weights (randomly)
 start loop
 for each example in training-records do

 // compute the output for this input example
 network-output <- neural-network-output(network, example)

 // compute the error and the [delta] for neurons in the output layer
 example_err <- target-output - network-output

 // update the weights leading to the output layer
 W j, i W j, i + α × a j × Erri × g′ input_sumi

 for each subsequent-layer in network do

 // compute the error at each node

 Δ j g′ input_sum j ΣiW j, iΔi

 // update the weights leading into the layer
 Wk, j Wk, j + α × ak × Δ j

 end for

 end for
 end loop when network has converged
 return network

60 | Chapter 2: Foundations of Neural Networks and Deep Learning

A Note About Loss Functions in the Pseudocode

The loss function (described later in this chapter) is not explicitly
called out in the pseudocode in Example 2-2. We’ve presented
backpropagation in algorithmic form here for readability purposes
because it’s most approachable to the general practioner. However,
to give consideration to the mathematics-minded practioner, we
also have a version of backpropagation explained mathematically
in Appendix C.
In this case, the Erri term is dependent on the derivative of the loss
function. We’re using mean squared error (MSE), so the derivative
works out to be the difference.

Understanding backpropagation pseudocode
Example 2-2 has the following inputs:

• Network: a multilayer feed-forward neural network
• Training records: a set of training vectors with associated outputs
• Learning rate: the learning rate (sometimes denoted by the Greek alpha symbol)

To start the algorithm, we initialize our neural network and begin looping through
the input examples (until we encounter a terminating condition or a maximum num‐
ber of epochs). First, we compute the output of the current network for the current
input example. We compare this output to the actual output associated with the input
and compute the error (example_err).

Now we’re ready to compute the weight updates leading to the output layer.

Updating the output layer weights. The output layer weights update is calculated by
using the following:

W j, i W j, i + α × a j × Erri × g′ input_sumi

This is the weight update rule for the connection between neuron j and neuron i for
all connections in the neural network. We can see these connections leading into the
output layer highlighted in Figure 2-9.

Training Neural Networks | 61

Figure 2-9. Updating connections into the output layer

Breaking this diagram down further, we can see we are working with the neuron j
weight from the previous hidden layer connecting to the current neuron i. We’re mul‐
tiplying the learning rate α (discussed later in the chapter) by the incoming activation
from the j neuron. This input is calculated by getting the net input to the j neuron
and then computing the activation of neuron j.

Computing the total weight input to the activation function for neuron i, we compute
the dot product of the incoming weight vector Wj and the activation vector Aj and
then add in the bias term value:

input_sumi = Wi · Ai + b

Here is the equation for computing the activation value of neuron j:

a j = g input_sum j

The error term for example e at neuron i is denoted as Erri. We denote the derivative
of the activation function as g'(x), which is applied to the net input of neuron i with
the term:

g′ input_sumi

62 | Chapter 2: Foundations of Neural Networks and Deep Learning

This update rule is similar to how we’d update a perceptron except we’re using the
activations of the previous layers as opposed to their raw input values. This rule also
contains a term for the derivative of the activation function to get the gradient of the
activation function.

Further expressing the error term. We saw in the previous section that g'(z) gave us the
derivative of the activation function. The error term is commonly expressed
as Δi, giving us:

Δi = Erri × g′ input_sumi

This gives us a more condensed weight update function, expressed as the following:

W j, i W j, i + α × a j × Δi

We see this update expression used in the inner loop of the pseudocode, as we’ll now
discuss.

Gradient Descent in Weight Space

We consider backpropagation to be doing gradient descent in
weight space where the gradient is on the error surface. This error
surface describes the error of the input features as a function of the
weight values in the neural network.

The new propagation rule for the error value. The propagation rule for the delta values
now becomes the following:

Δ j g′ input_sum j ΣiW j, iΔi

This gives us a new update rule for weights between the inputs and the hidden layer.

Updating the hidden layers. With the backpropagation algorithm, we walk back across
the hidden layers, updating the connection between each one until we reach the input
layer. Figure 2-10 illustrates a connections between the two hidden layers highlighted.

To update these connections we take the input from the fractional error value compu‐
ted previously and multiply it by the activation (input) from the connection from the
previous layer and the learning rate.

Training Neural Networks | 63

Figure 2-10. Highlighting connections between hidden layers

We then add this to the previous value for the weight, and this is our updated value:

Wk, j Wk, j + α × ak × Δ j

Weights and biases that have been assigned the blame for error are reduced to limit
their signal. Weights and biases that pass along signals supporting correct answers are
strengthened. The adjustment of weights to an optimal state is an iterative process,
taken one step at a time.

Backpropagation and Fractional Error Responsibility
With backpropagation is how we distribute the “blame” backward through the net‐
work. Each hidden node sending input to the current node is somewhat “responsible”
for some portion of the error in each of the neurons to which it has a forward con‐
nection.

The first hidden layer uses the input from the raw feature vector as input. All subse‐
quent layers use the activation value of the previous layer’s neurons as input. How‐
ever, for hidden layers before the output layer we must divide up this error
appropriately. With error backpropagation, we divide the Δi values according to the
connection weight between the hidden node and the output node.

64 | Chapter 2: Foundations of Neural Networks and Deep Learning

To calculate Δj in the preceding equation we use the equation:

Δ j = g′ input_sum j ΣiW j, iΔi

This equation takes a look at each node i in the current layer and takes the current
error value Δi and multiplies it by the weight of the incoming connection times the
derivative of the activation function. This produces the fractional error value for the
node in the previous layer, which is used as we update the incoming connections to
that layer. We progressively perform this algorithm layer by layer until we’ve updated
every layer in the network.

The length of these learning steps, or the amount the weights that are changed with
each iteration, is known as the learning rate. The learning rate is a parameter we
define (as opposed to being a measurement of the network’s performance). We dis‐
cuss learning rate later in this chapter when we talk more about hyperparameters in
general.

Backpropagation and Mini-Batch Stochastic Gradient Descent
In Chapter 1, we learned about a variant of SGD called mini-batch, in which we train
the model on multiple examples at once as opposed to a single example at a time. We
see mini-batch used with backpropagation and SGD in neural networks as well to
improve training.

Under the hood, we’re computing the average of the gradient across all the the exam‐
ples inside the mini-batch. Specifically, we compute the forward pass for all of the
examples to get their output scores as a batch linear algebra matrix operation. During
the backward pass for each layer, we are computing the average of the gradient (for
the layer). By doing backpropagation this way, we’re able to get a better gradient
approximation and use our hardware more efficiently at the same time.

AI Winter II: Early 1990s

In the late 1980s and early 1990s, we saw an overpromotion of
technologies such as expert systems and LISP machines, both of
which failed to live up to expectations. The Strategic Computing
Initiative cancelled new spending at the end of this cycle. The fifth-
generation computer failed its goals.

Activation Functions
We use activation functions to propagate the output of one layer’s nodes forward to
the next layer (up to and including the output layer). Activation functions are a

Activation Functions | 65

scalar-to-scalar function, yielding the neuron’s activation. We use activation functions
for hidden neurons in a neural network to introduce nonlinearity into the network’s
modeling capabilities. Many activation functions belong to a logistic class of trans‐
forms that (when graphed) resemble an S. This class of function is called sigmoidal.
The sigmoid family of functions contains several variations, one of which is known as
the Sigmoid function. Let’s now take a look at some useful activation functions in
neural networks.

Linear
A linear transform (see Figure 2-11) is basically the identity function, and f(x) = Wx,
where the dependent variable has a direct, proportional relationship with the inde‐
pendent variable. In practical terms, it means the function passes the signal through
unchanged.

Figure 2-11. Linear activation function

We see this activation function used in the input layer of neural networks.

Sigmoid
Like all logistic transforms, sigmoids can reduce extreme values or outliers in data
without removing them. The vertical line in Figure 2-12 is the decision boundary.

66 | Chapter 2: Foundations of Neural Networks and Deep Learning

Figure 2-12. Sigmoid activation function

A sigmoid function is a machine that converts independent variables of near infinite
range into simple probabilities between 0 and 1, and most of its output will be very
close to 0 or 1.

Understanding Sigmoid Output

A sigmoid activation function outputs an independent probability
for each class.

Tanh
Pronounced “tanch,” tanh is a hyperbolic trigonometric function (see Figure 2-13).
Just as the tangent represents a ratio between the opposite and adjacent sides of a
right triangle, tanh represents the ratio of the hyperbolic sine to the hyperbolic cosine:
tanh(x) = sinh(x) / cosh(x). Unlike the Sigmoid function, the normalized range of
tanh is –1 to 1. The advantage of tanh is that it can deal more easily with negative
numbers.

Activation Functions | 67

Figure 2-13. Tanh activation function

Hard Tanh
Similar to tanh, hard tanh simply applies hard caps to the normalized range. Any‐
thing more than 1 is made into 1, and anything less than –1 is made into –1. This
allows for a more robust activation function that allows for a limited decision bound‐
ary.

Softmax
Softmax is a generalization of logistic regression inasmuch as it can be applied to con‐
tinuous data (rather than classifying binary) and can contain multiple decision
boundaries. It handles multinomial labeling systems. Softmax is the function you will
often find at the output layer of a classifier.

Understanding Softmax Output

The softmax activation function returns the probability distribu‐
tion over mutually exclusive output classes.

To further illustrate the idea of the softmax output layer and how to use it, let’s con‐
sider two use cases. If we have a multiclass modeling problem yet we care only about

68 | Chapter 2: Foundations of Neural Networks and Deep Learning

the best score across these classes, we’d use a softmax output layer with an argmax()
function to get the highest score of all the classes.

Dealing with Multiple Classifications

If we want to get multiple classifications per output (e.g., “person +
car”), we do not want softmax as an output layer. Instead, we’d use
the sigmoid output layer giving us a probability for every class
independently.

For the case in which we have a large set of labels (e.g., thousands of labels), we’d use
the variant of the softmax activation function called the hierarchical softmax activa‐
tion function. This variant decomposes the labels into a tree structure, and the soft‐
max classifier is trained at each node of the tree to direct the branching for
classification.

Rectified Linear
Rectified linear is a more interesting transform that activates a node only if the input
is above a certain quantity. While the input is below zero, the output is zero, but when
the input rises above a certain threshold, it has a linear relationship with the depen‐
dent variable f(x) = max(0, x), as demonstrated in Figure 2-14.

Figure 2-14. Rectified linear activation function

Activation Functions | 69

2 Li, Karpathy, “CS231n: Convolutional Neural Networks for Visual Recognition” (Course Notes). See http://
cs231n.stanford.edu and http://cs231n.github.io

Rectified linear units (ReLU) are the current state of the art because they have proven
to work in many different situations. Because the gradient of a ReLU is either zero or
a constant, it is possible to reign in the vanishing exploding gradient issue. ReLU acti‐
vation functions have shown to train better in practice than sigmoid activation func‐
tions.

The Unreasonable Effectiveness of ReLU Activation Functions

Compared to the sigmoid and tanh activation functions, the ReLU
activation function does not suffer from vanishing gradient issues.
If we use hard max as the activation function, we can induce spar‐
sity in the activation output from the layer. Research has shown
deep networks using ReLU activation functions to train well
without using pretraining techniques.

Leaky ReLU
Leaky ReLUs are a strategy to mitigate the “dying ReLU” issue.2 As opposed to having
the function being zero when x < 0, the leaky ReLU will instead have a small negative
slope (e.g., “around 0.01”). Some success has been seen in practice with this ReLU
variation but results are not always consistent. The equation is given here:

Softplus
This activation function is considered to be the “smooth version of the ReLU,” as is
illustrated in Figure 2-15. Compare this plot to the ReLU in Figure 2-14.

Figure 2-15 shows that the softplus activation function (f(x) = ln[1 + exp(x)]) has a
similar shape to the ReLU. We also notice the differentiability and nonzero derivative
of the softplus everywhere on the graph, in contrast to the ReLU.

70 | Chapter 2: Foundations of Neural Networks and Deep Learning

http://cs231n.stanford.edu
http://cs231n.stanford.edu
http://cs231n.github.io
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf

Figure 2-15. Visualizing the ReLU and softplus activation functions

Loss Functions
Loss functions quantify how close a given neural network is to the ideal toward which
it is training. The idea is simple. We calculate a metric based on the error we observe
in the network’s predictions. We then aggregate these errors over the entire dataset
and average them and now we have a single number representative of how close the
neural network is to its ideal.

Looking for this ideal state is equivalent to finding the parameters (weights and bia‐
ses) that will minimize the “loss” incurred from the errors. In this way, loss functions
help reframe training neural networks as an optimization problem. In most cases,
these parameters cannot be solved for analytically, but, more often than not, they can
be approximated well with iterative optimization algorithms like gradient descent.
The following section provides an overview on commonly seen loss functions, link‐
ing them back to their origins in machine learning, as necessary.

Loss Function Notation
Equations in this section will use the notation described here:

• Consider the dataset gathered to train a neural net. Let “N” denote the number of
samples (set of inputs with corresponding outcomes) that have been gathered.

Loss Functions | 71

• Consider the nature of the input and output collected. Each data point records
some set of unique input features and output features. Let “P” denote the number
of input features gathered and “M” denote the number of output features that
have been observed.

• We will use (X,Y) to denote the input and output data we collected. Note that
there will be N such pairs where the input is a collection of P values and the out‐
put Y is a collection of M values. We will denote the ith pair in the dataset as
Xi and Y i.

• We will use Y to denote the output of the neural net. Of course, Y is the network’s
guess at Y and therefore it will also have M features.

• We will use the notation h Xi = Y i to denote the neural network transforming
the input Xi to give the output Y i. We will alter this notation a little later to
emphasize its dependence on weights and biases.

• When referring to jth output feature, we will use it as a subscript firmly linking
our notation to a matrix where the rows are different data points and the col‐
umns are the different unique features. Thus yi, j refers to the jth feature observed
in the ith sample collected.

• We will represent the loss function by L(W,b).

Given the data available, the loss function notation indicates that its value depends
only on W and b, the weights and the biases of the neural network. This cannot be
emphasized enough. In the universe of a given neural network with a set number of
layers, configurations, and so on that will be trained on a given set of data, the value
of the loss function depends exclusively on the state of the network, as defined by the
weights and biases. Wiggle those and our losses wiggle. Wiggle those for a given input
and our output wiggles.

So, our notation h X = Y should be conditioned on a set of weights and biases; thus,
we will amend our notation to say hw, b X = Y. We are now ready to tackle loss func‐
tions.

Loss Functions for Regression
In this section, we cover loss functions appropriate for regression models.

Mean squared error loss
When working on a regression model that requires a real valued output, we use the
squared loss function, much like the case of ordinary least squares in linear regres‐
sion. Consider the case in which we have to predict only one output feature (M = 1).
The error in a prediction is squared and is averaged over the number of data points,
plain and simple, as we see in the following equation for MSE loss:

72 | Chapter 2: Foundations of Neural Networks and Deep Learning

L W, b = 1
N ∑i = 1

N Yi − Yi
2

What if M is greater than one and we are looking to predict multiple output features
for a given set of input features? In this case, the desired and predicted entities, Y and
Y, respectively, are an ordered list of numbers, or, in other words, vectors.

A Note About Loss Functions

The loss function boils-down the difference between desired and
predicted, be that they are vectors, into a single number.

Let’s now look at another variation of the MSE loss function:

L W, b = 1
N ∑i = 1

N 1
M ∑ j = 1

M yi j − yi j
2

If you’re familiar with linear algebra, you’ll recognize the inner sigma in the preced‐
ing equation as the square of the Euclidean distance. In fact, the MSE is sometimes
referred to by these terms. Note that N, the size of your dataset, and M, the number of
features the network has to predict, are constants. So, consider these as simple scaling
factors that you can account for in other ways (like by scaling the learning rate). In a
lot of use cases (including DL4J), the M is dropped and a division by two is added for
mathematical convenience (which will become clearer in the context of its gradient in
backpropagation). In the following equation, we see the version of MSE that the DL4J
library uses for regression:

L W, b = 1
2N ∑i = 1

N ∑ j = 1
M yi j − yi j

2

Is MSE Really a Convex Loss Function?

In a technical sense, the MSE is a convex loss function. However,
when dealing with hidden layers in neural networks, the convex
property no longer holds true, because we could have multiple
parameter sets of values resulting in the same loss value.

Optimizing MSE

Optimizing the MSE is equivalent to optimizing for the mean.

Loss Functions | 73

Other loss functions for regression
Although the MSE is used widely, it is quite sensitive to outliers, and this is some‐
thing that you should consider when picking a loss function. When picking a stock to
invest in, we want to take the outliers into account. But perhaps when buying a house
we don’t. In this case, what is of most interest is what most people would pay for it. In
which case, we are more interested in the median and less so in the mean.

Mean absolute error loss. In a similar vein, an alternative to the MSE loss is the mean
absolute error (MAE) loss, as shown in the following equation:

L W, b = 1
2N ∑i = 1

N ∑ j = 1
M yi j − yi j

This simply averages the absolute error over the entire dataset.

Mean squared log error loss. Another loss function used for regression is the mean
squared log error (MSLE):

L W, b = 1
N ∑i = 1

N ∑ j = 1
M log yi j − log yi j

2

Mean absolute percentage error loss. Finally, we have mean absolute percentage error
(MAPE) loss:

L W, b = 1
N ∑i = 1

N ∑ j = 1
M 100 × yi j − yi j

yi j

Regression loss function discussion
These are all valid choices, and there certainly is no single loss function that will out‐
perform all other loss functions for every scenario. The MSE is very widely used and
is a safe bet in most cases. So is the MAE. The MSLE and the MAPE are worth taking
into consideration if our network is predicting outputs that vary largely in range.
Suppose that a network is to predict two output variables: one in the range of [0, 10]
and the other in the range of [0, 100]. In this case, the MAE and the MSE will penal‐
ize the error in the second output more significantly than the first. The MAPE makes
it a relative error and therefore doesn’t discriminate based on the range. The MSLE
squishes the range of all the outputs down, simply how 10 and 100 translate to 1 and
2 (in log base 10).

74 | Chapter 2: Foundations of Neural Networks and Deep Learning

Common Practice for Regression in Neural Networks

Although MSLE and MAPE are approaches to handling large
ranges, common practice with neural networks is to normalize
inputs to a suitable range and use the MSE or MAE to optimize for
either the mean or the median.

Loss Functions for Classification
We can build neural networks to bin data points into different categories; for exam‐
ple, fraud|not fraud. However, when building neural networks for classification prob‐
lems, the focus is often on attaching probabilities to these classifications (30 percent
fraud|70 percent not fraud). These differing scenarios require different loss functions.

Hinge loss
Hinge loss is the most commonly used loss function when the network must be opti‐
mized for a hard classification. For example, 0 = no fraud and 1 = fraud, which by
convention is called a 0-1 classifier. The 0,1 choice is somewhat arbitrary and –1, 1 is
also seen in lieu of 0–1. Hinge loss is also seen in a class of models called maximum-
margin classification models (e.g., support vector machines, a somewhat distant
cousin to neural networks).

Following is the equation for hinge loss when data points must be categorized as –1
or 1:

L W, b = 1
N ∑i = 1

N max 0, 1 − yi j × y i j

The hinge loss is mostly used for binary classifications. There are extensions for mul‐
ticlass classification (e.g., “one versus all,” “one versus one”) for the hinge loss that are
not covered here.

Hinge Loss Is a Convex Function

Note that like the MSE, the hinge loss is known to be a convex
function.

Logistic loss
Logistic loss functions are used when probabilities are of greater interest than hard
classifications. Great examples of these would be flagging potential fraud, with a
human-in-the-loop solution or predicting the “probability of someone clicking on an
ad,” which can then be linked to a currency number.

Loss Functions | 75

Predicting valid probabilities means generating numbers between 0 and 1. Predicting
valid probabilities also means making sure the probability of mutually exclusive out‐
comes should sum to one. For this reason, it is essential that the very last layer of a
neural network used in classification is a softmax. Note that the sigmoid activation
function also will give valid values between 0 and 1. However, you cannot use it for
scenarios in which the outputs are mutually exclusive, because it does not model the
dependencies between the output values.

Now that we have made sure our neural network will produce valid probabilities for
the classes we have, we can dive headlong into the loss function and into the idea of
what we should be optimizing here. We want to optimize for what is formally called
the “maximum likelihood.” In other words, we want to maximize the probability we
predict for the correct class AND we want to do so for every single sample we have.

Let us consider the case in which our network predicts a probability for two classes,
like the fraud and not fraud 0–1 classifier. Based on the notation described earlier, we
can express our output for a given input Xi as h Xi and 1 − h Xi , given a set of
weights and biases, W and b, expressing the probability of 1 and 0, respectively, as
shown here:

P yi = 1 Xi; W, b = hW, b Xi

P yi = 0 Xi; W, b = 1 − hW, b Xi

We can combine these equations and express them as follows:

P yi Xi; W, b = hW, b Xi
yi × 1 − hW, b Xi

1 − yi

The word “AND” from our colloquial definition of maximum likelihood in the con‐
text of probability should immediately ring a bell. The “AND” across all available
samples translates to the product of the probabilities in question, as shown here:

L W, b = ∏i = 1
N yi

yi × 1 − yi
1 − yi

Let’s now move on and take a look at negative log likelihood.

Negative log likelihood. For the sake of mathematical convenience, when dealing with
the product of probabilities, it is customary to convert them to the log of the proba‐
bilities; hence, the product of the probabilities transforms to the sum of the log of the
probabilities.

76 | Chapter 2: Foundations of Neural Networks and Deep Learning

www.allitebooks.com

http://www.allitebooks.org

Negative Log Likelihood and Maximizing Probability

The logarithm is a monotonically increasing function. Thus, mini‐
mizing the negative log likelihood is equivalent to maximizing the
probability.

We also negate the expression so that the equation now corresponds to a “loss.” So,
the loss function in question becomes the following, commonly referred to as the
negative log likelihood:

L W, b = − ∑i = 1
N yi × log yi + 1 − yi × log 1 − yi

Extending the loss function from two classes to M classes gives us the following equa‐
tion for logistic loss:

L W, b = − ∑i = 1
N ∑ j = 1

M yi, j × log y i, j

This is mathematically equivalent to what is called the cross-entropy between two
probability distributions—in this case, what we predict and what we have observed
under the same criteria. We will dive into this a bit more in the section that follows.

Unifying Views on Loss Functions

Note that we want to minimize our loss function, which we do by
maximizing the likelihood, which we in turn do by minimizing the
negative log likelihood. A mouthful? Yes, indeed.
Cross-entropy has its origin in information theory, whereas nega‐
tive log likelihood for classification has its origin in statistical mod‐
eling. These two methods are mathematically the same, so although
it might not matter which is used, it tends to confuse people.

Loss Functions for Reconstruction
This set of loss functions relates to what is called reconstruction. The idea is simple. A
neural network is trained to recreate its input as closely as possible. So, why is this any
different from memorizing the entire dataset? The key here is to tweak the scenario
so that the network is forced to learn commonalities and features across the dataset.

In one approach, the number of parameters in the network is constrained such that
the network is forced to compress the data and then re-create it. Another often-used
approach is to corrupt the input with meaningless “noise” and train the network to
ignore the noise and learn the data. Examples of these kinds of neural nets are restric‐
ted Boltzmann machines, autoencoders, and so on. These neural networks all use loss
functions that are rooted in information theory.

Loss Functions | 77

Following is the equation for KL divergence:

�KL Y Y = −∑i = 1
N Yi × log

Yi
Yi

Although we briefly touched on the subject of cross-entropy a moment ago and justi‐
fied taking the log of probabilities to turn our sum into product, we did not mention
that taking the log of the probability puts us squarely in the field of informational
theory and the concept of entropy.

Different Approaches

Even though the negative log likelihood as framed above is mathe‐
matically equivalent to the cross-entropy, they are, however, groun‐
ded in different theoretical approaches.

Hyperparameters
In machine learning, we have both model parameters and parameters we tune to
make networks train better and faster. These tuning parameters are called hyperpara‐
meters, and they deal with controlling optimization functions and model selection
during training with our learning algorithm. In DL4J, we also refer to the optimiza‐
tion algorithms as updaters, because updates are synonymous with the steps the algo‐
rithm takes across the weight space to minimize error.

Hyperparameter selection focuses on ensuring that the model neither underfits nor
overfits the training dataset, while learning the structure of the data as quickly as pos‐
sible.

Learning Rate
The learning rate affects the amount by which you adjust parameters during optimi‐
zation in order to minimize the error of neural network’s guesses. It is a coefficient
that scales the size of the steps (updates) a neural network takes to its parameter vec‐
tor x as it crosses the loss function space.

During backpropagation we multiply the error gradient by the learning rate, and then
update a connection weight’s last iteration with the product to reach a new weight.
The learning rate determines how much of the gradient we want to use for the algo‐
rithm’s next step. A large error and steep gradient combine with the learning rate to
produce a large step. As we approach minimal error and the gradient flattens out, the
step size tends to shorten.

78 | Chapter 2: Foundations of Neural Networks and Deep Learning

A large learning rate coefficient (e.g., 1) will make your parameters take leaps, and
small ones (e.g., 0.00001) will make it inch along slowly. Large leaps will save time
initially, but they can be disastrous if they lead us to overshoot our minimum. A
learning rate too large oversteps the nadir, making the algorithm bounce back and
forth on either side of the minimum without ever coming to rest.

In contrast, small learning rates should lead you eventually to an error minimum (it
might be a local minimum rather than a global one), but they can take a very long
time and add to the burden of an already computationally intensive process. Time
matters when neural network training can take weeks on large datasets. If you can’t
wait another week for the results, choose a moderate learning rate (e.g., 0.1) and
experiment with several others in the same ballpark to get the best speed and accu‐
racy at once. Beyond setting a static learning rate, we’ll look at ways to vary the learn‐
ing rate over time to get the best of both worlds later in the book.

Regularization
Regularization helps with the effects of out-of-control parameters by using different
methods to minimize parameter size over time.

Controlling Overfitting in Machine Learning

Regularization’s main purpose is to control overfitting in machine
learning.

In mathematical notation, we see regularization represented by the coefficient
lambda, controlling the trade-off between finding a good fit and keeping the value of
certain feature weights low as the exponents on features increase.

Regularization coefficients L1 and L2 help fight overfitting by making certain weights
smaller. Smaller-valued weights lead to simpler hypotheses, and simpler hypotheses
are the most generalizable. Unregularized weights with several higher-order polyno‐
mials in the feature set tend to overfit the training set.

As the input training set size grows, the effect of regularization decreases and the
parameters tend to increase in magnitude. This is appropriate, because an excess of
features relative to training set examples leads to overfitting in the first place. Bigger
data is the ultimate regularizer.

Momentum
Momentum helps the learning algorithm get out of spots in the search space where it
would otherwise become stuck. In the errorscape, it helps the updater find the gulleys
that lead toward the minima. Momentum is to the learning rate what the learning rate

Hyperparameters | 79

is to weights, and it helps us produce better quality models. We’ll see the momentum
hyperparameter in action in many later chapters.

Sparsity
The sparsity hyperparameter recognizes that for some inputs only a few features are
relevant. For example, let’s assume that a network can classify a million images. Any
one of those images will be indicated by a limited number of features. But to effec‐
tively classify millions of images a network must be able to recognize considerably
more features, many of which don’t appear most of the time. An example of this
would be how photos of sea urchins don’t contain noses and hooves. This contrasts to
how in submarine images the nose and hoof features will be 0.

The features that indicate sea urchins will be few and far between, in the vastness of
the neural network’s layers. That’s a problem, because sparse features can limit the
number of nodes that activate and impede a network’s ability to learn. In response to
sparsity, biases force neurons to activate and the activations stay around a mean that
keeps the network from becoming stuck.

80 | Chapter 2: Foundations of Neural Networks and Deep Learning

CHAPTER 3

Fundamentals of Deep Networks

Now, here, you see, it takes all the running you can do, to keep in the same place. If you want
to get somewhere else, you must run at least twice as fast as that!

—The Red Queen, Through the Looking Glass

Defining Deep Learning
In the Chapter 2 we set up the foundations of machine learning and neural networks.
In this chapter we’ll build on these foundations to give you the core concepts of deep
networks. This will help build your understanding of what is going on in different
network architectures as we progress into the specific architectures in Chapter 4 and
then the practical examples in Chapter 5. Let’s begin by restating our definitions of
both deep learning and deep networks.

What Is Deep Learning?
Revisiting our definition of deep learning from Chapter 1, the facets that differentiate
deep learning networks in general from “canonical” feed-forward multilayer net‐
works are as follows:

• More neurons than previous networks
• More complex ways of connecting layers
• “Cambrian explosion” of computing power to train
• Automatic feature extraction

When we say “more neurons,” we mean that the neuron count has risen over the
years to express more complex models. Layers also have evolved from each layer
being fully connected in multilayer networks to locally connected patches of neurons
between layers in Convolutional Neural Networks (CNNs) and recurrent connections

81

1 Referring to Lewis Carroll’s Red Queen character from the book Through the Looking Glass; she has to keep
running to stay in the same place.

to the same neuron in Recurrent Neural Networks (in addition to the connections
from the previous layer).

More connections means that our networks have more parameters to optimize, and
this required the explosion in computing power that occurred over the past 20 years.
All of these advances provided the foundation to build next-generation neural net‐
works capable of extracting features for themselves in a more intelligent fashion. This
allowed deep networks to model more complex problem spaces (e.g., image recogni‐
tion advances) than previously possible. As industry demands are ever changing and
ever reaching, the capabilities of neural networks have had to charge forward. The
Red Queen1 would have it no other way.

Defining deep networks
To further provide color to our definition of deep learning, here we define the four
major architectures of deep networks:

• Unsupervised Pretrained Networks
• Convolutional Neural Networks
• Recurrent Neural Networks
• Recursive Neural Networks

There is continuous research in the domain of neural networks, but for the purposes
of this book, we’ll focus on these four architectures. These architectures have evolved
over the past 20 years. Let’s take a quick look at some of the highlights, continuing
our history lesson that began in Chapter 1 on the history of feed-forward multilayer
neural networks.

Deep Reinforcement Learning
Reinforcement learning is defined in Sutton’s book as follows:

Reinforcement learning is defined not by characterizing learning methods, but by
characterizing a learning problem.

It goes on to state that any method suitable to solving that problem can be considered
to be a reinforcement learning method. In reinforcement learning, we do not tell the
learner which actions to take, but let the agent discover the actions yielding the best
reward by experimenting in a simulation.

In reinforcement learning, the agent begins with no trained model of the environ‐
ment, and the utility function is synonymous with the reward or objective our agent
is after. The training system gives the agent input from the environment and rewards

82 | Chapter 3: Fundamentals of Deep Networks

http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf

2 Mnih et al. 2013. “Human-level control through deep reinforcement learning.”

the agent when the outcome (of the cycle, or frame) of the simulation (or game) being
played is positive. Many times, actions will affect not only the immediate reward, but
also future rewards. The mechanics of trial-and-error and delayed reward are key fea‐
tures of reinforcement learning.

Deep reinforcement learning is a variant of reinforcement learning in which a neural
network is used as the universal function’s approximator. The drawback to this
approach is that the behavior of a neural network is not bounded, and the proof of
convergence doesn’t hold anymore. However, using neural networks as the universal
function approximator shows good results despite this.

In 2013 a paper was published by the DeepMind team at the NIPS 2013 Deep Learn‐
ing Workshop on playing ATARI games with Deep Q Learning.2 In this paper, the
authors used a standard algorithm (Q Learning with function approximation). Their
function approximator for this algorithm was a CNN. They demonstrated an agent
playing Atari 2600 games based on using the pixels on the screen as input and a CNN
as the internal model.

The computer/agent playing the ATARI game was positively rewarded when the out‐
come of the game was positive based on the actions performed. The algorithm was
able to learn some of the games to a level where it performed better than humans.

Deep reinforcement learning has risen in popularity over the course of production of
this book, and hopefully we’ll see it included in a future edition. For now we’ll direct
you to an example in Appendix B.

Evolutionary progress and resurgence
When we last left off in Chapter 2, neural networks had entered a “winter period” in
the mid-1980s when the promise of AI fell short of what it could deliver. As happens
many times when promising technology falls into the Trough of Disillusionment
(Figure 3-1), there were many researchers still doing important work in the realm of
neural networks.

Defining Deep Learning | 83

http://go.nature.com/2txUtoI

3 LeCun et al. 1998. “Gradient-based learning applied to document recognition.”

Figure 3-1. Trough of Disillusionment (source: https://en.wikipedia.org/wiki/
Hype_cycle)

One important development in neural networks was Yann LeCun’s work at AT&T
Bell Labs on optical character recognition.3 His lab was focused on check image rec‐
ognition for the financial services sector. Through this work, LeCun and his team
developed the concept of the biologically inspired model of image recognition we
know today as CNN. This eventually led to the creation of the MNIST handwriting
benchmark (we cover this more later in the chapter) and a progressive number of
record accuracy marks achieved by deep learning.

Better Labeled Data

Another contributing factor to the evolution and success of deep
networks was the creation of better and larger labeled datasets such
as MNIST and ImageNet.

Advances in modeling sequential data with recurrent neural networks appeared in the
late-1980s and early 1990s by researchers such as Sepp Hochreiter. As time went on,
the research community created better artificial neuron variants (e.g., Long Short-

84 | Chapter 3: Fundamentals of Deep Networks

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://en.wikipedia.org/wiki/Hype_cycle
https://en.wikipedia.org/wiki/Hype_cycle
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://image-net.org

4 Krizhevsky, Sutskever, and Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Net‐
works.”

Term Memory [LSTM] Memory Cell and Memory Cell with Forget Gate) over the
course of the late 1990s. The stage for a neural network resurgence was being set qui‐
etly in research labs around the world.

During the 2000s, researchers and industry applications began to progressively apply
these advances in products such as the following:

• Self-driving cars
• Google Translate
• Amazon Echo
• AlphaGo

Self-driving cars in the 2006 Darpa Grand Challenge used many techniques beyond
just deep learning. The top teams (Stanford and Carnegie Mellon University) were
able to take advantage of the big improvements of image processing.

Advances in Computer Vision

In 2012 Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
developed a “large, deep convolutional neural network” that won
the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Chal‐
lenge).
AlexNet4 was hailed as an advancement in computer vision and
some credit it specifically with kicking off the deep learning
craze. However, it was largely a scaled-up (e.g., deeper and wider)
variant of the CNNs from the 1990s. The recent advances in com‐
puter vision were driven less by recent algorithm advances and
more by better compute, data, and infrastructure.

Better image analysis allowed the planning systems in the cars to better choose paths
through uncertain terrain and avoid obstacles more safely. Other advances in deep
learning allowed models to more accurately translate and recognize audio data, driv‐
ing value in the Google Translate and Amazon Echo line of products. Most recently,
we’ve seen another complex game fall at the master level when the AlphaGo system
beat the 9-dan professional Go player Lee Sedol.

Big advances in what machine learning can accomplish are not always easy to see.
Public recognition for these advances many times is the culmination of many differ‐
ent lines of work that is exhibited in high-profile demonstrations such as The Darpa
Grand Challenge or Watson beating Ken Jennings in Jeopardy. However, behind the
scenes, the underpinnings for these advances change slowly but constantly. Just like

Defining Deep Learning | 85

http://bit.ly/2tmodqn
http://bit.ly/2tmodqn
http://nyti.ms/2uvDmEa
http://nyti.ms/2uvDmEa
https://translate.google.com
https://deepmind.com/research/alphago
http://archive.darpa.mil/grandchallenge

the changing of the seasons, we don’t always notice these changes in our daily lives
until they’ve crossed some threshold.

In the near future, we’ll continue to see deep learning being applied in unique and
innovative ways. This application will be more of the latent intelligence variety (e.g.,
recommendations or voice recognition) coupled with pragmatic engineering to make
them useful in everyday aspects of our lives. What we’re unlikely to see (in the near
term, at least) are out of control malevolent artificial agents blowing us out of airlocks
at inopportune times (think HAL 9000 from 2001: A Space Odyssey).

HAL 9000
HAL 9000 is the fictional computer who controls the systems of the Discovery One
spaceship in Arthur C. Clarke’s book 2001: A Space Odyssey. HAL stands for Heuristi‐
cally programmed ALgorithmic computer. HAL is represented largely in the film as a
camera lens with a glowing red dot and is accessed through a conversational voice
recognition system. In the film, HAL concludes that it must kill off the crew of the
Discovery One to complete its mission successfully.

Dave: Open the pod bay doors, HAL.
HAL: I’m sorry, Dave. I’m afraid I can’t do that.

Deep learning continues to push the field forward in many domains and on many
core machine learning problems. Here are just a few of the benchmark records deep
learning has achieved in the last few years:

• Text-to-speech synthesis (Fan et al., Microsoft, Interspeech 2014)
• Language identification (Gonzalez-Dominguez et al., Google, Interspeech 2014)
• Large vocabulary speech recognition (Sak et al., Google, Interspeech 2014)
• Prosody contour prediction (Fernandez et al., IBM, Interspeech 2014)
• Medium vocabulary speech recognition (Geiger et al., Interspeech 2014)
• English-to-French translation (Sutskever et al., Google, NIPS 2014)
• Audio onset detection (Marchi et al., ICASSP 2014)
• Social signal classification (Brueckner & Schulter, ICASSP 2014)
• Arabic handwriting recognition (Bluche et al., DAS 2014)
• TIMIT phoneme recognition (Graves et al., ICASSP 2013)
• Optical character recognition (Breuel et al., ICDAR 2013)
• Image caption generation (Vinyals et al., Google, 2014)
• Video-to-textual description (Donahue et al., 2014)
• Syntactic parsing for natural language processing (Vinyals et al., Google, 2014)
• Photo-real talking heads (Soong and Wang, Microsoft, 2014)

86 | Chapter 3: Fundamentals of Deep Networks

Based on these accomplishments, we can easily project deep learning to impact many
applications over the next decade. Some of the more impressive demonstrations of
applied deep learning include the following:

• Automated image sharpening
• Automating image upscaling
• WaveNet: generating human speech that can imitate anyone’s voice
• WaveNet: generating believable classical music
• Speech reconstruction from silent video
• Generating fonts
• Image autofill for missing regions
• Automated image captioning (see also: https://github.com/karpathy/neuraltalk2)
• Turning hand-drawn doodles into stylized artwork

We probably won’t realize all of the major commercial applications until they’re right
in front of our faces. Understanding the advances in deep network architecture is
important in order to understand application ideas going forward.

Advances in network architecture
As research pressed the state of the art forward from multilayer feed-forward net‐
works toward newer architectures like CNNs and Recurrent Neural Networks, the
discipline saw changes in how layers were set up, how neurons were constructed, and
how we connected layers. Network architectures evolved to take advantage of specific
types of input data.

Advances in layer types. Layers became more varied with the different types of archi‐
tectures. Deep Belief Networks (DBNs) demonstrated success with using Restricted
Boltzmann Machines (RBMs) as layers in pretraining to build features. CNNs used
new and different types of activation functions in layers and changed how we connec‐
ted layers (from fully connected to locally connected patches). Recurrent Neural Net‐
works explored the use of connections that better modeled the time domain in time-
series data.

Advances in neuron types. Recurrent Neural Networks specifically created advance‐
ments in the types of neurons (or units) applied in the work around LSTM networks.
They introduced new units specific to Recurrent Neural Networks such as the LSTM
Memory Cell and Gated Recurrent Units (GRUs).

Hybrid architectures. Continuing the theme of matching input data to architecture
type, we have seen hybrid architectures emerge for types of data that has both a time
domain and image data involved. For instance, classifying objects in video has been
successfully demonstrated by combining layers from both CNNs and Recurrent Neu‐
ral Networks into a single hybrid network. Hybrid neural network architectures can
allow us to take advantage of the best of both worlds in some cases.

Defining Deep Learning | 87

https://github.com/alexjc/neural-enhance
https://github.com/nagadomi/waifu2x
https://deepmind.com/blog/wavenet-generative-model-raw-audio
http://www.vision.huji.ac.il/vid2speech
http://bit.ly/2tQhtSG
https://bamos.github.io/2016/08/09/deep-completion
http://cs.stanford.edu/people/karpathy/deepimagesent/
https://github.com/karpathy/neuraltalk2
https://github.com/alexjc/neural-doodle

5 Hinton, Osindero, and Teh. 2006. “A Fast Learning Algorithm for Deep Belief Nets.”

From feature engineering to automated feature learning
Although deep networks might have innovated with new units and layers for their
internals, they are still fundamentally capped with a discriminatory classifier at the
end with the constructed features as input. Automating feature extraction is a com‐
mon theme among the various architectures. Each architecture does feature construc‐
tion differently and is specialized such that it is better at certain types of input than
others. Yann LeCun hit on this theme describing deep learning when he said it was:
“machines that learn to represent the world.”

Geoffrey Hinton talks about this theme in DBNs when he explains how RBMs are
used to decompose the data into higher-order features.5

Categorizing DBNs

For the purposes of this book, we place DBNs (and autoencoders)
in the UPN group of deep networks.

Staying with the image classification theme, we can use the example of face detection.
Raw image data of faces as input have issues with how the face is oriented, lighting of
the photo, and position of the key features of the face. The key features we’d normally
associate with a face are things like the edge of the face, edges of specific features like
eyes and nose, and then subtle features we don’t consistently see like dimples.

Feature engineering. Handcrafting features has been a hallmark of machine learning
for a long time. Practitioners who win competitions in machine learning often study
the dataset thoroughly and use many arcane tricks to make the learning process as
simple as possible for their learning algorithm. These datasets are often columnar/
tabular text data and we can apply domain knowledge to specific columns so feature
creation is more direct.

If we think back to Chapter 1 and how we modeled the input data as the A matrix in
the equation Ax = b, we can see how we had to hand-code the values from the data
into those specific columns of A. These handcrafted features tend to produce highly
accurate models but take a lot of time and experience to produce. From a knowledge
representation perspective, it’s like reading a poorly written book versus a book that is
well-written and easy to read. The former takes us a lot longer to read and we need to
spend more energy to get the same out of it as the latter.

Image classification is an interesting example because handcrafting image features is
more difficult than creating features for tabular data. The information in images is

88 | Chapter 3: Fundamentals of Deep Networks

https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
http://bit.ly/2tQit95

not constrained to stay in the same column and can be influenced by lighting, angle,
and other issues. Feature extraction and creation for images needed a new approach,
which in some part drove the evolution of CNNs.

Feature learning. Coming back to our face-detection example, a nose can be located
in any set of pixels in an image as opposed to our bank balance always being located
in a specific column in tabular data. With CNNs, we train the network to understand
the edge of the nose and then the general shape of the nose from lower-level “nose-
edge” features. The first layers in the network might pick up those nose-edge features
and then pass them on to later layers in the network as larger feature maps.

These more granular patches of feature maps eventually are combined into a “face”
feature at the latter layers of the CNN. This allows a CNN to take on a task that has
been attempted many times before (“Is this a face?”) yet pose the question in a sim‐
pler way that takes less energy to answer in a more accurate way.

Automated Feature Learning with Complex Data

Taking complex raw data and creating higher-order features auto‐
matically in order to make a simpler classification (or regression)
output is a hallmark of deep learning.

As you progress through this book, you’ll get a better sense of how to match input
data types to deep network architectures and how to set up these architectures to best
model the underlying dataset.

Generative modeling
Generative modeling is not a new concept, but the level to which deep networks have
taken it has begun to rival human creativity. From generating art to generating music
to even writing beer reviews, we see deep learning applied in creative ways every
day. Recent variants of generative modeling to note include the following:

• Inceptionism
• Modeling artistic style
• Generative Adversarial Networks
• Recurrent Neural Networks

Let’s quickly review each of these.

Inceptionism. Inceptionism is a technique in which a trained convolutional network
is taken with its layers in reverse order and given an input image coupled with a prior
constraint. The images are modified iteratively to enhance the output in a manner
that could be described as “hallucinative.” In examples for which the input involves
images of the sky, we might see fish faces appear in clouds of the output image. This

Defining Deep Learning | 89

http://bit.ly/2tZsDVn

6 Gatys et al., 2015. “A Neural Algorithm of Artistic Style.”
7 Goodfellow et al. 2014. “Generative Adversarial Networks.”

line of research from Google has shown discriminatory neural network models con‐
tain considerable information to generate images.

Modeling artistic style. Variants of convolutional networks have shown to learn the
style of specific painters and then generate a new image in this style of arbitrary pho‐
tographs. Figure 3-2 (which you saw earlier in Chapter 1) shows the amazing results.
Imagine having your family photo painted by Vincent van Gogh. (By the time this
book is published, this will probably be a Snapchat filter, so you won’t have to wait
that long.)

Figure 3-2. Stylized images by Gatys et al., 2015

In 2015, Gatys et al. published a paper titled “A Neural Algorithm of Artistic Style”6 in
which they separate the style and the content of a painting. The CNN extracts the
artist’s style into the network’s parameters, which can later be applied to arbitrary
images to be rendered in the same style.

GANs. The generative visual output of a GAN7 can best be described as synthesizing
novel images by modeling the distributions of input data seen by the network. We
cover GANs in more depth in Chapter 4.

Recurrent Neural Networks. Recurrent Neural Networks have been shown to model
sequences of characters and generate new sequences that are lucidly coherent. In

90 | Chapter 3: Fundamentals of Deep Networks

https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1406.2661

8 Source: IEEE Spectrum.

Chapter 5, we take a look at an example of Recurrent Neural Networks in which we
generate new lines of Shakespeare by modeling all of Shakespeare’s other works.

Another interesting application of Recurrent Neural Networks is the work by Lipton
and Elkan in which the network models proper nouns like “Coors Light” and other
aspects of beer jargon. The generated beer reviews can be guided with hints (e.g.,
“give me a 3-star review of a German lager”) and are impressive. Here’s a sample beer
review generated by the program:

On tap at the brewpub. A nice dark red color with a nice head that left a lot of lace on
the glass. Aroma is of raspberries and chocolate. Not much depth to speak of despite
consisting of raspberries. The bourbon is pretty subtle as well. I really don’t know that
find a flavor this beer tastes like. I would prefer a little more carbonization to come
through. It’s pretty drinkable, but I wouldn’t mind if this beer was available.8

The Tao of deep learning
There is a lot of marketing noise and hype in the realm of deep learning today, some
of it justifiably so. However, deep learning is still trying to answer the same funda‐
mental machine learning questions like: “Is this image a face?” The difference is that
deep learning has taken the previous generation’s neural network techniques and
added advanced automated feature construction to make computationally difficult
questions on complex data easier to answer.

When you use deep learning as a practitioner, the best way to take advantage of this
power is to match the input data to the appropriate deep network architecture. If you
do this, you can apply deep learning successfully in new and interesting ways. If you
don’t, you won’t add any new modeling power beyond basic techniques like logistic
regression. The remainder of this book is dedicated to giving you, as practitioner, the
skills and context necessary to make these decisions and use deep learning well.

Organization of This Chapter
In this chapter, we build on the concepts from Chapter 1 and dig further into specific
architectures for deep networks. We’ll differentiate the architectures and break down
how their components evolved differently, providing color on how this better extracts
features from certain types of data. We close the chapter with some discussion of the
practicality of deep learning and alleviate some misconceptions surrounding the
domain today. With that, let’s continue our discussion of the architecture components
relevant to deep networks.

Defining Deep Learning | 91

http://spectrum.ieee.org/computing/software/the-neural-network-that-remembers

Common Architectural Principles of Deep Networks
Before we get into the specific architectures of the major deep networks, let’s extend
our understanding of the core components. First, we’ll reexamine the core compo‐
nents again as follows and extend their coverage for the purposes of understanding
deep networks:

• Parameters
• Layers
• Activation functions
• Loss functions
• Optimization methods
• Hyperparameters

Next, we’ll take these concepts and build on them to better understand the building
block networks of deep networks, such as the following:

• RBMs
• Autoencoders

We’ll then continue to build on these ideas by reviewing these specific deep network
architectures:

• UPNs
• CNNs
• Recurrent neural networks
• Recursive neural networks

As we work our way through this chapter, we’ll also drop references to how DL4J
implements certain aspects of deep networks. For now, let’s continue our review of
parameters to better understand how they are extended for deep networks.

Parameters
We learned in Chapter 1 that parameters relate to the x parameter vector in the equa‐
tion Ax = b in basic machine learning. Parameters in neural networks relate directly
to the weights on the connections in the network. In Figure 1-4 (introduced first in
Chapter 1) we can see the parameter vector represented by the x column vector. We
take the dot product of the matrix A and the parameter vector x to get our current
output column vector b. The closer our outcome vector b is to the actual values in the
training data, the better our model is. We use methods of optimization such as gradi‐
ent descent to find good values for the parameter vector to minimize loss across our
training dataset.

92 | Chapter 3: Fundamentals of Deep Networks

In deep networks, we still have a parameter vector representing the connection in the
network model we’re trying to optimize. The biggest change in deep networks with
respect to parameters is how the layers are connected in the different architectures. In
DBNs, we see two parallel sets of feed-forward connections with two separate net‐
works. One network’s layers are composed of RBMs (subnetworks in their own right,
which we’ll review later in the chapter) used to extract features for the other network.
The other network in a DBN is a regular feed-forward multilayer neural network,
which uses the features extracted from the RBMs–layer network to initialize its
weights. This is just one example of many that we’ll see over the course of this chapter
in how parameters/weights are specialized in different deep network architectures.

Parameters and NDArrays

In terms of working with the core linear algebra of deep networks,
DL4J relies on the ND4J library to represent these linear algebra
primitives. NDArrays and linear algebra are key to working with
neural networks in DL4J.

Layers
In Chapter 1, we learned how input, hidden, and output layers define feed-forward
neural networks. In Chapter 2, we further expanded this architecture with more types
of layers and discussed how they relate to specific architectures of deep networks.
Layers also can be represented by subnetworks in certain architectures, as well. In the
previous section, we used the example of DBNs having layers composed of RBMs.

Layers are a fundamental architectural unit in deep networks. In DL4J we customize
a layer by changing the type of activation function it uses (or subnetwork type in the
case of RBMs). We’ll also look at how you can use combinations of layers to achieve a
goal (e.g., classification or regression). Finally, we’ll also explore how each type of
layer requires different hyperparameters (specific to the architecture) to get our net‐
work to learn initially. Further hyperparameter tuning can then be beneficial through
reducing overfitting.

Activation Functions
In Chapter 1, we reviewed the basic activation functions used in feed-forward neural
networks. In this chapter, we begin to illustrate how activation functions are used in
specific architectures to drive feature extraction. The higher-order features learned
from the data in deep networks are a nonlinear transform applied to the output of the
previous layer. This allows the network to learn patterns in the data within a con‐
strained space.

Common Architectural Principles of Deep Networks | 93

Activation functions for general architecture
Depending on the activation function you pick, you will find that some objective
functions are more appropriate for different kinds of data (e.g., dense versus sparse).
We group these design decisions for network architecture into two main areas across
all architectures:

• Hidden layers
• Output layers

Hidden layers are concerned with extracting progressively higher-order features from
the raw data. Depending on the architecture we’re working with, we tend to use cer‐
tain subsets of layer activation functions. As we work through this chapter, we’ll illus‐
trate these patterns more across DBNs, CNNs, and Recurrent Neural Networks. In
Chapter 4, we take a deeper look at the impacts of different activation functions on
different network architectures in the context of tuning deep networks.

A Note About Input Layers

Typically for the input layer, we want to pass on the raw input vec‐
tor features so that in practice we don’t express an activation func‐
tion for the input layer.

Hidden layer activation functions. Commonly used functions include:
• Sigmoid
• Tanh
• Hard tanh
• Rectified linear unit (ReLU) (and its variants)

A more continuous distribution of input data is generally best modeled with a ReLU
activation function. Optionally, we’d suggest using the tanh activation function (if the
network isn’t very deep) in the event that the ReLU did not achieve good results (with
the caveat that there could be other hyperparameter-related issues with the network).

Sigmoid Activation Functions in Practice

In recent years, we’ve seen the sigmoid activation function fall out
of favor for hidden layers in practice and research.

As we progress further in this book, we’ll see how these activation functions tend to
be arranged in the different architectures.

94 | Chapter 3: Fundamentals of Deep Networks

The Evolution of Activation Functions in Practice

We’re also seeing an entire family of ReLUs emerge in deep learning
research, such as the “leaky ReLU.” You can read more on this topic
in Chapter 6.

Output layer for regression. This design decision is motivated by what type of answer
we expect our model to output. If we want to output a single real-valued number
from our model, we’ll want to use a linear activation function.

Output layer for binary classification. In this case, we’d use a sigmoid output layer with a
single neuron to give us a real value in the range of 0.0 to 1.0 (excluding those val‐
ues) for the single class. This real-valued output is typically interpreted as a probabil‐
ity distribution.

Output layer for multiclass classification. If we have a multiclass modeling problem yet
we only care about the best score across these classes, we’d use a softmax output layer
with an arg-max() function to get the highest score of all the classes. The softmax
output layer gives us a probability distribution over all the classes.

Getting Multiple Classifications

If we want to get multiple classifications per output (e.g., person +
car), we do not want softmax as an output layer. Instead, we’d use
the sigmoid output layer with n number of neurons, giving us a
probability distribution (0.0 to 1.0) for every class independently.

Loss Functions
In Chapter 2 we introduced loss functions and their role in machine learning. Loss
functions quantify the agreement between the predicted output (or label) and the
ground truth output. We use loss functions to determine the penalty for an incorrect
classification of an input vector. So far, we’ve introduced the following loss functions:

• Squared loss
• Logistic loss
• Hinge loss
• Negative log likelihood

Previously we described loss functions as falling into one of three camps:

• Regression
• Classification
• Reconstruction

Common Architectural Principles of Deep Networks | 95

We covered the first two types in Chapter 1. The third, reconstruction, is involved in
unsupervised feature extraction and is an important reason why deep learning net‐
works have achieved their record-breaking accuracy. In certain architectures of deep
networks reconstruction loss functions help the network extract features more effec‐
tively when paired with the appropriate activation function. An example of this
would be using the multiclass cross-entropy as a loss function in a layer with a soft‐
max activation function for classification output. We cover a specialized loss function
in the next section.

Reconstruction cross-entropy
With the reconstruction entropy loss function, we first apply “Gaussian noise” (a kind
of statistical white noise), and then the loss function punishes the network for any
result that is less similar to the original input data. This feedback drives the network
to learn different features in an attempt to reconstruct the input more effectively and
minimize error. In deep learning, reconstruction entropy loss is used for feature engi‐
neering in the pretrain phase that involves RBMs.

Optimization Algorithms
Training a model in machine learning involves finding the best set of values for the
parameter vector of the model. We can think of machine learning as an optimization
problem in which we minimize the loss function with respect to the parameters of
our prediction function (based on our model).

Defining “Best” in Terms of the Loss Function

In optimization algorithms, we define “best set of values” for the
parameter vector as the values with the lowest loss function value.

In Chapter 1, we introduced the basic concepts of optimization, gradient descent, and
parameter vectors. In this section, we take a look at more advanced methods of opti‐
mization and how can we use them to train deep networks. In this book, we divide
optimization algorithms into two camps:

• First-order
• Second-order

First-order optimization algorithms calculate the Jacobian matrix.

96 | Chapter 3: Fundamentals of Deep Networks

The Jacobian

The Jacobian is a matrix of partial derivatives of loss function val‐
ues with respect to each parameter.

The Jacobian has one partial derivative per parameter (to calculate partial derivatives,
all other variables are momentarily treated as constants). The algorithm then takes
one step in the direction specified by the Jacobian.

Second-order algorithms calculate the derivative of the Jacobian (i.e., the derivative of
a matrix of derivatives) by approximating the Hessian. Second-order methods take
into account interdependencies between parameters when choosing how much to
modify each parameter.

Second-Order Methods

Second-order methods can take “better” steps; however, each step
will take longer to calculate.

Practical Use of Optimization Algorithms

We provide much of the details on optimization algorithms so that
you are aware of the mechanics involved for reference. In later
chapters in this book, we simplify the discussion around optimiza‐
tion algorithms to give you a rule of thumb for when to use which
algorithm and in what context.

Other Optimization Algorithms

There are other variations of optimization algorithms (such as
“meta heuristics”) that we won’t cover in this book. They include
the following:

• Genetic algorithms
• Particle swarm optimization
• Ant colony optimization
• Simulated annealing

First-order methods
The Jacobian, as mentioned, is a matrix of partial derivatives of the loss function with
respect to the parameters in the network. In practice, we calculate it at a specific point
—the current values of the parameters.

Common Architectural Principles of Deep Networks | 97

If we think about taking one step at a time to reach an objective, first-order methods
calculate a gradient (Jacobian) at each step to determine which direction to go in
next. This means that at each iteration, or step, we are trying to find the next best
possible direction to go, as defined by our objective function. This is why we consider
optimization algorithms to be a “search.” They are finding a path toward minimal
error.

Gradient descent is a member of this path-finding class of algorithms. Variations of
gradient descent exist, but at its core, it finds the next step in the right direction with
respect to an objective at each iteration. Those steps move us toward a global mini‐
mum error or maximum likelihood.

Stochastic gradient descent (SGD) is machine learning’s workhorse optimization
algorithm. SGD trains several orders of magnitude faster than methods such as batch
gradient decent, with no loss of model accuracy.

Why Is SGD Considered “Stochastic”?

This is due to how we calculate the gradient for a single input train‐
ing example (or mini-batch of training examples). The computed
gradient is a “noisy” approximation of the true gradient yet allows
SGD to converge faster.

The strengths of SGD are easy implementation and the quick processing of large
datasets. You can adjust SGD by adapting the learning rate (e.g., with methods such
as Adagrad, discussed shortly) or using second-order information (i.e., the Hessian),
as we’ll see next. SGD is also a popular algorithm for training neural networks due to
its robustness in the face of noisy updates. That is, it helps you build models that gen‐
eralize well.

Other Factors in Learning Rate Adjustment

It’s relevant to note that other techniques such as momentum and
RMSProp can affect learning rates.

Second-order methods
All second-order methods calculate or approximate the Hessian. As described earlier,
we can think of the Hessian as the derivative of the Jacobian. That is, it is a matrix of
second-order partial derivatives, analogous to “tracking acceleration rather than
speed.” The Hessian’s job is to describe the curvature of each point of the Jacobian.
Second-order methods include:

98 | Chapter 3: Fundamentals of Deep Networks

9 Le et al. 2011. “On Optimization Methods for Deep Learning.”
10 LeCun et al. 1998. “Efficient BackProp.”
11 Martens. 2010. “Deep learning via Hessian-free optimization.”

• Limited-memory BFGS (L-BFGS)9

• Conjugate gradient10

• Hessian-free11

Think of these optimization algorithms as a black-box search algorithm that deter‐
mines the best way to minimize error, given an objective and a defined gradient rela‐
tive to each layer.

Making Trade-offs in Optimization

A major difference in first- and second-order methods is that
second-order methods converge in fewer steps yet take more com‐
putation per step.

L-BFGS. L-BFGS is an optimization algorithm and a so-called quasi-Newton method.
As its name indicates, it’s a variation of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, and it limits how much gradient is stored in memory. By this, we
mean the algorithm does not compute the full Hessian matrix, which is more compu‐
tationally expensive.

L-BFGS approximates the inverse Hessian matrix to direct weight adjustments search
toward more promising areas of parameter space. Whereas BFGS stores the gradient’s
full n × n inverse matrix, Hessian L-BFGS stores only a few vectors that represent a
local approximation of it. L-BFGS performs faster because it uses approximated
second-order information. L-BFGS and conjugate gradient in practice can be faster
and more stable than SGD methods.

L-BFGS in Practice

Although L-BFGS has some interesting properties, they are not
commonly used in practice for deep networks.

Conjugate gradient. Conjugate gradient guides the direction of the line search process
based on conjugacy information. Conjugate gradient methods focus on minimizing
the conjugate L2 norm. Conjugate gradient is very similar to gradient descent in that
it performs line search. The major difference is that conjugate gradient requires each

Common Architectural Principles of Deep Networks | 99

http://bit.ly/2tpkisH
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://bit.ly/2tQkCSx

successive step in the line search process to be conjugate to one another with respect
to direction.

Hessian-free. Hessian-free optimization is related to Newton’s method, but it better
minimizes the quadratic function we get. It is a powerful optimization method adap‐
ted to neural networks by James Martens in 2010. We find the minimum of the quad‐
ratic function with an iterative method called conjugate gradient.

Hyperparameters
Here we define a hyperparameter as any configuration setting that is free to be chosen
by the user that might affect performance.

Hyperparameters fall into several categories:

• Layer size
• Magnitude (momentum, learning rate)
• Regularization (dropout, drop connect, L1, L2)
• Activations (and activation function families)
• Weight initialization strategy
• Loss functions
• Settings for epochs during training (mini-batch size)
• Normalization scheme for input data (vectorization)

In this section, we expand on the concepts from Chapter 1 with some new hyperpara‐
meters relevant to deep learning training.

A Few Cautionary Notes About Hyperparameters

Some hyperparameters apply only some of the time. We cover the
details of this more in Chapters 6 and 7. Moreover, changing a spe‐
cific hyperparameter might affect the best settings for other hyper‐
parameters. We’d also like to point out that some hyperparameters
are incompatible with one another (e.g., Adagrad + momentum).

Layer size
Layer size is defined by the number of neurons in a given layer. Input and output lay‐
ers are relatively easy to figure out because they correspond directly to how our mod‐
eling problem handles input and ouput. For the input layer, this will match up to the
number of features in the input vector. For the output layer, this will either be a single
output neuron or a number of neurons matching the number of classes we are trying
to predict.

Deciding on neuron counts for each hidden layer is where hyperparameter tuning
becomes a challenge. We can use an arbitrary number of neurons to define a layer

100 | Chapter 3: Fundamentals of Deep Networks

and there are no rules about how big or small this number can be. However, how
complex of a problem we can model is directly correlated to how many neurons are
in the hidden layers of our networks. This might push you to begin with a large num‐
ber of neurons from the start but these neurons come with a cost.

Depending on the deep network architecture, the connection schema between layers
can vary. However, the weights on the connections, as we saw in Chapter 1, are the
parameters we must train. As we include more parameters in our model, we increase
the amount of effort needed to train the network. Large parameter counts can lead to
long training times and models that struggle to find convergence.

Large Parameter Counts and Overfitting

There are also cases in which a larger model will sometimes con‐
verge easier because it will simply “memorize” the training data. In
Chapter 6, we further discuss ways to deal with overfitting.

In Chapter 6, we look at heuristics for determining neuron count per layer and how
to iteratively find good layer hyperparameters.

Magnitude hyperparameters
Hyperparameters in the magnitude group involve the gradient, step size, and
momentum.

Learning rate. The learning rate in machine learning is how fast we change the
parameter vector as we move through search space. If the learning rate becomes too
high, we can move toward our goal faster (least amount of error for the function
being evaluated), but we might also take a step so large that we shoot right past the
best answer to the problem, as well.

High Learning Rates and Stability

Another side effect of learning rates that are large is that we run the
risk of having unstable training that does not converge over time.

If we make our learning rate too small, it might take a lot longer than we’d like for our
training process to complete. A low learning rate can make our learning algorithm
inefficient. Learning rates are tricky because they end up being specific to the dataset
and even to other hyperparameters. This creates a lot of overhead for finding the
right setting for hyperparameters.

We also can schedule learning rates to decrease over time according to some rule.
We’ll learn more about this in Chapters 6 and 7.

Common Architectural Principles of Deep Networks | 101

12 Duchi, Hazan, and Singer. 2011. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimi‐
zation.”

The Importance of Learning Rate as a Hyperparameter

Learning rate is considered one of the key hyperparameters in neu‐
ral networks.

Nesterov’s momentum. The “vanilla” version of SGD uses gradient directly, and this
can be problematic because gradient can be nearly zero for any parameter. This
causes SGD to take tiny steps in some cases, and steps that are too big for situations in
which the gradient is too large. To alleviate these issues, we can use techniques such
as the following:

• Nesterov’s momentum
• RMSProp
• Adam
• AdaDelta

DL4J and Updaters

Nesterov’s momentum, RMSProp, Adam, and AdaDelta are known
as “updaters” in the terminology of DL4J. Most of the terms used in
this book are universal for most of all deep learning literature; we
just wanted to note this variation for DL4J specifically.

We can speed up our training by increasing momentum, but we might lower the
chance that the model will reach minimal error by overshooting the optimal parame‐
ter values. Momentum is a factor between 0.0 and 1.0 that is applied to the change
rate of the weights over time. Typically, we see the value for momentum between 0.9
and 0.99.

AdaGrad. AdaGrad12 is one technique that has been developed to help augment find‐
ing the “right” learning rate. AdaGrad is named in reference to how it “adaptively”
uses subgradient methods to dynamically control the learning rate of an optimization
algorithm. AdaGrad is monotonically decreasing and never increases the learning
rate above whatever the base learning rate was set at initially.

AdaGrad is the square root of the sum of squares of the history of gradient computa‐
tions. AdaGrad speeds our training in the beginning and slows it appropriately
toward convergence, allowing for a smoother training process.

102 | Chapter 3: Fundamentals of Deep Networks

http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
http://cs231n.github.io/neural-networks-3/

13 Zeiler. 2012. “ADADELTA: An Adaptive Learning Rate Method.”
14 Bengio et al. 2015. Deep Learning (In Preparation).

RMSProp. RMSprop is a very effective, but currently unpublished adaptive learning
rate method. Amusingly, everyone who uses this method in their work currently cites
slide 29 of Lecture 6 of Geoff Hinton’s Coursera class.

AdaDelta. AdaDelta13 is a variant of AdaGrad that keeps only the most recent history
rather than accumulating it like AdaGrad does.

ADAM. ADAM (a more recently developed updating technique from the University
of Toronto) derives learning rates from estimates of first and second moments of the
gradients.

Regularization
Let’s dig deeper into the idea of regularization that we touched on in Chapter 2. Regu‐
larization is a measure taken against overfitting. Overfitting occurs when a model
describes the training set but cannot generalize well over new inputs. Overfitted
models have no predictive capacity for data that they haven’t seen. Geoffery Hinton
described the best way to build a neural network model:

Cause it to overfit, and then regularize it to death.

Regularization for hyperparameters helps modify the gradient so that it doesn’t step
in directions that lead it to overfit. Regularization includes the following:

• Dropout
• DropConnect
• L1 penalty
• L2 penalty

Dropout and DropConnect mute parts of the input to each layer, such that the neural
network learns other portions. Zeroing-out parts of the data causes a neural network
to learn more general representations. Regularization works by adding an extra term
to the normal gradient computed.

Dropout. Dropout14 is a mechanism used to improve the training of neural networks
by omitting a hidden unit. It also speeds training. Dropout is driven by randomly
dropping a neuron so that it will not contribute to the forward pass and backpropa‐
gation.

Common Architectural Principles of Deep Networks | 103

https://arxiv.org/abs/1212.5701
http://www.iro.umontreal.ca/~bengioy/dlbook/
http://cs231n.github.io/neural-networks-3/

15 Ibid.
16 Bengio. 2012. “Practical recommendations for gradient-based training of deep architectures.”

Dropout Related to Model Averaging

We also can relate dropout to the concept of averaging the output
of multiple models. If we use a dropout coefficient of 0.5, we have
the mean of the model. A random Dropout of features is a sam‐
pling from 2N possible architectures, where N is the number of
parameters.

DropConnect. DropConnect15 does the same thing as Dropout, but instead of choos‐
ing a hidden unit, it mutes the connection between two neurons.

L1. The penalty methods L1 and L2, in contrast, are a way of preventing the neural
network parameter space from getting too big in one direction. They make large
weights smaller.

L1 regularization is considered computationally inefficient in the nonsparse case, has
sparse outputs, and includes built-in feature selection. L1 regularization multiplies
the absolute value of weights rather than their squares. This function drives many
weights to zero while allowing a few to grow large, making it easier to interpret the
weights.

L2. In contrast, L2 regularization is computationally efficient due to it having analyt‐
ical solutions and nonsparse outputs, but it does not do feature selection automati‐
cally for us. The “L2” regularization function, a common and simple hyperparameter,
adds a term to the objective function that decreases the squared weights. You multiply
half the sum of the squared weights by a coefficient called the weight-cost. L2
improves generalization, smooths the output of the model as input changes, and
helps the network ignore weights it does not use.

Mini-batching
With mini-batching,16 we send more than one input vector (a group or batch of vec‐
tors) to be trained in the learning system. This allows us to use hardware and resour‐
ces more efficiently at the computer-architecture level. This method also allows us to
compute certain linear algebra operations (specifically matrix-to-matrix multiplica‐
tions) in a vectorized fashion. In this scenario we also have the option of sending the
vectorized computations to GPUs if they are present.

104 | Chapter 3: Fundamentals of Deep Networks

https://arxiv.org/abs/1206.5533

Summary
In Chapter 2, we learned about some of the basic regularization tools for feed-
forward multilayer neural networks. In this chapter, we expanded this definition to
some newer techniques and options for hyperparameters to find better parameter
vectors. Let’s now put some of these ideas together to construct building blocks for
deep networks.

Building Blocks of Deep Networks
Building deep networks goes beyond basic feed-forward multilayer neural networks.
In some cases, deep networks combine smaller networks as building blocks into
larger networks; in other cases, they use a specialized set of layers. Here are the spe‐
cific building blocks we want to highlight:

• Feed-forward multilayer neural networks
• RBMs
• Autoencoders

In Chapter 2, we introduced the canonical feed-forward networks. Inspired by net‐
works of biological neurons, feed-forward networks are the simplest artificial neural
networks. They are composed of an input layer, one or many hidden layers, and an
output layer. In this section, we introduce networks that are considered building
blocks of larger deep networks:

• RBMs
• Autoencoders

Both RBMs and autoencoders are characterized by an extra layer-wise step for train‐
ing. They are often used for the pretraining phase in other larger deep networks.

Building Blocks of Deep Networks | 105

17 Bengio et al. 2007. “Greedy Layer-Wise Training of Deep Networks.”

Unsupervised Layer-Wise Pretraining

Unsupervised layer-wise pretraining17 can help in some training
circumstances. Over time, better optimization methods, activation
functions, and weight initialization methods have lessened the
importance of pretraining-based deep networks. A case for which
pretraining becomes interesting is when we have a lot of unlabeled
data yet only a relatively smaller set of labeled training data. Pre‐
training does, however, add extra overhead regarding tuning and
extra training time.
Layer-wise pretraining works by performing unsupervised pre‐
training of the first layer (e.g., RBMs) based on the input data. This
gives us the first layer of weights for our main neural network (e.g.,
feed-forward multilayer perceptron). We perform this process for
each layer progressively in the network, using the output of previ‐
ous layers based on the training input as the input to the successive
layers. This pretraining process allows us to initialize the main neu‐
ral network’s parameters with good initial values.

RBMs model probability and are great at feature extraction. They are feed-forward
networks in which data is fed through them in one direction with two biases rather
than one bias as in traditional backpropagation feed-forward networks.

Autoencoders are a variant of feed-forward neural networks that have an extra bias
for calculating the error of reconstructing the original input. After training, autoen‐
coders are then used as a normal feed-forward neural network for activations. This is
an unsupervised form of feature extraction because the neural network uses only the
original input for learning weights rather than backpropagation, which has labels.
Deep networks can use either RBMs or autoencoders as building blocks for larger
networks (it is, however, rare that a single network would use both). In the following
sections, we take a closer look at both networks.

RBMs
RBMs are used in deep learning for the following:

• Feature extraction
• Dimensionality reduction

The “restricted” part of the name “Restricted Boltzmann Machines” means that con‐
nections between nodes of the same layer are prohibited (e.g., there are no visible-
visible or hidden-hidden connections along which signal passes). Geoff Hinton, the

106 | Chapter 3: Fundamentals of Deep Networks

https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

18 Krizhevsky, Sutskever, and Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Net‐
works.”

deep learning pioneer who popularized RBM use almost a decade ago, describes the
more general Boltzmann machine as follows:

A network of symmetrically connected, neuron-like units that make stochastic deci‐
sions about whether to be on or off.

RBMs are also a type of autoencoder, which we’ll talk about in a following section.
RBMs are used for pretraining layers in larger networks such as Deep Belief Net‐
works.

Geoff Hinton
Geoff Hinton is a distinguished researcher at Google (part-time) and also works for
the University of Toronto as a Distinguished Emeritus Professor. Dr. Hinton’s team is
credited for key work on RBMs and Deep Belief Networks.

Dr. Hinton’s team has produced results that in no small part helped drive the wide-
scale interest in the field of deep learning we see today. In 2012, Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton developed a “large, deep convolutional neural net‐
work” that won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Chal‐
lenge) known as “AlexNet.” AlexNet18 was hailed as an advancement in computer
vision, and some point to it specifically as the beginning of the deep learning craze.

Dr. Hinton has been a proponent of basic research and the long-term persistence it
takes to get results:

...it took 17 years after Terry Sejnowski and I invented the Boltzmann machine learn‐
ing algorithm before I found a version of it that worked efficiently. If you really
believe in an idea, you just have to keep trying.

Network layout
There are five main parts of a basic RBM:

• Visible units
• Hidden units
• Weights
• Visible bias units
• Hidden bias units

A standard RBM has a visible layer and a hidden layer, as shown in Figure 3-3. We
can also see a graph of weights (connections) between the hidden and visible units in

Building Blocks of Deep Networks | 107

http://bit.ly/2tmodqn
http://bit.ly/2tmodqn
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/

the figure. Think of these weights in the same way you think of weights in the classi‐
cal neural network sense.

Figure 3-3. RBM network

With RBMs, every visible unit is connected to every hidden unit, yet no units from
the same layer are connected. Each layer of an RBM can be imagined as a row of
nodes. The nodes of the visible and hidden layers are connected by connections with
associated weights.

Visible and hidden layers. In an RBM, every single node of the input (visible) layer is
connected by weights to every single node of the hidden layer, but no two nodes of
the same layer are connected. The second layer is known as the “hidden” layer. Hid‐
den units are feature detectors, learning features from the input data. Nodes in each
layer are biologically inspired as with the feed-forward multilayer neural network
from Chapter 1. Units (nodes) in the visible layer are “observable” in that they take
training vectors as input. Each layer has a bias unit with its state always set to on.

Each node performs computation based on the input to the node and outputs a result
based on a stochastic decision whether or not to transmit data through an activation.
Just as with the artificial neuron from Chapter 1, the activation computation is based
on weights on the connections and the input values. The initial weights are randomly
generated.

 Connections and weights. All connections are visible-hidden; none are visible-visible
or hidden-hidden. The edges represent connections along which signals are passed.
Loosely speaking, those circles, or nodes, act like human neurons. They are decision
units. They make decisions about whether to be on or off through acts of computa‐

108 | Chapter 3: Fundamentals of Deep Networks

tion. “On” means that they pass a signal further through the net; “off ” means that they
don’t.

Usually, being “on” means the data passing through the node is valuable; it contains
information that will help the network make a decision. Being “off ” means the net‐
work thinks that particular input is irrelevant noise. A network comes to know which
features/signals correlate with which labels (which code contains which messages) by
being trained. With training, networks learn to make accurate classifications of the
input they receive.

Biases. There is a set of bias weights (“parameters”) connecting the bias unit for each
layer to every unit in the layer. Bias nodes help the network better triage and model
cases in which an input node is always on or always off.

Training
The technique known as pretraining using RBMs means teaching it to reconstruct the
original data from a limited sample of that data. That is, given a chin, a trained net‐
work could approximate (or “reconstruct”) a face. RBMs learn to reconstruct the
input dataset. We’ll review the concept of reconstruction in the next section.

Contrastive Divergence

RBMs calculate gradients by using an algorithm called contrastive
divergence. Contrastive divergence is the name of the algorithm
used in sampling for the layer-wise pretraining of a RBM. Also
called CD-k, contrastive divergence minimizes the KL divergence
(the delta between the real distribution of the data and the guess)
by sampling k steps of a Markov chain to compute a guess.

Reconstruction
Deep neural networks with unsupervised pretraining (RBMs, autoencoders) perform
feature engineering from unlabeled data through reconstruction. In pretraining, the
weights learned through unsupervised pretrain learning are used for weight initializa‐
tion in networks such as Deep Belief Networks.

Reconstruction as Matrix Factorization

Reconstruction is a matrix factorization problem (also known as
matrix decomposition).

Figure 3-4 presents a visual explanation of the network involved in reconstruction in
RBMs.

Building Blocks of Deep Networks | 109

https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

Figure 3-4. Reconstruction in RBMs

We can visually explain reconstruction in RBMs by looking at the MNIST dataset.
MNIST stands for the mixed National Institute of Standards and Technology dataset
that contains the images. The MNIST dataset is a collection of images representing
the handwritten numerals 0 through 9. Figure 3-5 depicts a sample of some of the
handwritten digits in MNIST.

Figure 3-5. Sample of MNIST digits

The training dataset in MNIST has 60,000 records and the test dataset has 10,000
records. If we use a RBM to learn the MNIST dataset, we can sample from the trained

110 | Chapter 3: Fundamentals of Deep Networks

http://yann.lecun.com/exdb/mnist/

19 Yosinksi and Lipson. 2012. “Visually Debugging Restricted Boltzmann Machine Training with a 3D Example.”

network to see19 how well it can reconstruct the digits. Figure 3-6 shows renderings of
MNIST digits being progressively reconstructed with a RBM.

Figure 3-6. Reconstructing MNIST digits with RBMs

If the training data has a normal distribution, most of them cluster around a central
mean, or average, and become scarcer the further you stray from that average. It looks
like a bell curve. If we know the mean and the variance, or sigma, of normal data, we
can reconstruct that curve. But suppose that we don’t know the mean and variance.
Those are parameters we then need to guess. Picking them randomly and contrasting
the curve they produce with the original data can operate similarly to a loss function.
We measure the difference between two probability distributions much like we meas‐
ure erroneous classifications, adjust our parameters, and try again.

Reconstruction Cross-Entropy

The objective function here is usually reconstruction cross-entropy,
or KL divergence (the mathematicians and cryptanalysts Solomon
Kullback and Richard Leibler first published a paper on the techni‐
que in 1951). “Cross” refers to the comparison between two distri‐
butions. “Entropy” is a term from information theory that refers to
uncertainty. For example, a normal curve with a wide spread, or
variance, also implies more uncertainty about where data points
will fall. That uncertainty is called entropy.

Building Blocks of Deep Networks | 111

http://bit.ly/2uym3lU

Other uses of RBMs
Here are some other places we see RBMs used:

• Dimensionality reduction
• Classification
• Regression
• Collaborative filtering
• Topic modeling

Autoencoders
We use autoencoders to learn compressed representations of datasets. Typically, we
use them to reduce a dataset’s dimensionality. The output of the autoencoder network
is a reconstruction of the input data in the most efficient form.

Similarities to multilayer perceptrons
Autoencoders share a strong resemblance with multilayer perceptron neural net‐
works in that they have an input layer, hidden layers of neurons, and then an output
layer. The key difference to note between a multilayer perceptron network diagram
(from earlier chapters) and an autoencoder diagram is the output layer in an autoen‐
coder has the same number of units as the input layer does.

Figure 3-7 presents an example of an autoencoder network.

Figure 3-7. Autoencoder network architecture

112 | Chapter 3: Fundamentals of Deep Networks

20 Vincent et al. 2010. “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network
with a Local Denoising Criterion.”

Beyond the output layer, there a few other differences, which we outline in the next
section.

Defining features of autoencoders
Autoencoders differ from multilayer perceptrons in a couple of ways:

• They use unlabeled data in unsupervised learning.
• They build a compressed representation of the input data.

Unsupervised learning of unlabeled data. The autoencoder learns directly from unla‐
beled data. This is connected to the second major difference between multilayer per‐
ceptrons and autoencoders.

Learning to reproduce the input data. The goal of a multilayer perceptron network is to
generate predictions over a class (e.g., fraud versus not fraud). An autoencoder is
trained to reproduce its own input data.

Training autoencoders
Autoencoders rely on backpropagation to update their weights. The main difference
between RBMs and the more general class of autoencoders is in how they calculate
the gradients.

Common variants of autoencoders
Two important variants of autoencoders to note are compression autoencoders and
denoising autoencoders.

Compression autoencoders. This is the architecture depicted in Figure 3-7. The net‐
work input must pass through a bottleneck region of the network before being expan‐
ded back into the output representation.

Denoising autoencoders. The denoising autoencoder20 is the scenario in which the
autoencoder is given a corrupted version (e.g., some features are removed randomly)
of the input and the network is forced to learn the uncorrupted output.

Applications of autoencoders
Building a model to represent the input dataset might not sound useful on the sur‐
face. However, we’re less interested in the output itself and more interested in the dif‐
ference between the input and output representations. If we can train a neural

Building Blocks of Deep Networks | 113

http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

21 Kingma and Welling. 2013. “Auto-Encoding Variational Bayes.”

network to learn data it commonly “sees,” then this network can also let us know
when it’s “seeing” data that is unusual, or anomalous.

Autoencoders as Anomaly Detectors

Autoencoders are commonly used in systems in which we know
what the normal data will look like, yet it’s difficult to describe what
is anomalous. Autoencoders are good at powering anomaly detec‐
tion systems.

Variational Autoencoders
A more recent type of autoencoder model is the variational autoencoder (VAE) intro‐
duced by Kingma and Welling21 (see Figure 3-8). The VAE is similar to compression
and denoising autoencoders in that they are all trained in an unsupervised manner to
reconstruct inputs.

However, the mechanisms that the VAEs use to perform training are quite different.
In a compression/denoising autoencoder, activations are mapped to activations
throughout the layers, as in a standard neural network; comparatively, a VAE uses a
probabilistic approach for the forward pass.

Figure 3-8. VAE network architecture

114 | Chapter 3: Fundamentals of Deep Networks

https://arxiv.org/abs/1312.6114

22 These distribution parameters should not be confused with the trainable network parameters: in practice,
they are just network activations used to specify (for example) the mean and variance values for a Gaussian
distribution, or the mean value for Bernoulli distribution.

23 Fabius and van Amersfoort. 2014. “Variational Recurrent Auto-Encoders.”

The VAE model assumes that the data x is generated in two steps: (a) a value
zi ∼ p z is generated from a prior distribution, and (b) the data instance is generated
according to some conditional distribution xi ∼ p x z . Of course, we don’t actually
know the values of z, and inferring p z x exactly is generally intractable. To handle
this, we let both distributions, p z x and p x z , be approximated by neural net‐
works—the encoder and decoder, respectively. For example, if the P z x is Gaussian,
the encoder forward-pass activations provide the Gaussian distribution parameters
μ and σ2.

Similarly, the distribution parameters for P x z are provided by the decoder forward
pass.22 Overall, the network is trained by backpropagation to maximize a lower bound
on the marginal likelihood of the training data, log p x1, ..., xN . The VAE model also
has been extended to allow unsupervised learning on time series with the variational
recurrent autoencoder.23 In Chapter 5, we see the VAE in a practical example generat‐
ing MNIST digits.

Building Blocks of Deep Networks | 115

https://arxiv.org/abs/1412.6581

CHAPTER 4

Major Architectures of Deep Networks

The mother art is architecture. Without an architecture of our own we have no soul of our
own civilization.

—Frank Lloyd Wright

Now that we’ve seen some of the components of deep networks, let’s take a look at the
four major architectures of deep networks and how we use the smaller networks to
build them. Earlier in the book, we introduced four major network architectures:

• Unsupervised Pretrained Networks (UPNs)
• Convolutional Neural Networks (CNNs)
• Recurrent Neural Networks
• Recursive Neural Networks

In this chapter, we take a look in more detail at each of these architectures. In Chap‐
ter 2, we gave you a deeper understanding of the algorithms and math that underlie
neural networks in general. In this chapter, we focus more on the higher-level archi‐
tecture of different deep networks so as to build an understanding appropriate for
applying these networks in practice.

Some networks we’ll cover more lightly than others, but we’ll mostly focus on the two
major architectures that you will see in the wild: CNNs for image modeling and Long
Short-Term Memory (LSTM) Networks (Recurrent Networks) for sequence model‐
ing.

117

Unsupervised Pretrained Networks
In this group, we cover three specific architectures:

• Autoencoders
• Deep Belief Networks (DBNs)
• Generative Adversarial Networks (GANs)

A Note About the Role of Autoencoders

As we previously covered in Chapter 3, autoencoders fundamental
structures in deep networks because they’re often used as part of
larger networks. Like many other networks, they serve that role
and then are used as a standalone network, as well.

Since we’ve already covered autoencoders in depth, we’ll move on to looking closer at
DBNs and GANs.

Deep Belief Networks
DBNs are composed of layers of Restricted Boltzmann Machines (RBMs) for the pre‐
train phase and then a feed-forward network for the fine-tune phase.
Figure 4-1 shows the network architecture of a DBN.

Figure 4-1. DBN architecture

118 | Chapter 4: Major Architectures of Deep Networks

In the sections that follow, we explain more about how DBNs take advantage of
RBMs to better model training data.

Feature Extraction with RBM Layers
We use RBMs to extract higher-level features from the raw input vectors. To do that,
we want to set the hidden unit states and weights such that when we show the RBM
an input record and ask the RBM to reconstruct the record the record, it generates
something pretty close to the original input vector. Hinton talks about this effect in
terms of how machines “dream about data.”

The fundamental purpose of RBMs in the context of deep learning and DBNs is to
learn these higher-level features of a dataset in an unsupervised training fashion. It
was discovered that we could train better neural networks by letting RBMs learn pro‐
gressively higher-level features using the learned features from a lower level RBM
pretrain layer as the input to a higher-level RBM pretrain layer.

Learning higher-order features automatically. Learning these features in an unsuper‐
vised fashion is considered the pretrain phase of DBNs. Each hidden layer of the
RBM in the pretrain phase learns progressively more complex features from the dis‐
tribution of the data. These higher-order features are progressively combined in non‐
linear ways to do elegant automated feature engineering.

To visually understand feature construction with layers of RRBMs, take a look at Fig‐
ures 4-2, 4-3, and 4-4, which show the progression of activation renders on a RBM as
it learns MNIST digits.

Figure 4-2. Activation render at the beginning of training

Figure 4-3. Features emerge in later activation render

Unsupervised Pretrained Networks | 119

Figure 4-4. Portions of MNIST digits emerge towards end of training

Chapter 6 goes into more detail about how these renders are produced. We can see
how a layer of RBM extracts fragments of digits as it trains. These features are then
combined in higher-level layers to build progressively more complex (and nonlinear)
features.

As this raw data is modeled in the generative modeling process with each layer of the
RBM, the system is able to extract increasingly higher-level features from the raw
input data produced by our baseline input vectorization process. These features move
forward through these layers of RBMs in one direction, producing more elaborate
features at the top layer.

Initializing the feed-forward network. We then use these layers of features as the initial
weights in a traditional backpropagation driven feed-forward neural network.

These initialization values help the training algorithm guide the parameters of the
traditional neural network toward better regions of parameter search space. This
phase is known as the fine-tune phase of DBNs.

Fine-tuning a DBN with a feed-forward multilayer neural network
In the fine-tune phase of a DBN we use normal backpropagation with a lower learn‐
ing rate to do “gentle” backpropagation. We consider the pretraining phase to be a
general search of the parameter space in an unsupervised fashion based on raw
data. In contrast, the fine-tune phase is about specializing the network and its features
for the task we actually care about (such as classification).

Gentle backpropagation. The pretrain phase with RBM learns higher-order features
from the data, which we use as good initial starting values for our feed-forward net‐
work. We want to take these weights and tune them a bit more to find good values for
our final neural network model.

The output layer. The normal goal of a deep network is to learn a set of features. The
first layer of a deep network learns how to reconstruct the original dataset. The subse‐
quent layers learn how to reconstruct the probability distributions of the activations
of the previous layer. The output layer of a neural network is tied to the overall objec‐
tive. This is typically logistic regression, with the number of features equal to the

120 | Chapter 4: Major Architectures of Deep Networks

1 Goodfellow et al. 2014. “Generative Adversarial Networks.”
2 Vondrick, Pirsiavash, and Torralba. 2016. “Generating Videos with Scene Dynamics.”
3 Zhang et al. 2016. “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial

Networks.”

number of inputs of the final layer, and the number of outputs equal to the number of
classes.

Current state of DBNs
We don’t cover DBNs as extensively as the other network architectures in this book.
This is because the field has largely seen CNNs take over the image modeling space
and thus we chose to emphasize that architecture more, as you’ll see in the next
section.

The Role of DBNs in the Rise of Deep Learning

Although we don’t emphasize DBNs as much in this book, this net‐
work played a nontrivial role in the rise of deep learning. Geoff
Hinton’s team at the University of Toronto persisted over a long
period of time in advancing techniques in the image modeling
space to produce great advances. We felt it important to note the
role that DBNs have played in the evolution of deep networks.

Generative Adversarial Networks
A network of note is the GAN.1 GANs have been shown to be quite adept at synthe‐
sizing novel new images based on other training images. We can extend this concept
to model other domains such as the following:

• Sound
• Video2

• Generating images from text descriptions3

GANs are an example of a network that uses unsupervised learning to train two mod‐
els in parallel. A key aspect of GANs (and generative models in general) is how they
use a parameter count that is significantly smaller than normal with respect to the
amount of data on which we’re training the network. The network is forced to effi‐
ciently represent the training data, making it more effective at generating data similar
to the training data.

Training generative models, unsupervised learning, and GANs
If we had a large corpus of training images (such as the ImageNet dataset), we could
build a generative neural network that outputs images (as opposed to classifications).

Unsupervised Pretrained Networks | 121

https://arxiv.org/abs/1406.2661
http://web.mit.edu/vondrick/tinyvideo/paper.pdf
https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1612.03242
https://github.com/usernaamee/audio-GAN
http://image-net.org/

We’d consider these generated output images to be samples from the model. The gen‐
erative model in GANs generates such images while a secondary “discriminator” net‐
work tries to classify these generated images.

This secondary discriminator network attempts to classify the output images as real
or synthetic. When training GANs, we want to update the parameters such that the
network will generate more believable output images based on the training data. The
goal here is to make images realistic enough that the discriminator network is fooled
to the point that it cannot distinguish the difference between the real and the syn‐
thetic input data.

An example of efficient model representation in GANs is how they typically have
around 100 million parameters when modeling a dataset such as ImageNet. In the
course of training, an input dataset such as ImageNet (200 GB) becomes close to 100
MB of parameters. This learning process tries to find the most efficient way to repre‐
sent the features in the data, such as similar groups of pixels, edges, and other pat‐
terns (as we’ll see in more detail in “Convolutional Neural Networks (CNNs)” on
page 125).

The discriminator network. When modeling images, the discriminator network is typi‐
cally a standard CNN. Using a secondary neural network as the discriminator net‐
work allows the GAN to train both networks in parallel in an unsupervised fashion.
These discriminator networks take images as input, and then output a classification.

The gradient of the output of the discriminator network with respect to the synthetic
input data indicates how to make small changes to the synthetic data to make it more
realistic.

The generative network. The generative network in GANs generates data (or images)
with a special kind of layer called a deconvolutional layer (read more about deconvo‐
lutional networks and layers in the following sidebar).

During training, we use backpropagation on both networks to update the generating
network’s parameters to generate more realistic output images. The goal here is to
update the generating network’s parameters to the point at which the discriminating
network is sufficiently “fooled” by the generating network because the output is so
realistic as compared to the training data’s real images.

122 | Chapter 4: Major Architectures of Deep Networks

Deconvolutional Networks
This type of network was developed by Matthew Zeiler and Rob Fergus from New
York University as part of the development of ZF Net in the paper “Visualizing and
Understanding Convolutional Neural Networks” (2013). A deconvolutional network
helps us examine different feature activations and their relation to the input space
(Figure 4-5).

Figure 4-5. Visualizing deconvolutional layers

The deconvolutional layers in a deconvolutional network (“deconvnet” for short) map
features to pixels when modeling images, as seen in Figure 4-5, which is the opposite
of what a normal convolutional layer does. This aspect of deconvolutional networks is
what enables us to generate images as output from neural networks. Deconvolutional
networks are unsupervised and trained in a layer-wise fashion, similar to a DBN. The
network has multiple stacked deconvolutional layers where each layer is trained on
the input of the previous layer. The general idea with the information passing through
the layers is that the output from each layer is a sparse representation of the input to
the layer.

Building generative models and Deep Convolutional Generative Adversarial Networks
One variant of GANs is the Deep Convolutional Generative Adversarial Network
(DCGAN). Figure 4-6 depicts images of bedrooms generated from a DCGAN.

Unsupervised Pretrained Networks | 123

https://arxiv.org/abs/1311.2901v3
https://arxiv.org/abs/1311.2901v3
https://github.com/Newmu/dcgan_code

4 Image is from the DCGAN authors’ GitHub repository.
5 Mirza and Osindero. 2014. “Conditional Generative Adversarial Nets.”

Figure 4-6. Generated images of bedrooms from a DCGAN network4

This network takes random numbers (from a uniform distribution) and generates an
image from the network model as output. As the input random numbers change we
see the DCGAN generate different types of images.

Conditional GANs
Conditional GANs5 also can use class label information, allowing them to condition‐
ally generate data of a specific class.

Comparing GANs and variational autoencoders
GANs focus on trying to classify training records as being from the model distribu‐
tion or the real distribution. When the discriminator model makes a prediction in
which there is a difference between the two distributions, the generator network
adjusts its parameters. Eventually the generator converges on parameters that repro‐
duce the real data distribution, and the discriminator is unable to detect the differ‐
ence.

With variational autoencoders (VAEs) we’re setting up this same problem with proba‐
bilistic graphical models to reconstruct the input in an unsupervised fashion, as seen
previously in Chapter 3. VAEs attempt to maximize a lower bound on the log likeli‐
hood of the data such that the generated images look more and more real.

Another interesting difference between GANs and VAEs is how the images are gener‐
ated. With basic GANs the image is generated with arbitrary code and we don’t have a
way to generate a picture with specific features. VAEs, in contrast, have a specific
encode/decode scheme with which we can compare the generated image to the origi‐

124 | Chapter 4: Major Architectures of Deep Networks

https://github.com/Newmu/dcgan_code
https://arxiv.org/abs/1411.1784

6 Kalchbrenner et al. 2016. “Neural Machine Translation in Linear Time.”

nal image. This gives us the side effect of being able to code for specific types of
images to be generated.

Issues with Generative Models

Sometimes with generated images we also get a different type of
noise in the generated output image. The downside of VAE-
generated images is that as a result of how they are generated, the
images are sometimes slightly blurry. GAN-generated images tend
to capture the style of the input data yet sometimes don’t compose
the scene in a coherent manner (e.g., it’s an image of a dog, but the
dog doesn’t look quite right).

Convolutional Neural Networks (CNNs)
The goal of a CNN is to learn higher-order features in the data via convolutions. They
are well suited to object recognition with images and consistently top image classifi‐
cation competitions. They can identify faces, individuals, street signs, platypuses, and
many other aspects of visual data. CNNs overlap with text analysis via optical charac‐
ter recognition, but they are also useful when analyzing words6 as discrete textual
units. They’re also good at analyzing sound.

The efficacy of CNNs in image recognition is one of the main reasons why the world
recognizes the power of deep learning. As Figure 4-7 illustrates, CNNs are good at
building position and (somewhat) rotation invariant features from raw image data.

Figure 4-7. CNNs and computer vision

Convolutional Neural Networks (CNNs) | 125

https://arxiv.org/abs/1610.10099

7 Gehring et al. 2016. “A Convolutional Encoder Model for Neural Machine Translation.”
8 Nogueira dos Santos and Gatti. 2014. “Deep Convolutional Neural Networks for Sentiment Analysis of Short

Texts.”
9 Eickenberg et al. 2017. “Seeing it all: Convolutional network layers map the function of the human visual sys‐

tem.”

CNNs are powering major advances in machine vision, which has obvious applica‐
tions for self-driving cars, robotics, drones, and treatments for the visually impaired.

CNNs and Structure in Data

CNNs tend to be most useful when there is some structure to the
input data. An example would be how images and audio data that
have a specific set of repeating patterns and input values next to
each other are related spatially. Conversely, the columnar data
exported from a relational database management system (RDBMS)
tends to have no structural relationships spatially. Columns next to
one another just happen to be materialized that way in the database
exported materialized view.

CNNs also have been used in other tasks such as natural language translation/genera‐
tion7 and sentiment analysis.8 A convolution is a powerful concept for helping to
build a more robust feature space based on a signal.

Biological Inspiration
The biological inspiration for CNNs is the visual cortex in animals.9 The cells in the
visual cortex are sensitive to small subregions of the input. We call this the visual field
(or receptive field). These smaller subregions are tiled together to cover the entire vis‐
ual field. The cells are well suited to exploit the strong spatially local correlation
found in the types of images our brains process, and act as local filters over the input
space. There are two classes of cells in this region of the brain. The simple cells acti‐
vate when they detect edge-like patterns, and the more complex cells activate when
they have a larger receptive field and are invariant to the position of the pattern.

Intuition
Feed-forward multilayer neural networks take input as a single one-dimensional vec‐
tor and transform the data with one or more hidden layers (fully connected). The
network then gives a result from the output layer. The issue we run into with tradi‐
tional multilayer neural networks and image data is that these networks don’t scale
well with image data as input. An example would be modeling the CIFAR-10 dataset
(see the upcoming sidebar). The images to train on are only 32 pixels wide by 32

126 | Chapter 4: Major Architectures of Deep Networks

https://arxiv.org/abs/1611.02344
http://www.aclweb.org/anthology/C14-1008
http://www.aclweb.org/anthology/C14-1008
http://bit.ly/2sOwuo5
http://bit.ly/2sOwuo5

pixels in height with 3 channels of RGB information. This creates 3,072 weights per
neuron in the first hidden layer, however, and we’ll probably want more than one
neuron in that hidden layer. In many cases, we’ll want multiple hidden layers in our
multilayer neural network, which will multiply those weights, as well.

What Is the CIFAR-10 Dataset?
The CIFAR-10 dataset is a well-known image classification benchmark dataset com‐
piled by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The dataset has 60,000
color images with 10 different classes comprising 6,000 images per class. The images
are 32 × 32 pixels each. There are 50,000 training images and 10,000 test images.
Figure 4-8 shows the image classes in the dataset.

Figure 4-8. The CIFAR-10 dataset

The classes do not overlap, meaning that an image of a truck will contain only an
image of a truck. The dataset is around 170 MB in size.

A normal image could easily be 300 pixels in width by 300 pixels in height with 3
channels of RGB information. This would create 270,000 connection weights per
hidden neuron. This shows how quickly a fully connected multilayer network creates

Convolutional Neural Networks (CNNs) | 127

http://www.cs.toronto.edu/~kriz/cifar.html

a massive number of connections when modeling image data. The structure of image
data allows us to change the architecture of a neural network in a way that we can
take advantage of this structure. With CNNs, we can arrange the neurons in a three-
dimensional structure for which we have the following:

• Width
• Height
• Depth

These attributes of the input match up to an image structure for which we have:

• Image width in pixels
• Image height in pixels
• RGB channels as the depth

We can consider this structure to be a three-dimensional volume of neurons. A sig‐
nificant aspect to how CNNs evolved from previous feed-forward variants is how
they achieved computational efficiency with new layer types. We’ll cover this arrange‐
ment in more depth momentarily. Let’s now take a look at the high-level general
architecture of CNNs.

CNN Architecture Overview
CNNs transform the input data from the input layer through all connected layers into
a set of class scores given by the output layer. There are many variations of the CNN
architecture, but they are based on the pattern of layers, as demonstrated in
Figure 4-9.

Figure 4-9. High-level general CNN architecture

128 | Chapter 4: Major Architectures of Deep Networks

Figure 4-9 depicts three major groups:

1. Input layer
2. Feature-extraction (learning) layers
3. Classification layers

The input layer accepts three-dimensional input generally in the form spatially of the
size (width × height) of the image and has a depth representing the color channels
(generally three for RGB color channels).

Mini-Batch as the Fourth Dimension

When we batch examples together into a mini-batch for training,
we end up with four dimensions—one more dimension to index
the example within the mini-batch. Thus, in DL4J, image training
data arrays have four dimensions, not just three.

The feature-extraction layers have a general repeating pattern of the sequence:

1. Convolution layer
We express the Rectified Linear Unit (ReLU) activation function as a layer in the
diagram here to match up to other literature.

2. Pooling layer

These layers find a number of features in the images and progressively construct
higher-order features. This corresponds directly to the ongoing theme in deep learn‐
ing by which features are automatically learned as opposed to traditionally hand engi‐
neered.

Finally we have the classification layers in which we have one or more fully connected
layers to take the higher-order features and produce class probabilities or scores.
These layers are fully connected to all of the neurons in the previous layer, as their
name implies. The output of these layers produces typically a two-dimensional out‐
put of the dimensions [b × N], where b is the number of examples in the mini-batch
and N is the number of classes we’re interested in scoring.

Neuron spatial arrangements
Recall how in traditional multilayer neural networks, the layers are fully connected
and every neuron in a layer is connected to every neuron in the next layer. The neu‐
rons in the layers of a CNN are arranged in three dimensions to match the input vol‐
umes. Here, depth means the third dimension of the activation volume, not the
number of layers, as in a multilayer neural network.

Convolutional Neural Networks (CNNs) | 129

Evolution of the connections between layers
Another change is how we connect layers in a convolutional architecture. Neurons in
a layer are connected to only a small region of neurons in the layer before it. CNNs
retain a layer-oriented architecture, as in traditional multilayer networks, but have
different types of layers. Each layer transforms the 3D input volume from the previ‐
ous layer into a 3D output volume of neuron activations with some differentiable
function that might or might not have parameters, as demonstrated in Figure 4-10.

Input Layers
Input layers are where we load and store the raw input data of the image for process‐
ing in the network. This input data specifies the width, height, and number of chan‐
nels. Typically, the number of channels is three, for the RGB values for each pixel.

Figure 4-10. Input layer 3D volume

Convolutional Layers
Convolutional layers are considered the core building blocks of CNN architectures.
As Figure 4-11 illustrates, convolutional layers transform the input data by using a
patch of locally connecting neurons from the previous layer. The layer will compute a
dot product between the region of the neurons in the input layer and the weights to
which they are locally connected in the output layer.

130 | Chapter 4: Major Architectures of Deep Networks

Figure 4-11. Convolution layer with input and output volumes

The resulting output generally has the same spatial dimensions (or smaller spatial
dimensions) but sometimes increases the number of elements in the third dimension
of the output (depth dimension). Let’s take a closer look at a key concept in these lay‐
ers, called a convolution.

Convolution
A convolution is defined as a mathematical operation describing a rule for how to
merge two sets of information. It is important in both physics and mathematics and
defines a bridge between the space/time domain and the frequency domain through
the use of Fourier transforms. It takes input, applies a convolution kernel, and gives
us a feature map as output.

The convolution operation, shown in Figure 4-12, is known as the feature detector of
a CNN. The input to a convolution can be raw data or a feature map output from
another convolution. It is often interpreted as a filter in which the kernel filters input
data for certain kinds of information; for example, an edge kernel lets pass through
only information from the edge of an image.

Figure 4-12. The convolution operation

Convolutional Neural Networks (CNNs) | 131

The figure illustrates how the kernel is slid across the input data to produce the con‐
voluted feature (output) data. At each step, the kernel is multiplied by the input data
values within its bounds, creating a single entry in the output feature map. In practice
the output is large if the feature we’re looking for is detected in the input.

We commonly refer to the sets of weights in a convolutional layer as a filter (or ker‐
nel). This filter is convolved with the input and the result is a feature map (or activa‐
tion map). Convolutional layers perform transformations on the input data volume
that are a function of the activations in the input volume and the parameters (weights
and biases of the neurons). The activation map for each filter is stacked together
along the depth dimension to construct the 3D output volume.

Convolutional layers have parameters for the layer and additional hyperparameters.
Gradient descent is used to train the parameters in this layer such that the class scores
are consistent with the labels in the training set. Following are the major components
of convolutional layers:

• Filters
• Activation maps
• Parameter sharing
• Layer-specific hyperparameters

Let’s take a look of the specifics of each component.

Filters
The parameters for a convolutional layer configure the layer’s set of filters. Filters are
a function that has a width and height smaller than the width and height of the input
volume.

Filter Sizes in Natural Language Processing Applications

We can have a filter size equal to the input volume, but typically
only in one dimension, not both. This would be something to be
aware of for cases in which we’d apply CNNs to use cases in Natural
Language Processing (NLP).

Filters (e.g., convolutions) are applied across the width and height of the input vol‐
ume in a sliding window manner, as demonstrated in Figure 4-12. Filters are also
applied for every depth of the input volume. We compute the output of the filter by
producing the dot product of the filter and the input region.

132 | Chapter 4: Major Architectures of Deep Networks

Filter Count and Activation Maps

The output of applying a filter to the input volume is known as the
activation map (sometimes referred to as a feature map) of that fil‐
ter. In many CNN diagrams, we often see lots of small activation
maps; how these are produced can sometimes be confusing.
The filter count is a hyperparameter value for each convolutional
layer. This hyperparameter also controls how many activation maps
are produced from the convolutional layer as input into the next
layer and is considered the third dimension (number of activation
maps) in the 3D layer output activation volume. The filter count
hyperparameter can be chosen freely yet some values will work bet‐
ter than others.

The architecture of CNNs is set up such that the learned filters produce the strongest
activation to spatially local input patterns. This means that filters are learned that will
activate on patterns (or features) only when the patterns occur in the training data in
their respective field. As we move farther along in layers in a CNN, we encounter fil‐
ters that can recognize nonlinear combinations of features and are increasingly global
in how they can detect patterns. High-performing convolutional architectures (which
we’ll see later in this section) have shown network depth to be an important factor in
CNNs.

Activation maps
Recall from Chapter 1 that an activation is a numerical result if a neuron decided to
let information pass through. This is a function of the inputs to the activation func‐
tion, the weights on the connections (for the inputs, and the type of activation func‐
tion itself). When we say the filter “activates,” we mean that the filter lets information
pass through it from the input volume into the output volume.

We slide each filter across the spatial dimensions (width, height) of the input volume
during the forward pass of information through the CNN. This produces a two-
dimensional output called an activation map for that specific filter.
Figure 4-13 depicts how this activation map relates to our previously introduced con‐
cept of a convoluted feature.

Convolutional Neural Networks (CNNs) | 133

Figure 4-13. Convolutions and activation maps

The activation map on the right in Figure 4-13 is rendered differently to illustrate
how convolutional activation maps are commonly rendered in the literature.

Activation Maps

In some literature, the activation map output is called a feature
map, but for this text, we’ll refer to it as an activation map.

To compute the activation map, we slide the filter across the input volume depth slice.
We calculate the dot product between the entries in the filter and the input volume.
The filter represents the weights that are being multiplied by the moving window
(subset) of input activations. Networks learn filters that activate when they see certain
types of features in the input data in a specific spatial position.

We create the three-dimensional output volume for the convolution layer by stacking
these activation maps along the depth dimension in the output, as shown in
Figure 4-14. The output volume will have entries that we consider the output of a
neuron that look at only a small window of the input volume.

134 | Chapter 4: Major Architectures of Deep Networks

Figure 4-14. Activation volume output of convolutional layer

In some cases, this output will be the result of parameters shared with neurons in the
same activation map. Each neuron generating the output volume is connected to only
a local region of the input volume, as depicted in Figure 4-15.

Figure 4-15. Generating an activation output volume

Convolutional Neural Networks (CNNs) | 135

We control local connectivity of this process with the hyperparameter called the
receptive field, which controls how much of the width and height of the input volume
against which our filter maps.

Controlling Local Connectivity with the Receptive Field
Neurons in a layer are connected to a smaller region of the input volume along the
spatial dimensions (width and height), but connectivity along the depth axis is always
equal to the depth of the input volume. This means that we always have full connec‐
tivity along the depth of the input volume. Let’s look at an example of this based on
the CIFAR-10 input data (RGB image) you saw in “What Is the CIFAR-10 Dataset?”
on page 127.

In this situation, the input volume has the size 32 × 32 × 3 and our receptive field
hyperparameter is set as 5 × 5. Each neuron in the convolutional layer will have
weights to a 5 × 5 × 3 region in the input volume. This gives us 5 * 5 * 3 = 75 weights
for each neuron in our convolution layer.

We note that the depth of the input volume is 3, which is always the depth of the
weight connectivity on the convolution layer. The region the neuron is connecting to
is smaller than the width and height of the image but the depth always stays the same.

Our connectivity in convolutional layers might be local but the neurons themselves
remain unchanged. We’re still computing a dot product of the weights with the input
with a nonlinear function.

The only difference now is the neuron is connected to only a subset of the input and
not every neuron from the previous layer, as in traditional multilayer neural net‐
works. We’d consider this connectivity to be full depth but spatially local.

Filters define a smaller bounded region to generate activation maps from the input
volumes. They are connected to only a subset of the input volume through the
dynamics of local connectivity described earlier. This allows us to still have quality
feature extraction while reducing the number of parameters per layer we need to
train. Convolutional layers reduce the parameter count further by using a technique
called parameter sharing.

Parameter sharing
CNNs use a parameter-sharing scheme to control the total parameter count. This
helps training time because we’ll use fewer resources to learn the training dataset. To
implement parameter sharing in CNNs, we first denote a single two-dimensional slice
of depth as a “depth slice.” We then constrain the neurons in each depth slice to use
the same weights and bias. This gives us significantly fewer parameters (or weights)
for a given convolutional layer.

136 | Chapter 4: Major Architectures of Deep Networks

10 Krizhevsky et al. 2012. “ImageNet Classification with Deep Convolutional Neural Networks.”

We are not able to take advantage of parameter sharing when the input images we’re
training on have a specific centered structure. We see this effect in faces when we
always expect a specific feature to appear in a specific place (for centered faces). In
this case we’d probably not use parameter sharing. Parameter sharing is what gives
CNNs invariance to translation/position, as well.

Learned filters and renders
Figure 4-16 presents an example of the learned 96 filters of size 11 × 11 × 3. With the
parameter-sharing scheme, we see that detecting a horizontal edge is useful in many
places in the image due to the translationally invariant nature of images. This means
that we’re able to learn the horizontal edge in one place and then not worry about
learning it as a feature in all positions in the image.

Figure 4-16. Example filters learned by Krizhevsky et al.10 (96 filters, 11 × 11 × 3)

Breaking this up a bit, let’s think about a 2D image. If we subdivide an image into
four sections, the neural network will then learn position-invariant features of the
image. The reason these are position invariant is because of how the network subdi‐
vides the data into quadrants. It then learns portions of the image at a time and pools
the results. This allows the neural network to learn an overall representation that isn’t
local to any particular set of features. We’ll talk more about generating filter renders
in Chapter 6.

Rotation Invariance in Features for CNNs

The learned features are position invariant by design—but they
aren’t (in general) rotation invariant. You can achieve some level of
rotation invariance with appropriate data augmentation, however.

Convolutional Neural Networks (CNNs) | 137

http://bit.ly/2tmodqn

11 Another hyperparameter commonly seen in CNNs is called dilation. DL4J currently does not support dilation
as of version 0.7.

ReLU activation functions as layers
With CNNs, we often see ReLU layers used. The ReLU layer will apply an element-
wise activation function over the input data thresholding—for example, max(0,x)—at
zero, giving us the same dimension output as the input to the layer.

DL4J, layer types, and activation functions

In DL4J, we identify layers with their neuron activation function
type (but this is not always reflected in the layer class names). DL4J
has activation functions built into the layers themselves. Other
libraries such as Caffe use separate activation layers.

Running this function over the input volume will change the pixel values but will not
change the spatial dimensions of the input data in the output. ReLU layers do not
have parameters nor additional hyperparameters.

Convolutional layer hyperparameters
Following are the hyperparameters11 that dictate the spatial arrangement and size of
the output volume from a convolutional layer are:

• Filter (or kernel) size (field size)
• Output depth
• Stride
• Zero-padding

More on Sizing Convolutional Layers in Chapter 7

In this section, we explain how these hyperparameters work. In
Chapter 7, we lay out the tuning mechanics for CNN layers.

Filter size. Every filter is small spatially with respect to the width and height of the
filter size. An example of this is how the first convolutional layer might have a 5 × 5 ×
3-sized filter. This would mean the filter is 5 pixels wide by 5 pixels tall, with 3 repre‐
senting the color channels, assuming that the input image was in 3-channel RGB
color.

138 | Chapter 4: Major Architectures of Deep Networks

12 Ioffe and Szegedy. 2015. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift.”

13 Cooijmans et al. 2016. “Recurrent Batch Normalization.”

Output depth. We can manually pick the depth of the output volume. The depth
hyperparameter controls the neuron count in the convolutional layer that is connec‐
ted to the same region of the input volume.

Edges and Activation

Different neurons along the depth dimension learn to activate
when stimulated with created input data (e.g., color or edges).

We consider a set of neurons that all look at the same region of input volume as a
depth column.

Stride. Stride configures how far our sliding filter window will move per application
of the filter function. Each time we apply the filter function to the input column, we
create a new depth column in the output volume. Lower settings for stride (for exam‐
ple, 1 specifies only a single unit step) will allocate more depth columns in the output
volume. This also will yield more heavily overlapping receptive fields between the
columns, leading to larger output volumes. The opposite is true when we specify
higher stride values. These higher stride values give us less overlap and smaller output
volumes spatially.

Zero-padding. The last hyperparameter is zero-padding, with which we can control
the spatial size of the output volumes. We’d want to do this for cases in which we want
to maintain the spatial size of the input volume in the output volume.

Batch normalization and layers
To accelerate training in CNNs we can normalize the activations of the previous layer
at each batch.12 This technique applies a transformation that keeps the mean activa‐
tion close to 0.0 while also keeping the activation standard deviation close to 1.0.

Batch normalization in CNNs has shown to speed up training by making normaliza‐
tion part of the network architecture. By applying normalization for each training
mini-batch of input records, we can use much higher learning rates. Batch normaliza‐
tion also reduces the sensitivity of training toward weight initialization and acts as a
regularizer (reducing the need for other types of regularization). Batch normalization
has also been applied to LSTM networks,13 which is another type of deep network
we’ll discuss later in the chapter.

Convolutional Neural Networks (CNNs) | 139

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1603.09025
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md
https://www.quora.com/Why-does-batch-normalization-help
https://www.quora.com/Why-does-batch-normalization-help

Pooling Layers
Pooling layers are commonly inserted between successive convolutional layers. We
want to follow convolutional layers with pooling layers to progressively reduce the
spatial size (width and height) of the data representation. Pooling layers reduce the
data representation progressively over the network and help control overfitting. The
pooling layer operates independently on every depth slice of the input.

Common Downsampling Operations

The most common downsampling operation is the max operation.
The next most common operation is average pooling.

The pooling layer uses the max() operation to resize the input data spatially (width,
height). This operation is referred to as max pooling. With a 2 × 2 filter size, the max()
operation is taking the largest of four numbers in the filter area. This operation does
not affect the depth dimension.

Pooling layers use filters to perform the downsampling process on the input volume.
These layers perform downsampling operations along the spatial dimension of the
input data. This means that if the input image were 32 pixels wide by 32 pixels tall,
the output image would be smaller in width and height (e.g., 16 pixels wide by 16 pix‐
els tall). The most common setup for a pooling layer is to apply 2 × 2 filters with a
stride of 2. This will downsample each depth slice in the input volume by a factor of
two on the spatial dimensions (width and height). This downsampling operation will
result in 75 percent of the activations being discarded.

Pooling layers do not have parameters for the layer but do have additional hyperpara‐
meters. This layer does not involve parameters, because it computes a fixed function
of the input volume. It is not common to use zero-padding for pooling layers.

Fully Connected Layers
We use this layer to compute class scores that we’ll use as output of the network (e.g.,
the output layer at the end of the network). The dimensions of the output volume is
[1 × 1 × N], where N is the number of output classes we’re evaluating. In the case of
the CIFAR dataset we discussed above, N would be 10 for the 10 classes of objects in
the dataset. This layer has a connection between all of its neurons and every neuron
in the previous layer.

Fully connected layers have the normal parameters for the layer and hyperparame‐
ters. Fully connected layers perform transformations on the input data volume that
are a function of the activations in the input volume and the parameters (weights and
biases of the neurons).

140 | Chapter 4: Major Architectures of Deep Networks

14 Milletari, Navab, and Ahmadi. 2016. “V-Net: Fully Convolutional Neural Networks for Volumetric Medical
Image Segmentation.”

15 Maturana and Scherer. 2015. “VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recogni‐
tion.”

16 Henaff, Bruna, and LeCun. 2015. “Deep Convolutional Networks on Graph-Structured Data.”
17 Conneau et al. 2016. “Very Deep Convolutional Networks for Text Classification.”

Multiple Fully Connected Layers

There are some CNN architectures that will use multiple fully con‐
nected layers at the end of the network. AlexNet is an example of
this; it has two fully connected layers followed by a softmax layer at
the end.

Other Applications of CNNs
Beyond normal two-dimensional image data, we also see CNNs applied to three-
dimensional datasets. Here are some examples of these alternative uses:

• MRI data14

• 3D shape data15

• Graph data16

• NLP applications17

The position-invariant nature of CNNs has proven useful in these domains because
we’re not limited to hand-coding our features to appear in certain “spots” in the fea‐
ture vector.

CNNs of Note
Following is a list of some of the more popular architectures of CNNs.

Convolutional Neural Networks (CNNs) | 141

https://arxiv.org/abs/1606.04797
https://arxiv.org/abs/1606.04797
http://bit.ly/2sOgkes
http://bit.ly/2sOgkes
https://arxiv.org/abs/1506.05163
https://arxiv.org/abs/1606.01781
http://stanford.io/2txZ3TV

18 LeCun et al. 1998. “Gradient-based learning applied to document recognition.”
19 Krizhevsky, Sutskever, and Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Net‐

works.”
20 Zeiler and Fergus. 2013. “Visualizing and Understanding Convolutional Networks.”
21 Szegedy et al. 2015. “Going Deeper with Convolutions.”
22 Simonyan and Zisserman. 2015. “Very Deep Convolutional Networks for Large-Scale Image Recognition.”
23 He et al. 2015. “Deep Residual Learning for Image Recognition.”

• LeNet18

— One of the earliest successful architectures of CNNs
— Developed by Yann Lecun
— Originally used to read digits in images

• AlexNet19

— Helped popularize CNNs in computer vision
— Developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton
— Won the ILSVRC 2012

• ZF Net20

— Won the ILSVRC 2013
— Developed by Matthew Zeiler and Rob Fergus
— Introduced the visualization concept of the Deconvolutional Network

• GoogLeNet21

— Won the ILSVRC 2014
— Developed by Christian Szegedy and his team at Google
— Codenamed “Inception,” one variation has 22 layers

• VGGNet22

— Runner-Up in the ILSVRC 2014
— Developed by Karen Simonyan and Andrew Zisserman
— Showed that depth of network was a critical factor in good performance

• ResNet23

— Trained on very deep networks (up to 1,200 layers)
— Won first in the ILSVRC 2015 classification task

Summary
CNNs evolved due to the need for specialized feature extraction from image data. We
saw layers that are good at finding features no matter where they “roam” across col‐
umns. We saw how convolutional layers, pooling layers, and regular fully connected
layers worked together to do image classification. Now, let’s move on to a neural net‐

142 | Chapter 4: Major Architectures of Deep Networks

http://bit.ly/2uSqcAw
http://bit.ly/2tmodqn
http://bit.ly/2tmodqn
https://arxiv.org/pdf/1311.2901v3.pdf
http://bit.ly/2toWlBV
https://arxiv.org/pdf/1409.1556v6.pdf
https://arxiv.org/abs/1512.03385

work architecture focused on modeling the temporal domain: Recurrent Neural
Networks.

Recurrent Neural Networks
Recurrent Neural Networks are in the family of feed-forward neural networks. They
are different from other feed-forward networks in their ability to send information
over time-steps. Here’s an interesting explanation of Recurrent Neural Networks from
leading researcher Juergen Schmidhuber:

[Recurrent Neural Networks] allow for both parallel and sequential computation, and
in principle can compute anything a traditional computer can compute. Unlike tradi‐
tional computers, however, Recurrent Neural Networks are similar to the human brain,
which is a large feedback network of connected neurons that somehow can learn to
translate a lifelong sensory input stream into a sequence of useful motor outputs. The
brain is a remarkable role model as it can solve many problems current machines can‐
not yet solve.

Historically, these networks have been difficult to train, but more recently, advances
in research (optimization, network architectures, parallelism, and graphics processing
units [GPUs]) have made them more approachable for the practitioner.

Recurrent Neural Networks take each vector from a sequence of input vectors and
model them one at a time. This allows the network to retain state while modeling
each input vector across the window of input vectors. Modeling the time dimension
is a hallmark of Recurrent Neural Networks.

Modeling the Time Dimension
Recurrent Neural Networks are considered Turing complete and can simulate arbi‐
trary programs (with weights). If we view neural networks as optimization over func‐
tions, we can consider Recurrent Neural Networks as “optimization over programs.”
Recurrent neural networks are well suited for modeling functions for which the input
and/or output is composed of vectors that involve a time dependency between the
values. Recurrent neural networks model the time aspect of data by creating cycles in
the network (hence, the “recurrent” part of the name).

Lost in time
Many classification tools (support vector machines, logistic regression, and regular
feed-forward networks) have been applied successfully without modeling the time
dimension, assuming independence. Other variations of these tools capture the time
dynamic by modeling a sliding window of the input (e.g., the previous, current, and
next input together as a single input vector).

Recurrent Neural Networks | 143

A drawback of these tools is that assuming independence in the time connection
between model inputs does not allow our model to capture long-range time depen‐
dencies. Sliding window techniques have a limited window width and will fail to cap‐
ture any effects larger than the fixed window size. A great example of this is modeling
how conversations work and having machines understand how to reply in a coherent
fashion as the conversation evolves over time. A well-trained Recurrent Neural Net‐
work could compete in Alan Turing’s famed Turing Test, for instance, which attempts
to fool a human into thinking he is speaking with a real person.

Temporal feedback and loops in connections
Recurrent Neural Networks can have loops in the connections. This allows them to
model temporal behavior gain accuracy in domains such as time-series, language,
audio, and text.

A Note About Connections from Output to Hidden Layers

In practice, we see this connectivity scheme less often than others.
DL4J does not use this scheme either. We felt it important to note
this variant, however, for context in the material. Most often we see
connections between neurons in one time step to the next in each
recurrent layer.

Data in these domains are inherently ordered and context sensitive where later values
depend on previous ones. The wiring for a Recurrent Neural Network allows for feed‐
back in ways that make it possible to capture these temporal effects. We primarily see
Recurrent Neural Network architectures applied in the time-series domains for appli‐
cations.

A Recurrent Neural Network includes a feedback loop that it uses to learn from
sequences, including sequences of varying lengths. Recurrent Neural Networks con‐
tain an extra parameter matrix for the connections between time-steps, which are
used/trained to capture the temporal relationships in the data.

Recurrent Neural Networks are trained to generate sequences, in which the output at
each time-step is based on both the current input and the input at all previous time
steps. Normal Recurrent Neural Networks compute a gradient with an algorithm
called backpropagation through time (BPTT). We go into detail about BPTT later in
the chapter.

Sequences and time-series data
We find sequential data in many problem domains in industry for which our model
needs to output a sequence of vectors:

144 | Chapter 4: Major Architectures of Deep Networks

24 Graves and Jaitly. 2014. “Towards End-to-End Speech Recognition with Recurrent Neural Network.”
25 Nayebi and Vitelli. 2015. “GRUV: Algorithmic Music Generation using Recurrent Neural Networks.”
26 Sutskever, Vinyals, and Le. 2014. “Sequence to Sequence Learning with Neural Networks.”

• Image captioning
• Speech synthesis24

• Music generation25

• Playing video games
• Language modeling
• Character-level text generation models

In other domains, we need a sequence of input vectors:

• Time-series prediction
• Video analysis
• Music information retrieval

And then we have domains that require both a series of input and output vectors:

• Natural language translation26

• Engaging in dialogue
• Robotic control

Recurrent Neural Networks contrast with other deep networks in what type of input
they can model (nonfixed input):

• Nonfixed computation steps
• Nonfixed output size
• It can operate over sequences of vectors, such as frames of video

An important facet of Recurrent Neural Networks is how we can work with input and
output in unique ways.

Understanding model input and output
Traditional machine learning operates on the concept of a single fixed-sized input
vector. In traditional modeling activities, we typically would see an input-to-output
relationship of fixed input size to fixed output size.

This is commonly the pattern for modeling in building classifiers for image classifica‐
tion or classifying columnar data.

Recurrent Neural Networks change this input dynamic to include multiple input vec‐
tors, one for each time-step, and each vector can have many columns. The following

Recurrent Neural Networks | 145

http://www.jmlr.org/proceedings/papers/v32/graves14.pdf
https://cs224d.stanford.edu/reports/NayebiAran.pdf
https://arxiv.org/abs/1409.3215
http://cs.stanford.edu/people/karpathy/sfmltalk.pdf
http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

list gives examples of how Recurrent Neural Networks operate on sequences of input
and output vectors:

• One-to-many: sequence output. For example, image captioning takes an image
and outputs a sequence of words.

• Many-to-one: sequence input. For example, sentiment analysis where a given
sentence is input.

• Many-to-many: For example, video classification: label each frame.

Now that we’ve looked at variations of input and output data, let’s take a look at how
these input data are represented.

3D Volumetric Input
Input into Recurrent Neural Networks involves more dimensions than standard
machine learning modeling input. This is similar conceptually to CNNs. We have
three dimensions for the input:

1. Mini-batch Size
2. Number of columns in our vector per time-step
3. Number of time-steps

Figure 4-17. Normal input vectors compared to recurrent neural networks input

146 | Chapter 4: Major Architectures of Deep Networks

Mini-batch size is the number of input records (collections of time-series points for a
single source entity) we want to model per batch. The number of columns matches
up to the traditional feature column count found in a normal input vector. The num‐
ber of time-steps is how we represent the change in the input vector over time. This is
the time-series aspect to the input data. In the terminology from the previous section,
we’d consider any time-step count above 1 to be “many-to-” in terms of input and
output architecture.

Uneven time-series and masking
We previously described how with Recurrent Neural Network input we have the con‐
cept of time-steps in addition to features in our input vector. Figure 4-18 provides a
visual representation.

Figure 4-18. The time-step aspect of Recurrent Neural Network input

Every column value likely will not occur at every time-step, especially for the case in
which we’re mixing descriptor data (e.g., columns from a static database table) with
time-series data (e.g., measurements of an ICU patient’s heartrate every minute). For
cases in which we have “jagged” time-step values, we need to use masking to let DL4J
know where our real data is located in the vector. We do this by providing an extra
matrix for the mask indicating the time-steps that have input data for at least one col‐
umn, as demonstrated in Figure 4-19.

Recurrent Neural Networks | 147

Figure 4-19. Masking specific time-steps

Chapter 3 provides real code examples that show how we set up these masks.

Why Not Markov Models?
When dealing with the time dimension in our models, we naturally could consider
Markov models as an option. Markov models are another class of machine learning
models that have been widely used for modeling sequences. The limiting factor with
Markov models is that as their context window grows in size, eventually these models
become computationally impractical for modeling long-range dependencies.

Recurrent Neural Networks (connectionist models) are better than Markov models
(and other time-window limited models) because they can capture the long-range
time dependencies in the input data. Recurrent Neural Networks accomplish this
because their hidden state captures information from an arbitrarily long context win‐
dow and does not have the limitation of the other techniques. Moreover, the number
of states they can model is represented by the hidden layer of nodes, and these states
grow exponentially with the number of nodes in the layer. This makes Recurrent
Neural Networks exceptional at capturing a lot of time-dimension relevant informa‐
tion across many input vectors.

148 | Chapter 4: Major Architectures of Deep Networks

https://en.wikipedia.org/wiki/Hidden_Markov_model

Recurrent Neural Networks, Hidden Layers, and Number of States
If the input was only binary values (0,1), the network could represent 2N states, where
N is the number of nodes in the hidden layer. If the output were real-valued 64-bit

numbers, a single hidden layer of these nodes can represent 264N
 different states.

Training of these networks grows only quadratically with hidden node count, whereas
the expressive power of the network grows exponentially with the number hidden
nodes.

General Recurrent Neural Network Architecture
Recurrent Neural Networks are a superset of feed-forward neural networks but they
add the concept of recurrent connections. These connections (or recurrent edges)
span adjacent time-steps (e.g., a previous time-step), giving the model the concept of
time. The conventional connections do not contain cycles in recurrent neural net‐
works. However, recurrent connections can form cycles including connections back
to the original neurons themselves at future time-steps.

Recurrent Neural Networks architecture and time-steps
At each time-step of sending input through a recurrent network, nodes receiving
input along recurrent edges receive input activations from the current input vector
and from the hidden nodes in the network’s previous state.

The output is computed from the hidden state at the given time-step. The previous
input vector at the previous time step can influence the current output at the current
time-step through the recurrent connections.

We can chain layers of these specialized recurrent neurons together to build better
models. We connect the output of the previous layer to the input of the next layer
similar to how we’d connect feed-forward multilayer neural networks.

Vanishing Gradient Problem
Recurrent Neural Networks are known to have issues with the “vanishing gradient
problem.” This issue occurs when the gradients become too large or too small and
make it difficult to model long-range dependencies (10 time-steps or more) in the
structure of the input dataset. The most effective way to get around this issue is to use
the LSTM variant of Recurrent Neural Networks which DL4J supports.

Recurrent Neural Networks | 149

27 Hochreiter and Schmidhuber. 1997. “Long short-term memory.”
28 Graves. 2012. “Supervised Sequence Labelling with Recurrent Neural Networks.”
29 Gers, Schmidhuber, and Cummins. 1999. “Learning to Forget: Continual Prediction with LSTM.”
30 Graves. 2012. “Supervised Sequence Labelling with Recurrent Neural Networks.”

LSTM Networks
LSTM networks are the most commonly used variation of Recurrent Neural Net‐
works. LSTM networks were introduced in 1997 by Hochreiter and Schmidhuber.27

The critical component of the LSTM28 is the memory cell and the gates (including the
forget gate,29 but also the input gate). The contents of the memory cell are modulated
by the input gates and forget gates.30 Assuming that both of these gates are closed, the
contents of the memory cell will remain unmodified between one time-step and the
next. The gating structure allows information to be retained across many time-steps,
and consequently also allows gradients to flow across many time-steps. This allows
the LSTM model to overcome the vanishing gradient problem that occurs with most
Recurrent Neural Network models.

Properties of LSTM networks
LSTMs are known for the following:

• Better update equations
• Better backpropagation

Here are some example use cases of LSTMs:

• Generating sentences (e.g., character-level language models)
• Classifying time-series
• Speech recognition
• Handwriting recognition
• Polyphonic music modeling

LSTM and Bidirectional Recurrent Neural Networks (BRNN) architectures have
shown industry-leading benchmarks in recent years on tasks such as the following:

• Image captioning
• Language translation
• Handwriting recognition

LSTM networks consist of many connected LSTM cells and perform well in how effi‐
cient they are during learning.

150 | Chapter 4: Major Architectures of Deep Networks

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.cs.toronto.edu/~graves/preprint.pdf
http://bit.ly/2sUDaML
http://www.cs.toronto.edu/~graves/phd.pdf

A Note About Training Complexity in LSTMs

The computational complexity of the forward and backward pass
operations scale linearly with the number of time-steps in the input
sequence.

In the following sections, we provide an overview of the architecture and components
of the LSTM.

LSTM network architecture
To better understand the complex arrangement of connections between units and lay‐
ers in LSTM networks, let’s build on some earlier concepts.

Earlier in this book, we developed the concept of the feed-forward multilayer neural
network, as depicted in Figure 4-20.

Figure 4-20. Feed-forward multilayer neural network architecture

If we were to show each layer from the network shown in Figure 4-20 as a single node
in a flattened representation, it would look like Figure 4-21.

Recurrent Neural Networks | 151

Figure 4-21. Visually feed-forward multilayer network

With Recurrent Neural Networks, we introduce the idea of a type of connection that
connects the output of a hidden-layer neuron as an input to the same hidden-layer
neuron. With this recurrent connection, we can take input from the previous time-
step into the neuron as part of the incoming information.

Figure 4-22 demonstrates that by flattening the network shown in Figure 4-21, we
can more easily visualize the recurrent connections in an LSTM.

Figure 4-22. Showing recurrent connections on hidden-layer nodes

Figure 4-23 illustrates how we can further visually understand this by “unrolling” the
network diagram in Figure 4-22 to show how the information “flows” through the
network in a feed-forward manner and “across time.”

152 | Chapter 4: Major Architectures of Deep Networks

Figure 4-23. Recurrent Neural Network unrolled along the time axis

LSTM networks pass more information across the recurrent connection than the tra‐
ditional Recurrent Neural Networks, as we’ll see in the next section.

LSTM units
The units in the layers of Recurrent Neural Networks are a variation on the classic
artificial neuron.

Each LSTM unit has two types of connections:

• Connections from the previous time-step (outputs of those units)
• Connections from the previous layer

The memory cell in an LSTM network is the central concept that allows the network
to maintain state over time. The main body of the LSTM unit is referred to as the
LSTM block, as shown in Figure 4-24.

Recurrent Neural Networks | 153

Figure 4-24. LSTM block diagram

Here are the components in an LSTM unit:

• Three gates
— input gate (input modulation gate)
— forget gate
— output gate

• Block input
• Memory cell (the constant error carousel)
• Output activation function
• Peephole connections

There are three gate units, which learn to protect the linear unit from misleading
signals:

• The input gate protects the unit from irrelevant input events.
• The forget gate helps the unit forget previous memory contents.
• The output gate exposes the contents of the memory cell (or not) at the output of

the LSTM unit.

The output of the LSTM block is recurrent connected back to the block input and all
of the gates for the LSTM block. The input, forget, and output gates in an LSTM unit
have sigmoid activation functions for [0, 1] restriction. The LSTM block input and
output activation function (usually) is a tanh activation function.

154 | Chapter 4: Major Architectures of Deep Networks

31 Greff et al. 2015. “LSTM: A Search Space Odyssey.”

A Note About the Forget Gate

An activation output of 1.0 means “remember everything” and
activation output of 0.0 means “forget everything.” From a different
perspective a better name for the forget gate might be the “remem‐
ber gate”!
With this in mind we usually initialize the forget gate bias to a large
value to enable learning of long-term dependencies (where large
value == 1.0 by default in DL4J).

Using the notation from Greff et al.,31 Figure 4-25 presents the vector formulas for a
LSTM layer forward pass.

Figure 4-25. Vector formulas for LSTM layer forward pass

Table 4-1 lists the individual variables in the equations in Figure 4-25.

Table 4-1. Description of variables for LSTM vector formulas

Variable name Description
xt Input vector at time t
W Rectangular input weight matrices
R Square recurrent weight matrices
p Peephole weight vectors
b Bias vectors

The self-recurrent connection has a fixed weight of 1.0 (except when modulated) to
overcome issues with vanishing gradients. This core unit enables LSTM units to dis‐

Recurrent Neural Networks | 155

http://arxiv.org/pdf/1503.04069v1.pdf

32 Cho et al. 2014. “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation.”

cover longer-range events in sequences. These events can span up to 1,000 discrete
time-steps compared to older recurrent architectures, which could model events
across around only 10 time-steps.

For More Variants of LSTMs...

Check out the paper “LSTM: A Search Space Odyssey.”

Gated Recurrent Units (GRU)
Another recurrent unit similar to the LSTM is the Gated Recurrent Unit (GRU).32 The
GRU has a reset gate and an update gate, similar to the forget/input gates in the LSTM
unit. The major difference is that the GRU fully exposes its memory content using
only leaky integration (but with an adaptive time constant controlled by the update
gate). The GRU was inspired by the LSTM unit but is considered simpler to compute
and implement.

LSTM layers
A basic layer accepts an input vector x (nonfixed) and gives output y. The output y is
influenced by the input x and the history of all inputs. The layer is influenced by the
history of inputs through the recurrent connections. The RNN has some internal
state that is updated every time we input a vector to the layer. The state consists of a
single hidden vector.

Training
LSTM networks use supervised learning to update the weights in the network. They
train on one input vector at a time in a sequence of vectors. Vectors are real-valued
and become sequences of activations of the input nodes. Every noninput unit com‐
putes its current activation at any given time-step. This activation value is computed
as the nonlinear function of the weighted sum of the activations of all units from
which it receives connections.

For each input vector in the sequence of input, the error is equal to the sum of the
deviations of all target signals from corresponding activations computed by the net‐
work. Let’s now take a look at the BPTT variant of backpropagation used with Recur‐
rent Neural Networks, including LSTMs.

156 | Chapter 4: Major Architectures of Deep Networks

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
http://arxiv.org/pdf/1503.04069v1.pdf

BPTT and truncated BPTT
Recurrent Neural Network training can be computationally expensive. The tradi‐
tional option is to use BPTT.

BPTT is fundamentally the same as standard backpropagation: we
apply the chain rule to work out the derivatives (gradients) based
on the connection structure of the network. It’s through time in the
sense that some of those gradients/error signals will also flow back‐
ward from future time-steps to current time-steps, not just from
the layer above (as occurs in standard backpropagation).

When our recurrent network is dealing with long sequences with many time-steps,
we recommend alternatively using truncated BPTT. Truncated BPTT reduces the
computational complexity of each parameter update in a Recurrent Neural Network.

Recurrent Neural Networks and Backpropagation
Computing the gradient for a Recurrent Neural Network on a sequence of length
1,000 has the same computational cost as doing a forward- and backward-pass on a
multilayer perceptron network that has 1,000 layers.

Performing more frequent parameter updates speeds up recurrent neural network
training. We recommend truncated BPTT when your input sequences are more than
a few hundred time-steps.

To better understand the concepts involved with truncated BPTT, let’s consider what
happens when we train a network with time-series input of length 12 (time-steps). In
this scenario, we need to do a forward pass of 12 steps and then calculate the error of
the network. Then, do a backward pass of the 12 time-steps, as demonstrated in
Figure 4-26.

Figure 4-26. Standard BPTT

Recurrent Neural Networks | 157

In the figure, the 12 time-steps are not that difficult for the training process. As we
move into models that train on time-series data of a few hundred steps or more, we
find training to be more difficult. If the number of steps in the time-series input were
1,000 steps, the standard backpropagation training would require 1,000 time-steps for
each forward and backward pass (for each individual parameter update). This quickly
becomes computationally expensive and is why we look at alternative training meth‐
ods such as BPTT and truncated BPTT.

Truncated BPTT separates the forward and backward passes into smaller operations.
The truncated BPTT shown in Figure 4-27 takes a smaller forward pass, makes an
equally small backward pass, and then updates the intended parameter. This smaller
pass size is a hyperparameter configured by the user. In the figure we can see that the
truncated BPTT pass size is four time-steps.

Figure 4-27. Truncated BPTT

Truncated BPTT is considered the current most practical method for training Recur‐
rent Neural Networks. With truncated BPTT, we can capture long-term dependencies
with less computational burden than regular BPTT.

The overall complexity for standard BPTT and truncated BPTT is similar and
requires the same number of time-steps during training. However, we get more
parameter updates for about the same amount of computational effort (although
there is some overhead for each parameter update). As with all approximations, we
see a slight downside when using truncated BPTT; the length of the dependencies
learned in truncated BPTT can end up being shorter than the full BPTT algorithm’s
results. In practice, this speed trade-off is generally worth it as long as truncated
BPTT lengths are set correctly.

158 | Chapter 4: Major Architectures of Deep Networks

33 Srivastava, Mansimov, and Salakhutdinov. 2015. “Unsupervised Learning of Video Representations using
LSTMs.”

34 Venugopalan et al. 2014. “Translating Videos to Natural Language Using Deep Recurrent Neural Networks.”
35 Wu et al. 2016. “Image Captioning and Visual Question Answering Based on Attributes and External Knowl‐

edge.”
36 Mnih et al. 2014. “Recurrent Models of Visual Attention.”
37 Karpathy and Fei-Fei. 2014. “Deep Visual-Semantic Alignments for Generating Image Descriptions.”

Domain-Specific Applications and Blended Networks
As mentioned earlier, Recurrent Neural Networks perform many domain-specific
applications such as speech transcription to text, machine translation, and generation
of handwritten text. Recurrent Neural Networks have proven to be adept in the world
of computer vision and can do the following:

• Frame-level video analysis33

• Image captioning
• Video captioning34

• Visual question answering35

Another emerging area of research in computer vision with Recurrent Neural Net‐
works is a network that can extract information from an image by processing only a
small region at a time and is called Recurrent Models of Visual Attention.36 These
models are effective at working with images that are cluttered with multiple objects
and are more difficult for CNNs to classify. These networks blend together CNNs for
raw perception and Recurrent Neural Networks for the time-domain modeling.

Another hybrid CNN + RNN network of note is the work by Andrej Karpathy and Li
Fei-Fei, in which the network generates natural-language descriptions of images and
their regions.37 The model is able to generate captions for images by using datasets of
images and their corresponding sentence, as depicted in Figure 4-28.

Recurrent Neural Networks | 159

https://arxiv.org/abs/1502.04681
https://arxiv.org/abs/1502.04681
https://arxiv.org/abs/1412.4729
https://arxiv.org/abs/1603.02814
https://arxiv.org/abs/1603.02814
https://arxiv.org/abs/1406.6247
https://arxiv.org/abs/1412.2306v2

38 The image is from Karpathy and Fei-Fei. 2014. “Deep Visual-Semantic Alignments for Generating Image
Descriptions.”

Figure 4-28. Labeling images with a blended CNN/Recurrent Neural Network38

This type of network is a combination of a CNN and a BRNN.

Recursive Neural Networks
Recursive Neural Networks, like Recurrent Neural Networks, can deal with variable
length input. The primary difference is that Recurrent Neural Networks have the abil‐
ity to model the hierarchial structures in the training dataset. Images commonly have
a scene composed of many objects. Deconstructing scenes is often a problem domain
of interest yet is nontrivial. The recursive nature of this deconstruction challenges us
to not only identify the objects in the scene, but also how the objects relate to form
the scene.

Network Architecture
A Recursive Neural Network architecture is composed of a shared-weight matrix and
a binary tree structure that allows the recursive network to learn varying sequences of

160 | Chapter 4: Major Architectures of Deep Networks

https://arxiv.org/abs/1412.2306v2
https://arxiv.org/abs/1412.2306v2

words or parts of an image. It is useful as a sentence and scene parser. Recursive Neu‐
ral Networks use a variation of backpropagation called backpropagation through struc‐
ture (BPTS). The feed-forward pass happens bottom-up, and backpropagation is top-
down. Think of the objective as the top of the tree, whereas the inputs are the bottom.

Varieties of Recursive Neural Networks
Recursive Neural Networks come in a few varieties. One is the recursive autoencoder.
Just like its feed-forward cousin, recursive autoencoders learn how to reconstruct the
input. In the case of NLP, it learns how to reconstruct contexts. A semisupervised
recursive autoencoder learns the likelihood of certain labels in each context.

Another variation of this is a supervised neural network, called a Recursive Neural
Tensor Network, which computes a supervised objective at each node of the tree. The
tensor part of this means that it calculates the gradient a little differently, factoring in
more information at each node by taking advantage of another dimension of infor‐
mation using a tensor (a matrix of three or more dimensions).

Applications of Recursive Neural Networks
Both Recursive and Recurrent Neural Networks share many of the same use cases.
Recurrent Neural Networks are traditionally used in NLP because of their ties to
binary trees, contexts, and natural-language-based parsers. For example, constituency
parsers are able to break up a sentence into a binary tree, segmenting it by the linguis‐
tic properties of the sentence. In the case of Recursive Neural Networks, it is a con‐
straint that we use a parser that builds the tree structure (typically constituency
parsing).

Recursive Neural Networks can recover both granular structure and higher-level hier‐
archical structure in datasets such as images or sentences. Applications for recursive
neural networks include the following:

• Image scene decomposition
• NLP
• Audio-to-text transcription

Two specific network configurations we see in practice are recursive autoencoders
and recursive neural tensors. We use recursive autoencoders to break up sentences
into segments for NLP. We use recursive neural tensors to break up an image into its
composing objects and semantically label the objects in the scene.

Recurrent Neural Networks tend to be faster to train, thus we typically use them in
more temporal applications, but they have been shown to work well in NLP-based
domains such as sentiment analysis, as well.

Recursive Neural Networks | 161

Summary and Discussion
In this chapter, we reviewed the more recent major architectures in deep learning. In
summary, to group and summarize these architectures, we note the following:

• To generate data (e.g., images, audio, or text), we’d use:
— GANs
— VAEs
— Recurrent Neural Networks

• To model images, we’d likely use:
— CNNs
— DBNs

• To model sequence data, we’d likely use:
— Recurrent Neural Networks/LSTMs

In the chapters that follow, we present real-world code examples of most of these net‐
works and cover considerations of training and tuning for different kinds of neural
networks. In Chapter 5 we see how these concepts come together in API examples in
which we see the DL4J deep learning library in action. Before we move on to some
more examples, let’s discuss a few topics that come up frequently in the context of
deep learning.

Will Deep Learning Make Other Algorithms Obsolete?
The debate around deep learning making other modeling algorithms obsolete comes
up many times on internet message boards. The answer today is “no” because for
many simpler machine learning applications, we see far simpler algorithms work just
fine for the required model accuracy. Models like logistic regression are also easier to
work with, so we need to gauge the level of effort against the required accuracy in the
domain when making this decision. However, deep learning algorithms tend to per‐
form well when we understand little about the applied domain and struggle to do
advanced handcrafted feature construction.

Different Problems Have Different Best Methods
Machine learning on the whole is about applying the correct approach in the appro‐
priate situation. We’re not to the point yet where a single technique dominates the
landscape so we need to evaluate the problem space and data each time we’re looking
for the best model to apply. This is based on the “no free lunch theorem.”

162 | Chapter 4: Major Architectures of Deep Networks

No Free Lunch Theorem

The “no free lunch theorem” states that there is no one model that
works for every problem. The assumptions for a great model for
one problem might not hold for another problem. It is common in
machine learning to try multiple models and find the one that
works best for a particular problem.

Every machine learning method has some bias and variance. The closer our model is
to the true underlying model the better we can do on average with our learning
algorithm.

Another way to understand this is to consider it from the viewpoint of a practical
example. If the data is clearly linear, as seen in visualizations, would you try and fit
the data with a nonlinear model (e.g., a multilayer perceptron)? No, you’d probably
approach the problem with something simpler, such as logistic regression. In Kaggle
competitions, the method that performs best varies from competition to competition.
However, random forests and ensemble methods tend to be the winners when deep
learning does not win.

The input dataset size can be another factor in how appropriate deep learning can be
for a given problem. Empirical results over the past few years have shown that deep
learning provides the best predictive power when the dataset is large enough. This
means deep learning results become better as dataset size increases. Neural networks
have larger representational capacity than linear models and are better able to exploit
the data. A nice rule of thumb is that a practitioner should be able to train a neural
network with at least 5,000 training input labeled examples.

When Do I Need Deep Learning?
To close out this chapter, we want to leave you with a simple set of rules to help
answer the question: does this project need to use deep learning?

When to use deep learning
You should use deep learning when...

• Simpler models (logistic regression) don’t achieve the accuracy level your use
case needs

• You have complex pattern matching in images, NLP, or audio to deal with
• You have high dimensionality data
• You have the dimension of time in your vectors (sequences)

Summary and Discussion | 163

When to stick with traditional machine learning
You should use a traditional machine learning model when...

• You have high-quality, low-dimensional data; for example, columnar data from a
database export

• You’re not trying to find complex patterns in image data

You’ll achieve poor results from both methods when the data is incomplete and/or of
poor quality.

164 | Chapter 4: Major Architectures of Deep Networks

CHAPTER 5

Building Deep Networks

Now is no time
to think of what you do not have.
Think of what you can do
with that there is

—Ernest Hemingway, The Old Man and the Sea

In this chapter, we take a look at the suite of tools that are available in the DL4J and
some real-world examples that you can use in your own projects. We begin by
reviewing how we map specific deep networks to the appropriate problem. We end
the chapter with a deep dive into many of the core examples that come with the
library.

For information about DL4J installation and support, refer to
Appendix G.

Matching Deep Networks to the Right Problem
A theme we introduced in Chapter 4 was how deep learning is about designing the
network architecture to match the problem as opposed to hand-engineering features
in the input data. In this chapter, we see examples of deep networks matched to spe‐
cific types of problems. For the purposes of this chapter, we’ll call out applications
specifically for the following:

• Modeling columnar data
• Modeling image data

165

• Modeling sequence/time-series data
• Natural Language Processing applications

The applications in this chapter illustrate the concepts of deep networks we’ve been
building since Chapter 1. Although we don’t have an example of every architecture
referenced in Chapter 4, we have compiled a set of examples to illuminate core con‐
cepts in deep learning such that you could easily extend most any example toward a
new purpose. Let’s begin by reviewing the data types in the context of the correct net‐
work architecture pairings, as introduced previously in the book.

Finding the Examples Online

We’ve created a fork of the examples in the GitHub repository.
Even though a project such as DL4J will evolve over time, we want
to provide the readers with a snapshot of the code that will always
work with this version of the book.

Columnar Data and Multilayer Perceptrons
Common columnar data has a static structure to it, and is best modeled in DL4J by a
classic multilayer perceptron neural network. These problems may benefit from
minor feature engineering, but we can often let the network find the best weights on
the dataset on its own. Hyperparameter tuning is one of the main challenges when
modeling with multilayer perceptrons. We’ll cover a variety of techniques to help
guide your hyperparameter selection in Chapter 6.

Images and Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have proven to be adept at finding structure
in raw image data. Historically, the image modeling field has been dominated by
excessive amounts of preprocessing techniques to get the input images aligned and
transformed into a form that modeling techniques could better handle. Slight varia‐
tions in rotation or scale made image processing a hard task. CNNs have made it pos‐
sible to let the network handle the raw image data and let the practitioner focus on
adjusting the network architecture. We’ll see an example of classifying handwritten
digits by using CNNs later in the chapter.

166 | Chapter 5: Building Deep Networks

http://bit.ly/2uy8ClX

1 Kalchbrenner et al. 2016. “Neural Machine Translation in Linear Time.”
2 Kim. 2014. “Convolutional Neural Networks for Sentence Classification.”
3 Nogueira dos Santos and Gatti. 2014. “Deep Convolutional Neural Networks for Sentiment Analysis of Short

Texts.”

Convolutional Neural Networks and Raw Image Data

Columnar data, through painstaking effort, shows up with all of
the features aligned to a specific column. Historically, machine
learning modeling has been relatively brittle when features are not
in the correct “spots” the model expects them to be in.
Objects in images rarely appear in the spot we want or expect them
to be and provide nontrivial challenges in the feature extraction
phase for classic machine learning techniques. A major strength of
CNNs is their ability to take raw image data in which the objects in
the scene are in arbitrary poses and adeptly recognize the features.

Evolution of CNN Applications
CNN applications continue to evolve at breakneck speed. While we recommend the
practitioner start with CNNs for image modeling problems, applications of these net‐
works have begun to appear for text modeling problems, as well. Here are some of
these applications:

• Machine translation1

• Sentence classification2

• Sentiment analysis3

In the same way that we slide windows over regions of an image, CNNs can slide win‐
dows over sequences of characters. This feature location-invariance aspect makes
CNNs a powerful tool in the deep network toolbox. In this chapter, we focus on an
example of applying a CNN to image data. To be clear, though, you should take this
not as a limitation of the network architecture, but a fundamental starting point to be
investigated further.

Time-series Sequences and Recurrent Neural Networks
When working with sequential data such as web log data, Recurrent Neural Networks
are a good fit. When we have sequential data with a timestamp for every sample, we
consider this data to be time-series data.

Time-series and sequential data represent a waveform when graphed on a two-
dimensional plot. Often, we are looking for areas of the graph that make particular

Matching Deep Networks to the Right Problem | 167

https://arxiv.org/abs/1610.10099
http://arxiv.org/abs/1408.5882
http://www.aclweb.org/anthology/C14-1008
http://www.aclweb.org/anthology/C14-1008

4 You can find an example in Shieh and Keogh. 2008. “iSAX: Indexing and Mining Terabyte Sized Time Series.”

patterns over time. This is in contrast to how image data does not have a time domain
but is arranged in a two-dimensional grid to form a picture. However, in both time-
series and images, we are looking for specific objects that might occur in the data.
These objects might be scaled in size and usually do not appear in the same place
every time in the data, providing us with a challenge.

Recurrent Neural Networks have evolved from multilayer perceptrons to better
model the time domain for time-series data. As we saw in Chapter 4, Recurrent Neu‐
ral Networks are better able to model the time domain by allowing a sequence of
input vectors to be treated as a single logical input for a Recurrent Neural Network
model.

Sensors, Logs, and Other Measurements

When dealing with any data that has a source that takes measure‐
ments over time, use a Recurrent Neural Network to better model
the change of the data within a span of time.

You can use Recurrent Neural Networks for classification, regression, and generating
novel output. We’ll see examples of both classification and novel generation later in
the chapter.

Playing the Devil’s Advocate for Model Choice
Sometimes, we hear the argument that a practitioner has found great success with
other techniques such as random forests. However, in the world of sequential data,
this is generally not a good path except in specific situations.

Some practitioners argue that they can’t apply random forests directly to time-series/
sequential data in the same way that they can with Recurrent Neural Networks
because the time-series would need to be converted into some kind of flat vector rep‐
resentation4 (e.g., extract features) before any modeling was performed.

Typically we’ve found the debate in which a deep learning model is compared against
a powerful model + hand-engineered features to be a trap; we say this because the
practitioner who’s committed to engineered features can keep trying to invent better
features until he finds all of the tricks in a particular dataset (given a long enough
timeline).

The real advantages of deep learning for time-series (and really any problem) basi‐
cally amount to the following:

168 | Chapter 5: Building Deep Networks

http://www.cs.ucr.edu/~eamonn/iSAX.pdf

If we go with the tailored-features/algorithm approach, we find ourselves in a situa‐
tion where we need to write new code for a dozen completely different algorithms/
models and then apply all of them to each new problem/dataset. If we were in the
pure software engineering world, we’d consider this situation to be technical debt. His‐
torically, we’ve allowed this to be status quo for machine learning.

If we’re starting from a place where we don’t already know the appropriate features,
with current state of the art in deep learning, it’s easier to semiautomate hyperpara‐
meter tuning of neural networks than it is to semiautomate feature engineering. A
well-engineered deep learning system (including hyperparameter tuning) can be effi‐
ciently reused and expected to perform pretty well across a variety of problems.

When we’re dealing with variable-length time-series with unknown but probably long
dependencies, this is the case for which Recurrent Neural Networks are especially
warranted. If the input is a fixed-length sequence (i.e., all time-series are the same
lengths), you might as well use an multilayer perceptron or CNN.

However, if you want to allow arbitrarily long sequence inputs that can (hypotheti‐
cally) take the full input data history into account, a Recurrent Neural Network (or a
carefully crafted Markov model with a large hidden-state space) is basically your only
option.

Using Hybrid Networks
When we see data that is the combination of both time and image (e.g., video), we use
a special hybrid network of Long Short-Term Memory (LSTM) and convolutional
layers. We recommend this hybrid because LSTM networks are able to capture the
temporal aspect of changing in the images over time in video, and convolutional lay‐
ers are able to capture the structure in the frame data themselves.

The DL4J Suite of Tools
DL4J is a group of deep learning tools that is packaged together as a suite to perform
functions such as the following:

• Integration
• Vectorization
• Modeling
• Evaluation

These tools are designed to work on multiple platforms and execute in serial or in
parallel. DL4J was designed from the beginning with modern execution platforms in
mind and does not suffer from parallelization issues that other machine learning
libraries have experienced in the past decade. The DL4J community also has paid
attention to needs beyond basic modeling to provide better integration with plat‐

The DL4J Suite of Tools | 169

forms such has Spark and Hadoop Distributed File System (HDFS). The DL4J project
also has robust vectorization capabilities with the introduction of DataVec as a first-
class citizen in the suite.

DL4J is focused on enterprise-grade functionality and is targeted at practitioners who
need a Java Virtual Machine (JVM) option in deep learning but also want the speed of
C++ and the power of Spark for parallel computation. Let’s take a quick look at each
of these facets of the DL4J suite before we dive into how to set up the tools on your
laptop.

Vectorization and DataVec
Because neural networks can train only on vectors, vectorizing data is a necessary
preprocessing step. The DL4J suite includes a library called DataVec that allows us to
quickly create vectorized data appropriate for modeling with the core DL4J library
tools. DataVec, as we’ll see later in the book, works in local mode and also in parallel
execution mode on Apache Spark.

Runtimes and ND4J
ND4J is a library for scientific computing on the JVM. Its syntax emulates that of
Numpy and MATLAB. It exposes n-dimensional arrays for Java that can be used in
linear algebra and large-scale matrix manipulation. ND4J presents a clean numerical
façade that lets users swap backends from native to graphics processing units (GPU)
without having to change the implementation code. We can write an implementation
of the linear algebra once and then specify a backend for ND4J in Maven. The most
common backends for ND4J include x86 and jcublas. Development in the DL4J
project will eventually include OpenCL and Power8. ND4J includes both Java and
Scala APIs, providing programmers of JVM-based languages with a familiar environ‐
ment. The ND4J APIs are intended to offer the functionality and, where possible, the
concision and ease of Numpy.

The DL4J Java API allows programmers to configure their own extensible neural net‐
works within a composable framework, adjusting hyperparameters as needed. It pro‐
vides a space for building, tuning, evaluating, and loading data into neural networks.
ND4J’s APIs provide essential linear algebra, calculus, and signal processing functions
in a Numpy-like environment (which developers can deploy on distributed runtimes
over multiple CPUs or GPUs). Together, the Java API and the ND4J backend provide
the programmatic accessibility and top-end speed the practitioner needs for today’s
enterprise deep learning applications.

ND4J and the need for speed
There is always a need for faster computation in the world of deep learning. ND4J
provides faster linear algebra execution in three key ways:

170 | Chapter 5: Building Deep Networks

• Use of JavaCPP
• CPU backends
• GPU backends

We provide a few notes here on how improvements in these key areas help ND4J
accelerate training deep models.

JavaCPP.
• Autogenerates JNI bindings for C++
• Allows for easy maintenance and deployment of C++ binaries in Java

CPU backends.
• OpenMP (multithreading within native operations)
• OpenBLAS or MKL (BLAS operations)
• SIMD extensions

GPU backends.
• DL4J supports Cuda 7.5 (+cuBLAS) at the moment, and will support 8.0 as soon

as it comes out.
• Uses cuDNN, as well

Setting Up GPU Support

For more detailed information on setting up GPUs with DL4J,
check out the guide in Appendix I.

Benchmarking ND4J and DL4J
To see how DL4J compares to other major deep learning libraries, visit the GitHub
project.

Today, DL4J is competitive with the major libraries, as illustrated in Table 5-1.

Table 5-1. LeNet Example w/cuDNN

Package CPU GPU Multi Accuracy
Dl4j 20m08s 3m13s 1m18s ~99.0%
Caffe 19m52s 53s 1m14s ~99.0%
Tensorflow 5m15s 1m44s 2m44s ~98.6%
Torch 18m03s 6m25s 3m50s ~98.3%

The DL4J community continues to push the performance boundaries of ND4J and
DL4J. Feel free to check out the open benchmarks at any time to replicate the results.

The DL4J Suite of Tools | 171

https://github.com/deeplearning4j/dl4j-benchmark
https://github.com/deeplearning4j/dl4j-benchmark

Basic Concepts of the DL4J API
In this section, we quickly list core techniques that most DL4J examples use. For
expanded coverage on using the API check out Appendix E or the DL4J online docu‐
mentation.

Loading and Saving Models
In this section, we highlight a few common things you might want to do with the
DL4J API.

Writing a trained model to disk
We use the ModelSerializer class to write a model’s architecture and parameters to
disk. Here’s a sample code snippet that shows how:

BufferedOutputStream stream = new BufferedOutputStream(...);
ModelSerializer.writeModel(trainedNetwork, stream, true);

This works for both writing to local disk and to another filesystem such as HDFS.

Writing to HDFS. To write to HDFS we just need to use the correct Path class
(org.apache.hadoop.fs.Path) and a correctly formatted HDFS path string, as
shown here:

Path modelPath = new Path(hdfsPathToSaveModel);
BufferedOutputStream stream = new BufferedOutputStream(os);
ModelSerializer.writeModel(trainedNetwork, stream, true);

HDFS filepaths commonly look like:

hdfs:///path/to/my/file.txt

Reading a saved model from disk

To load a previously saved DL4J model from disk, we again would use the ModelSer
ializer class, as demonstrated in the following code snippet:

InputStream stream = ...
MultiLayerNetwork network = ModelSerializer.restoreMultiLayerNetwork(stream);

Reading from HDFS. If you want to load the model directly from HDFS, use the same
API call, but create the InputStream by using the Hadoop FileSystem class, as shown
here:

org.apache.hadoop.conf.Configuration hadoopConfig = new org.apache.hadoop.conf
 .Configuration();
FileSystem hdfs = FileSystem.get(hadoopConfig);
InputStream stream = hdfs.open(new Path(hdfsPathToSavedModelFile));
MultiLayerNetwork network = ModelSerializer.restoreMultiLayerNetwork(stream);

172 | Chapter 5: Building Deep Networks

Getting Input for the Model
DL4J works specifically with NDArrays as data structures for training and scoring
models. We often see NDArrays for input and output for a model paired in a DataSet
object. For more information on using the DataSet class check out the Appendix on
ND4J.

Vectorizing Data

To get ideas for how to convert raw data into NDArray vectors for
use with DL4J models check out Appendix F and the Appendix E.

Loading data during training
Getting data into the training and test workflows of DL4J modeling projects is based
around parsing the data from file formats with RecordReaders and then batching this
data into mini-batches.

RecordReaders

This class is tasked with parsing a specific vector from a file format and convert‐
ing the data values into a standardized NDArray.

DataSetIterator

This class works with RecordReaders to take the produced NDArray for each
record and create mini-batches of NDArrays for training.

Loading Data on Spark

Spark data-loading patterns are similar but use special classes to
load data on Spark and HDFS. We cover those specifically in Chap‐
ter 9.

Setting Up Model Architecture
Each neural network we model with DL4J requires you to configure a specific archi‐
tecture. We’ve discussed the major architectures previously in this book, and these
concepts match up directly to how you set up network architectures in DL4J.

Building layer-oriented architectures

A NeuralNetConfiguration object is the fundamental object used to construct layers
in DL4J neural networks. Many single layers combined constitute a deep neural net‐
work, as shown in the following example:

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)

Basic Concepts of the DL4J API | 173

 .iterations(1)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .learningRate(learningRate)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.RELU)
 .build())
 .layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.SOFTMAX)
 .nIn(numHiddenNodes).nOut(numOutputs).build())
 .pretrain(false).backprop(true).build();

We design the intended network architecture with this configuration class by adding
layers and configuring each layer specifically.

Hyperparameters

The NeuralNetConfiguration object also allows us to set many different hyperpara‐
meters relevant to training, such as the following:

.learningRate(learningRate)

.updater(Updater.NESTEROVS).momentum(0.9)

In the preceding code snippet, we can see hyperparameters such as the learning rate,
an updater, and a momentum value being set for a given MultiLayerConfiguration
object. This allows you to control how a network is trained. We’ll look at strategies for
setting hyperparameters for different network architectures later in the book.

Training and Evaluation
After we have our network architecture configured and our data loaded through
RecordReaders and Iterators, we need to train our model. We want to set up multi‐
ple epochs and call the .fit() method on the network passing our training data in as
the parameter, as demonstrated here:

model.fit(trainingDataIter);

This method loops through all of the training records in the dataset referenced by the
iterator and returns after the network has completed the loop.

Each training epoch is considered a full pass over the input dataset. In the following
code snippet, we can see a model calling the .fit() method on an input dataset itera‐
tor:

for (int n = 0; n < nEpochs; n++) {
 model.fit(trainingDataIter);
}

174 | Chapter 5: Building Deep Networks

5 This is a dataset generated by Dr. Jason Baldridge to test neural network frameworks for basic functionality.

We’ll commonly see this pattern for managing epoch loops in the examples later in
the chapter.

Making a prediction
To better understand making predictions, you should check out Appendix E.

Training, validation, and test data
It’s considered a best practice to not only split out the training data into training and
test splits, but validation splits, as well. We use validation splits to guide our efforts in
possibly stopping training early.

Modeling CSV Data with Multilayer Perceptron Networks
Getting started with DL4J can seem complex for the new deep learning practitioner,
so we’ll begin with building a multilayer perceptron model. This will allow you to see
basic usage of the DL4J API in the context of an older neural network architecture
that you might recognize. In the accompanying GitHub repository, we have a Java
example modeling a synthetic nonlinear dataset5 called Saturn. Example 5-1 presents
the code from the example:

Example 5-1. Multilayer perceptron example

public class MLPClassifierSaturn {

 public static void main(String[] args) throws Exception {
 Nd4j.ENFORCE_NUMERICAL_STABILITY = true;
 int batchSize = 50;
 int seed = 123;
 double learningRate = 0.005;
 //Number of epochs (full passes of the data)
 int nEpochs = 30;

 int numInputs = 2;
 int numOutputs = 2;
 int numHiddenNodes = 20;

 final String filenameTrain =
 new ClassPathResource("/classification/saturn_data_train.csv")
 .getFile().getPath();
 final String filenameTest =
 new ClassPathResource("/classification/saturn_data_eval.csv")
 .getFile().getPath();

Modeling CSV Data with Multilayer Perceptron Networks | 175

http://www.jasonbaldridge.com/
http://bit.ly/2txQnwR

 //Load the training data:
 RecordReader rr = new CSVRecordReader();
 rr.initialize(new FileSplit(new File(filenameTrain)));
 DataSetIterator trainIter =
 new RecordReaderDataSetIterator(rr,batchSize,0,2);

 //Load the test/evaluation data:
 RecordReader rrTest = new CSVRecordReader();
 rrTest.initialize(new FileSplit(new File(filenameTest)));
 DataSetIterator testIter =
 new RecordReaderDataSetIterator(rrTest,batchSize,0,2);

 //log.info("Build model....");
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)
 .iterations(1)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .learningRate(learningRate)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new DenseLayer.Builder().nIn(numInputs)
 .nOut(numHiddenNodes)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.RELU)
 .build())
 .layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.SOFTMAX)
 .nIn(numHiddenNodes).nOut(numOutputs).build())
 .pretrain(false).backprop(true).build();

 MultiLayerNetwork model = new MultiLayerNetwork(conf);
 model.init();
 model.setListeners(new ScoreIterationListener(10)); //Print score every 10
 //parameter updates

 for (int n = 0; n < nEpochs; n++) {
 model.fit(trainIter);
 }

 System.out.println("Evaluate model....");
 Evaluation eval = new Evaluation(numOutputs);
 while(testIter.hasNext()){
 DataSet t = testIter.next();
 INDArray features = t.getFeatureMatrix();
 INDArray lables = t.getLabels();
 INDArray predicted = model.output(features,false);

 eval.eval(lables, predicted);

176 | Chapter 5: Building Deep Networks

 }

 System.out.println(eval.stats());
 //--
 //Training is complete. Code that follows is for plotting the data &
 //predictions only

 double xMin = -15;
 double xMax = 15;
 double yMin = -15;
 double yMax = 15;

 //Let's evaluate the predictions at every point in the x/y input space, and
 //plot this in the background
 int nPointsPerAxis = 100;
 double[][] evalPoints = new double[nPointsPerAxis*nPointsPerAxis][2];
 int count = 0;
 for(int i=0; i<nPointsPerAxis; i++){
 for(int j=0; j<nPointsPerAxis; j++){
 double x = i * (xMax-xMin)/(nPointsPerAxis-1) + xMin;
 double y = j * (yMax-yMin)/(nPointsPerAxis-1) + yMin;

 evalPoints[count][0] = x;
 evalPoints[count][1] = y;

 count++;
 }
 }

 INDArray allXYPoints = Nd4j.create(evalPoints);
 INDArray predictionsAtXYPoints = model.output(allXYPoints);

 //Get all of the training data in a single array, and plot it:
 rr.initialize(new FileSplit(new File(filenameTrain)));
 rr.reset();
 int nTrainPoints = 500;
 trainIter = new RecordReaderDataSetIterator(rr,nTrainPoints,0,2);
 DataSet ds = trainIter.next();
 PlotUtil.plotTrainingData(ds.getFeatures(), ds.getLabels(), allXYPoints,
 predictionsAtXYPoints, nPointsPerAxis);

 //Get test data, run the test data through the network to generate
 //predictions, and plot those predictions:
 rrTest.initialize(new FileSplit(new File(filenameTest)));
 rrTest.reset();
 int nTestPoints = 100;
 testIter = new RecordReaderDataSetIterator(rrTest,nTestPoints,0,2);
 ds = testIter.next();
 INDArray testPredicted = model.output(ds.getFeatures());

Modeling CSV Data with Multilayer Perceptron Networks | 177

 PlotUtil.plotTestData(ds.getFeatures(), ds.getLabels(), testPredicted,
 allXYPoints, predictionsAtXYPoints, nPointsPerAxis);

 System.out.println("****************Example finished********************");
 }

}

In the following sections, we explain how the different parts of the code work
together to model the Saturn dataset.

Setting Up Input Data
The input data is a nonlinear dataset in the following form:

1,-7.1239700674365,-5.05175898010314
0,1.80771566423302,0.770505522143023
1,8.43184823707231,-4.2287794074931
0,0.451276074541732,0.669574142606103
0,1.52519959303934,-0.953055551414968

The first column is the label of the row, and columns two and three represent the two
independent variable columns. We need to get a reference to the dataset with a DL4J
iterator, so load the data by using CSVRecordReader:

//Load the training data:
RecordReader rr = new CSVRecordReader();
rr.initialize(new FileSplit(new File(filenameTrain)));
DataSetIterator trainIter = new RecordReaderDataSetIterator(rr,batchSize,0,2);

In the iterator, we tell the record reader how many columns our data has and by
which column the label is represented.

Determining Network Architecture
We know that we want a basic multilayer perceptron, and we want to set this up (and
any DL4J network architecture) by using the MultiLayerConfiguration object, as
illustrated here:

 //log.info("Build model....");
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)
 .iterations(1)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .learningRate(learningRate)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.RELU)
 .build())

178 | Chapter 5: Building Deep Networks

 .layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.SOFTMAX)
 .nIn(numHiddenNodes).nOut(numOutputs).build())
 .pretrain(false).backprop(true).build();

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(10)); //Print score every 10
 //parameter updates

In this example, we have two layers:

• DenseLayer

• OutputLayer

Let’s look at the specific sections of the network architecture.

General hyperparameters
We set our optimization algorithm by using the following parameter:

.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)

This instructs DL4J that we intend to use the Stochastic Gradient Descent (SGD)
optimization algorithm. We set the learning rate like this:

.learningRate(learningRate)

We’re also instructing DL4J that we intend to use Nesterov’s parameter-updating
strategy with the momentum factor set as 0.9:

.updater(Updater.NESTEROVS).momentum(0.9)

First hidden layer
The first hidden layer takes on the raw values from the input that we have produced
from our vectorization pipeline. These values are typically in the range of [–1.0,1.0]
or [0.0,1.0] after various forms of normalization.

.layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.RELU)
 .build())

Here our layer needs to have the same number of input neurons as the number of
independent variable columns in our input vectors:

.nIn(numInputs)

The number of outputs for the layer is simply the number of neurons in the next layer
of the neural network. In this case, this number is represented by the variable numHid

Modeling CSV Data with Multilayer Perceptron Networks | 179

denNodes. For this layer, we’re also initializing the weights specifically by using the
WeightInit.XAVIER strategy and our activation function is the rectified linear func‐
tion:

.weightInit(WeightInit.XAVIER)

.activation(Activation.RELU)

Let’s now take a look at the next layer for this network, which is the output layer.

Output layer for classification
The output layer we’ll use here is a softmax output activation function. Recall from
previous chapters that we use the softmax output layer for multiple labels. In this
problem, we’re building a binary classifier; thus, we also could use a sigmoid output
activation function.

.layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.SOFTMAX)
 .nIn(numHiddenNodes).nOut(numOutputs).build())

The number of inputs expected is the same number of outputs from the previous
(input) layer. The number of output units is two because this is a binary classifier and
our softmax will give us scores for each class.

Sigmoid or Softmax Output Layer?

Mathematically using a sigmoid single output is the same as using a
softmax output layer with two output units (with MCXENT/Nega‐
tiveLogLikelihood and one-hot representation, [1,0] or [0,1]
instead of [0] or 1). The one-hot vector representation is described
in the following sidebar.

We’re also specifying our output layer to use the negative log likelihood loss function
here because it is commonly paired with the softmax output layer.

One-Hot Vector Representations
In the one-hot vector representation, we have a group of bits for which only a single
column’s value in the vector can have the value 1.0. All of the other column values will
be 0.0. This method of vector representation is often used to represent categorical
integer features using a “1 of K” scheme. Table 5-2 presents an example of the regular
binary representation of values (0–4) and then the one-hot representation.

180 | Chapter 5: Building Deep Networks

Table 5-2. One-hot vectors visually represented

Value Binary encoding One-hot representation
0 000 00000001
1 001 00000010
2 010 00000100
3 011 00001000
4 100 00010000

Training the Model
To train the model, we set up a for loop that will train the neural network on the
input dataset for a given number of epochs (e.g., passes over the entire dataset).

for (int n = 0; n < nEpochs; n++) {
 model.fit(trainIter);
}

To train on the entire dataset, we call the .fit() method on the MultiLayerNetwork
class instance. This class handles the underlying mechanics of applying the proper
hyperparameters specified, such as the mini-batch size we configured in the input
dataset iterator previously:

DataSetIterator testIter = new RecordReaderDataSetIterator(rrTest,batchSize,0,2);

The batchSize variable in this case controls how many examples are gathered from
disk and passed on to the model for training, in a batch. As the model is training we
should see output on the console similar to this:

o.d.o.l.ScoreIterationListener - Score at iteration 0 is 0.6313823699951172
o.d.o.l.ScoreIterationListener - Score at iteration 10 is 0.4763660430908203
o.d.o.l.ScoreIterationListener - Score at iteration 20 is 0.42963680267333987
o.d.o.l.ScoreIterationListener - Score at iteration 30 is 0.39850467681884766
o.d.o.l.ScoreIterationListener - Score at iteration 40 is 0.3672478103637695

This error number should fall over time, and as it approaches 0.0, we know that our
model has nearly finished learning the training data.

Evaluating the Model
The code example that follows deals with evaluating our new multilayer perceptron
model. Here, we are using the test dataset through the testIter object instance to
load the actual labels and the predicted labels into the instance of our Evaluation
class:

System.out.println("Evaluate model....");
Evaluation eval = new Evaluation(numOutputs);

Modeling CSV Data with Multilayer Perceptron Networks | 181

while(testIter.hasNext()){
 DataSet t = testIter.next();
 INDArray features = t.getFeatureMatrix();
 INDArray lables = t.getLabels();
 INDArray predicted = model.output(features,false);

 eval.eval(lables, predicted);

}

System.out.println(eval.stats());

Recall from Chapter 1 the concept of the F1 score and other evaluation-related met‐
rics. The eval.stats() method call will result in the following console output:

Evaluate model....

Examples labeled as 0 classified by model as 0: 48 times
Examples labeled as 1 classified by model as 1: 52 times

==========================Scores==
 Accuracy: 1
 Precision: 1
 Recall: 1
 F1 Score: 1
==

This is a relatively simple dataset, and after 30 epochs, DL4J was able to get a perfect
rating (1.0) on all evaluation facets. Let’s now move on to more complex examples.

Modeling Handwritten Images Using CNNs
As we discussed at the beginning of this chapter, CNNs are good at image classifica‐
tion. In our next example, we show you how to load and model images of handwrit‐
ten digits. The resultant CNN model will be able to classify new handwritten digit
images it has not previously seen.

In this example, we set up a dataset iterator for both the training dataset and the test
dataset. We’ll train the model on the training dataset and then evaluate the accuracy
of the model with the held-out test dataset. The training dataset that we’ll use is the
MNIST handwritten image dataset.

The model architecture is different than the previous example in that it has different
layers and parameters, as we’ll see in a moment. This particular CNN is known as the
“LeNet.”

182 | Chapter 5: Building Deep Networks

http://yann.lecun.com/exdb/mnist/

6 LeCun et al. 1998. “Gradient-based learning applied to document recognition.”

LeNet

The LeNet convolutional architecture is focused on a series of con‐
volutional layers followed by max-pooling layers. (Example 5-2
shows this CNN architecture implemented in DL4J.)6

Java Code Listing for the LeNet CNN
Example 5-2 provides the code for the MNIST LeNet CNN example.

Example 5-2. Building LeNet for MNIST in DL4J

public class LenetMnistExample {
 private static final Logger log = LoggerFactory
 .getLogger(LenetMnistExample.class);

 public static void main(String[] args) throws Exception {
 int nChannels = 1; // Number of input channels
 int outputNum = 10; // The number of possible outcomes
 int batchSize = 64; // Test batch size
 int nEpochs = 1; // Number of training epochs
 int iterations = 1; // Number of training iterations
 int seed = 123; //

 /*
 Create an iterator using the batch size for one iteration
 */
 log.info("Load data....");
 DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize,true,12345);
 DataSetIterator mnistTest = new MnistDataSetIterator(batchSize,false,12345);

 /*
 Construct the neural network
 */
 log.info("Build model....");
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)
 .iterations(iterations) // Training iterations as above
 .regularization(true).l2(0.0005)
 /*
 Uncomment the following for learning decay and bias
 */
 .learningRate(.01)//.biasLearningRate(0.02)
 //.learningRateDecayPolicy(LearningRatePolicy.Inverse)
 //.lrPolicyDecayRate(0.001).lrPolicyPower(0.75)
 .weightInit(WeightInit.XAVIER)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)

Modeling Handwritten Images Using CNNs | 183

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://bit.ly/2toXqtn

 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new ConvolutionLayer.Builder(5, 5)
 //nIn and nOut specify depth. nIn here is the nChannels and
 //nOut is the number of filters to be applied
 .nIn(nChannels)
 .stride(1, 1)
 .nOut(20)
 .activation(Activation.IDENTITY)
 .build())
 .layer(1, new SubsamplingLayer
 .Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(2, new ConvolutionLayer.Builder(5, 5)
 //Note that nIn need not be specified in later layers
 .stride(1, 1)
 .nOut(50)
 .activation(Activation.IDENTITY)
 .build())
 .layer(3, new SubsamplingLayer.Builder(SubsamplingLayer
 .PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(4, new DenseLayer.Builder().activation(Activation.RELU)
 .nOut(500).build())
 .layer(5, new OutputLayer
 .Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
 .nOut(outputNum)
 .activation(Activation.SOFTMAX)
 .build())
 .setInputType(InputType.convolutionalFlat(28,28,1)) //See note below
 .backprop(true).pretrain(false).build();

 /*
 Regarding the .setInputType(InputType.convolutionalFlat(28,28,1)) line: This
 does a few things.
 (a) It adds preprocessors, which handle things like the transition between
 the convolutional/subsampling layers and the dense layer
 (b) Does some additional configuration validation
 (c) Where necessary, sets the nIn (number of input neurons, or input depth in
 the case of CNNs) values for each layer based on the size of the previous
 layer (but it won't override values manually set by the user)
 InputTypes can be used with other layer types too (RNNs, MLPs etc) not
 just CNNs.
 For normal images (when using ImageRecordReader) use
 InputType.convolutional(height,width,depth).
 MNIST record reader is a special case, that outputs 28x28 pixel grayscale
 (nChannels=1) images, in a "flattened" row vector format (i.e., 1x784 vectors),
 hence the "convolutionalFlat" input type used here.

184 | Chapter 5: Building Deep Networks

 */

 MultiLayerNetwork model = new MultiLayerNetwork(conf);
 model.init();

 log.info("Train model....");
 model.setListeners(new ScoreIterationListener(1));
 for(int i=0; i<nEpochs; i++) {
 model.fit(mnistTrain);
 log.info("*** Completed epoch {} ***", i);

 log.info("Evaluate model....");
 Evaluation eval = new Evaluation(outputNum);
 while(mnistTest.hasNext()){
 DataSet ds = mnistTest.next();
 INDArray output = model.output(ds.getFeatureMatrix(), false);
 eval.eval(ds.getLabels(), output);

 }
 log.info(eval.stats());
 mnistTest.reset();
 }
 log.info("****************Example finished********************");
 }
}

In the sections that follow, we look at the specific parts of this program and how they
all work together to model the MNIST image dataset.

Loading and Vectorizing the Input Images
In this example we’re using a custom dataset iterator called MnistDataSetIterator.
This is because the MNIST dataset is in a custom binary format—the files are not a
set of individual JPG or PNG files in a directory as you might normally expect. To
make this example simpler, you can just trust that the necessary functions are being
performed behind the scenes and the raw image data is being extracted into an
NDArray for training with DL4J. The following code snippet shows MnistDataSetIt
erator in action:

DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize,true,12345);
DataSetIterator mnistTest = new MnistDataSetIterator(batchSize,false,12345);

In this snippet, the code is loading both the training and test datasets in separate iter‐
ators. The program will also automatically download the MNIST dataset from the
internet and unzip it locally for use.

Modeling Handwritten Images Using CNNs | 185

Network Architecture for LeNet in DL4J
Again, we see the same MultiLayerConfiguration object being used to describe the
network architecture we saw in the previous multilayer perceptron example. How‐
ever, notice that the network shown in the following code example has many more
layers and the types of layers are different than in the multilayer perceptron example:

/*
 Construct the neural network
 */
log.info("Build model....");
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)
 .iterations(iterations) // Training iterations as above
 .regularization(true).l2(0.0005)
 /*
 Uncomment the following for learning decay and bias
 */
 .learningRate(.01)//.biasLearningRate(0.02)
 //.learningRateDecayPolicy(LearningRatePolicy.Inverse)
 .lrPolicyDecayRate(0.001).lrPolicyPower(0.75)
 .weightInit(WeightInit.XAVIER)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new ConvolutionLayer.Builder(5, 5)
 //nIn and nOut specify depth. nIn here is the nChannels and nOut
 //is the number of filters to be applied
 .nIn(nChannels)
 .stride(1, 1)
 .nOut(20)
 .activation(Activation.IDENTITY)
 .build())
 .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(2, new ConvolutionLayer.Builder(5, 5)
 //Note that nIn need not be specified in later layers
 .stride(1, 1)
 .nOut(50)
 .activation(Activation.IDENTITY)
 .build())
 .layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(4, new DenseLayer.Builder().activation(Activation.RELU)
 .nOut(500).build())
 .layer(5, new OutputLayer.Builder(LossFunctions.LossFunction
 .NEGATIVELOGLIKELIHOOD)
 .nOut(outputNum)

186 | Chapter 5: Building Deep Networks

 .activation(Activation.SOFTMAX)
 .build())
 .setInputType(InputType.convolutionalFlat(28,28,1)) //See note below
 .backprop(true).pretrain(false).build();

/*
Regarding the .setInputType(InputType.convolutionalFlat(28,28,1)) line: This does
a few things.
(a) It adds preprocessors, which handle things like the transition between the
 convolutional/subsampling layers and the dense layer
(b) Does some additional configuration validation
(c) Where necessary, sets the nIn (number of input neurons, or input depth in the
 case of CNNs) values for each layer based on the size of the previous layer
 (but it won't override values manually set by the user)
InputTypes can be used with other layer types too (RNNs, MLPs etc) not just CNNs.
For normal images (when using ImageRecordReader) use
InputType.convolutional(height,width,depth).
MNIST record reader is a special case, that outputs 28x28 pixel grayscale
(nChannels=1) images, in a "flattened"
row vector format (i.e., 1x784 vectors), hence the "convolutionalFlat" input type
used here.
*/

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();

General hyperparameters
We can see some of the main hyperparameters in the following:

.seed(seed)

.iterations(iterations) // Training iterations as above

.regularization(true).l2(0.0005)
/*
 Uncomment the following for learning decay and bias
*/
.learningRate(.01)//.biasLearningRate(0.02)
//.learningRateDecayPolicy(LearningRatePolicy.Inverse).lrPolicyDecayRate(0.001)
//.lrPolicyPower(0.75)
.weightInit(WeightInit.XAVIER)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(Updater.NESTEROVS).momentum(0.9)

The following list explains how these hyperparameters are set and the values we set
for them.

Regularization
Here we see regularization turned on (set to true) with an L2 regularizer set with
a parameter of 0.0005.

Modeling Handwritten Images Using CNNs | 187

Weight initialization
For this LeNet architecture example, we’ve found that the Xavier weight initiali‐
zation strategy works well.

Optimization algorithm
We also see the optimization algorithm set as SGD. You will commonly see SGD
in many deep learning examples because it tends to work well in many cases. We
discuss variations in optimization algorithms in Chapters 6 and 7.

Updater
We’ve chosen Nesterov’s as the updater for this example. You will see Nesterov’s
used a lot in our examples because it works well in practice. Nesterov’s essentially
increases the scale of updates when those updates are consistently in one direc‐
tion. We can imagine this effect as if we were going down a smooth but very shal‐
low hill. The direction is clear, but we might want to take larger steps.

Convolution layers
In the code example at the beginning of this section, we see a general pattern of con‐
volutional layers and then max-pooling layers as described in Chapter 4. In the exam‐
ple that follows, we see the definition for the first convolution layer in the LeNet
network:

.layer(0, new ConvolutionLayer.Builder(5, 5)
 //nIn and nOut specify depth. nIn here is the nChannels and nOut is the
 //number of filters to be applied
 .nIn(nChannels)
 .stride(1, 1)
 .nOut(20)
 .activation(Activation.IDENTITY)
 .build())

In this example, we can see the Java Builder pattern setting up the properties for a
convolution layer. Let’s take a look at each of those properties.

Filter size
Here, we are creating a filter size for this layer with a 5 × 5 dimension.

Input data channels
For this example, the number of channels is set to 1 because the custom dataset
iterator converts the raw image automatically to a black-and-white image. Other
examples might often define three channels of input representing the RGB chan‐
nels in the image data.

Stride
The stride for this layer is set to (1, 1), meaning that it takes only a single step
over and then down as it slides the filter across the input volume.

188 | Chapter 5: Building Deep Networks

7 LeCun et al. 1998. “Gradient-based learning applied to document recognition.”
8 Krizhevsky, Sutskever, and Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Net‐

works.”

Activation function
We use the identity function as the output of this convolution layer.

Notice the Identity Activation Function?

The LeNet network architecture (1998)7 predates ReLUs (2012)8 by
several years. Changing convolutional layers over to use the ReLUs
accelerated the convergence of SGD. For historical purposes, we are
keeping the original LeNet architecture intact in this example.

Convolution Layers and Activation Functions

In more recent CNNs we often we see a convolution layer set up
with a ReLU activation function.

Max-pooling layers
In the following example, you can see the part of the code representing the pooling
layer directly after the first convolution layer:

.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())

Here are the layer properties:

Max pooling
This layer is set up as a max-pooling layer. This pooling layer has a filter size of
(2,2), meaning that we’re downsampling from a 5 × 5 filter in the previous layer
to a 2 × 2 grid in the current layer.

Setting the pooling layer stride
The filter stride is set as (2,2), which means that it will step two values as it
slides horizontally and two values when it steps down to the next row.

Output layer
Because we’re building a classification model with more than two labels (e.g., the dig‐
its 0–9), we want an output layer that is using a softmax activation function. The fol‐
lowing example shows how to do this:

Modeling Handwritten Images Using CNNs | 189

http://bit.ly/2uSqcAw
http://bit.ly/1xOpAZm
http://bit.ly/1xOpAZm

.layer(5, new OutputLayer
 .Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
 .nOut(outputNum)
 .activation(Activation.SOFTMAX)
 .build())

This output layer has a negative log likelihood loss function (as is customarily seen
with a softmax output layer) and the number of output units is equal to the number
of classes or labels we have for this dataset.

Training the CNN
Now that we have a LeNet convolutional model architecture set up, we can intialize
the MultiLayerNetwork object to train on our input datasets. The code snippet that
follows shows how to take the configuration from the previous section and set up the
network:

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();

With the model configured, we now can train on our input MNIST dataset for the
desired number of epochs, as shown in the following:

log.info("Train model....");
model.setListeners(new ScoreIterationListener(1));
for(int i=0; i<nEpochs; i++) {
 model.fit(mnistTrain);
 log.info("*** Completed epoch {} ***", i);

 log.info("Evaluate model....");
 Evaluation eval = new Evaluation(outputNum);
 while(mnistTest.hasNext()){
 DataSet ds = mnistTest.next();
 INDArray output = model.output(ds.getFeatureMatrix(), false);
 eval.eval(ds.getLabels(), output);

 }
 log.info(eval.stats());
 mnistTest.reset();
}
log.info("****************Example finished********************");

In the training loop, we see the same pattern with the MNIST dataset iterator han‐
dling the mini-batching of the images to the model .fit() method. After the .fit()
method completes the current epoch, we then check how well the model is trained by
testing the model against the test MNIST dataset. This allows us to see F1 scores pro‐
gressively over the epochs of training. Over time, we should see the evaluation scores
rise and the loss function error fall.

190 | Chapter 5: Building Deep Networks

9 Complete Works of William Shakespeare 5.3 MB file in UTF-8 Encoding, ~5.4 million characters.

Modeling Sequence Data by Using Recurrent Neural
Networks
In this section, we show off the generative and discriminative capabilities of Recur‐
rent Neural Networks via two examples: generating Shakespeare and classifying time-
series.

Generating Shakespeare via LSTMs
We begin with a fun example of modeling the works of Shakespeare. In this example,
we train an LSTM Recurrent Neural Network to generate new lines of Shakespeare
(well, “Shakespeare sounding”). Note that we’re treating text as a sequence of charac‐
ters, and our model is predicting the next most likely character based off the past
characters it encountered. You also can adapt this model to work on other common
sequence data, such as log data or sensor data as we’ll see in the next example.

The Unreasonable Effectiveness of Recurrent Neural Networks

This example is somewhat inspired by Andrej Karpathy’s blog post,
“The Unreasonable Effectiveness of Recurrent Neural Networks”.

Source Text for Training LSTMs

This example is set up to train on the Complete Works of William
Shakespeare, downloaded from Project Gutenberg,9 Training on
other text sources should be relatively easy to implement.

High-level modeling workflow
In this example, we introduce the concept of setting up a Recurrent Neural Network
architecture in DL4J. This example builds on some of the concepts we’ve learned in
previous examples, such as the following:

• Loading input datasets for training
• Setting up the network architecture configuration

We’ll also introduce some new parts of the DL4J API that supports Recurrent Neural
Networks specifically. This example learns lines of Shakespeare character by charac‐
ter. We then ask the model to generate new original lines based on the model it has
learned.

Modeling Sequence Data by Using Recurrent Neural Networks | 191

https://www.gutenberg.org/ebooks/100
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

As the example runs, we can see the output change from something like:

----- Sample 0 -----
lnee!
 Lhir tape shepyang? Nocw; mame. Budt hlant'nthely ler ild
 Py theu sfochill'ad my and ocs im nereepapd werer;
 Motadid. Mert hatterhirl. Iit nesdoesd'nlowhednanieivetranns deugheuind
 Bred yetide rathane fojlond thivh uweet.
 Thy lametom theuegfast lart souclalitoloe ilntangylrt or

----- Sample 1 -----
l,, ne agly
 Lot Bolncanbom bavantenfircasle womlidibl.
 NTERIOO. IrdmisfUoItolleeeddortiss hot buye.
 The hetenle of ile,
 'merlliydingiponI, bomgule? Shurtstarer of ate,
 Onbibly ot ire pomxatgillant, dakl.
 Oxt Mtanlonfye wiudsimotime raugadent deu'y ondtstes.
 If vonee.
 Whol touEde

to output that looks more like:

----- Sample 0 -----
ous reward me, Master Warce! I-will stay
 shall; for I one as mine lord.
 CLOTEN. Come, I will thigh, i'; and what wam! Hath dravelly
 The albowed out, Aside dismernicges could be a
 druck than there's thoughts, here is we with me and rag.
 Thou shalt love it doth my child.
 PERDITA. Ti

----- Sample 1 -----
on,
 Incie Paties, go, thurst with thy flounds by the bands. Exit COURSTIO
 FLORIZEL. Uncle, an if you,
 Abassom the man,
 Stars, you spite-hath loved.
 QUEEN MANGER On stay is! Who is mer?
 CLOTEN. Hang't, what I'll remain,
 Cap nothes same so here;
 My tens

Let’s take a look at the Java code for this example.

Java code for modeling Shakespeare
Example 5-3 lists the full code for the example.

192 | Chapter 5: Building Deep Networks

http://bit.ly/2sUs2PU

Example 5-3. Modeling and generating Shakespeare by using DL4J’s LSTM

public class GravesLSTMCharModellingExample {
 public static void main(String[] args) throws Exception {
 int lstmLayerSize = 200; //Number of units in each
 //GravesLSTM layer
 int miniBatchSize = 32; //Size of mini batch to use when
 //training
 int exampleLength = 1000; //Length of each training example
 //sequence to use. This could
 //certainly be increased
 int tbpttLength = 50; //Length for truncated
 //backpropagation through time.
 //i.e., do parameter updates ever
 //50 characters
 int numEpochs = 1; //Total number of training epochs
 int generateSamplesEveryNMinibatches = 10; //How frequently to generate
 //samples from the network?
 //1000 characters / 50 tbptt
 //length: 20 parameter updates
 //per minibatch
 int nSamplesToGenerate = 4; //Number of samples to generate
 //after each training epoch
 int nCharactersToSample = 300; //Length of each sample to
 //generate
 String generationInitialization = null; //Optional character
 //initialization; a random
 //character is used if null
 // Above is Used to 'prime' the LSTM with a character sequence to
 //continue/complete.
 // Initialization characters must all be in CharacterIterator
 //.getMinimalCharacterSet() by default
 Random rng = new Random(12345);

 //Get a DataSetIterator that handles vectorization of text into something we
 // can use to train our GravesLSTM network.
 CharacterIterator iter = getShakespeareIterator(miniBatchSize,exampleLength);
 int nOut = iter.totalOutcomes();

 //Set up network configuration:
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .learningRate(0.1)
 .rmsDecay(0.95)
 .seed(12345)
 .regularization(true)
 .l2(0.001)
 .weightInit(WeightInit.XAVIER)
 .updater(Updater.RMSPROP)
 .list()
 .layer(0, new GravesLSTM.Builder().nIn(iter.inputColumns())

Modeling Sequence Data by Using Recurrent Neural Networks | 193

 .nOut(lstmLayerSize)
 .activation(Activation.TANH).build())
 .layer(1, new GravesLSTM.Builder().nIn(lstmLayerSize).nOut(lstmLayerSize)
 .activation(Activation.TANH).build())
 .layer(2, new RnnOutputLayer.Builder(LossFunction.MCXENT)
 .activation(Activation.SOFTMAX) //MCXENT + softmax for classification
 .nIn(lstmLayerSize).nOut(nOut).build())
 .backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength)
 .tBPTTBackwardLength(tbpttLength)
 .pretrain(false).backprop(true)
 .build();

 MultiLayerNetwork net = new MultiLayerNetwork(conf);
 net.init();
 net.setListeners(new ScoreIterationListener(1));

 //Print the number of parameters in the network (and for each layer)
 Layer[] layers = net.getLayers();
 int totalNumParams = 0;
 for(int i=0; i<layers.length; i++){
 int nParams = layers[i].numParams();
 System.out
 .println("Number of parameters in layer " + i + ": " + nParams);
 totalNumParams += nParams;
 }
 System.out.println("Total number of network parameters: " + totalNumParams);

 //Do training, and then generate and print samples from network
 int miniBatchNumber = 0;
 for(int i=0; i<numEpochs; i++){
 while(iter.hasNext()){
 DataSet ds = iter.next();
 net.fit(ds);
 if(++miniBatchNumber % generateSamplesEveryNMinibatches == 0){
 System.out.println("--------------------");
 System.out.println("Completed " + miniBatchNumber +
 " minibatches of size " + miniBatchSize + "x" + exampleLength
 + " characters");
 System.out.println("Sampling characters from network
 given initialization \"" +
 (generationInitialization == null ? "" :
 generationInitialization) + "\"");
 String[] samples = sampleCharactersFromNetwork(
 generationInitialization,net,iter,rng,nCharactersToSample,
 nSamplesToGenerate);
 for(int j=0; j<samples.length; j++){
 System.out.println("----- Sample " + j + " -----");
 System.out.println(samples[j]);
 System.out.println();
 }
 }
 }

194 | Chapter 5: Building Deep Networks

 iter.reset(); //Reset iterator for another epoch
 }

 System.out.println("\n\nExample complete");
 }

 /** Downloads Shakespeare training data and stores it locally (temp directory).
 * Then set up and return a simple DataSetIterator that does
 * vectorization based on the text.
 * @param miniBatchSize Number of text segments in each training mini-batch
 * @param sequenceLength Number of characters in each text segment.
 */
 public static CharacterIterator getShakespeareIterator(int miniBatchSize,
 int sequenceLength) throws Exception{
 //The Complete Works of William Shakespeare
 //5.3MB file in UTF-8 Encoding, ~5.4 million characters
 //https://www.gutenberg.org/ebooks/100
 String url = "https://s3.amazonaws.com/dl4j-distribution/pg100.txt";
 String tempDir = System.getProperty("java.io.tmpdir");
 String fileLocation = tempDir + "/Shakespeare.txt"; //Storage location from
 //downloaded file
 File f = new File(fileLocation);
 if(!f.exists()){
 FileUtils.copyURLToFile(new URL(url), f);
 System.out.println("File downloaded to " + f.getAbsolutePath());
 } else {
 System.out.println("Using existing text file at " + f.getAbsolutePath());
 }

 if(!f.exists()) throw new IOException("File does not exist: " +
 fileLocation); //Download problem?

 //Which characters are allowed? Others will be removed
 char[] validCharacters = CharacterIterator.getMinimalCharacterSet();
 return new CharacterIterator(fileLocation, Charset.forName("UTF-8"),
 miniBatchSize, sequenceLength, validCharacters, new Random(12345));
 }

 /** Generate a sample from the network, given an (optional, possibly null)
 /** initialization. Initialization
 * can be used to 'prime' the RNN with a sequence you want to extend/continue.
 * Note that the initalization is used for all samples
 * @param initialization String, may be null. If null, select a random
 * character as initialization for all samples
 * @param charactersToSample Number of characters to sample from network
 * (excluding initialization)
 * @param net MultiLayerNetwork with one or more GravesLSTM/RNN layers and a
 * softmax output layer
 * @param iter CharacterIterator. Used for going from indexes back to characters
 */
 private static String[] sampleCharactersFromNetwork(String initialization,

Modeling Sequence Data by Using Recurrent Neural Networks | 195

 MultiLayerNetwork net,
 CharacterIterator iter,
 Random rng,
 int charactersToSample,
 int numSamples){
 //Set up initialization. If no initialization: use a random character
 if(initialization == null){
 initialization = String.valueOf(iter.getRandomCharacter());
 }

 //Create input for initialization
 INDArray initializationInput = Nd4j.zeros(numSamples, iter.inputColumns(),
 initialization.length());
 char[] init = initialization.toCharArray();
 for(int i=0; i<init.length; i++){
 int idx = iter.convertCharacterToIndex(init[i]);
 for(int j=0; j<numSamples; j++){
 initializationInput.putScalar(new int[]{j,idx,i}, 1.0f);
 }
 }

 StringBuilder[] sb = new StringBuilder[numSamples];
 for(int i=0; i<numSamples; i++) sb[i] = new StringBuilder(initialization);

 //Sample from network (and feed samples back into input) one character at a
 //time (for all samples)
 //Sampling is done in parallel here
 net.rnnClearPreviousState();
 INDArray output = net.rnnTimeStep(initializationInput);
 output = output.tensorAlongDimension(output.size(2)-1,1,0); //Gets the last
 //time step output

 for(int i=0; i<charactersToSample; i++){
 //Set up next input (single time step) by sampling from previous output
 INDArray nextInput = Nd4j.zeros(numSamples,iter.inputColumns());
 //Output is a probability distribution. Sample from this for each example
 //we want to generate, and add it to the new input
 for(int s=0; s<numSamples; s++){
 double[] outputProbDistribution = new double[iter.totalOutcomes()];
 for(int j=0; j<outputProbDistribution.length; j++)
 outputProbDistribution[j] = output.getDouble(s,j);
 int sampledCharacterIdx =
 sampleFromDistribution(outputProbDistribution,rng);

 //Prepare next time step input
 nextInput.putScalar(new int[]{s,sampledCharacterIdx}, 1.0f);
 //Add sampled character to StringBuilder (human readable output)
 sb[s].append(iter.convertIndexToCharacter(sampledCharacterIdx));
 }
 output = net.rnnTimeStep(nextInput); //Do one time step of forward pass
 }

196 | Chapter 5: Building Deep Networks

 String[] out = new String[numSamples];
 for(int i=0; i<numSamples; i++) out[i] = sb[i].toString();
 return out;
 }

 /** Given a probability distribution over discrete classes, sample from the
 * distribution and return the generated class index.
 * @param distribution Probability distribution over classes. Must sum to 1.0
 */
 public static int sampleFromDistribution(double[] distribution, Random rng){
 double d = rng.nextDouble();
 double sum = 0.0;
 for(int i=0; i<distribution.length; i++){
 sum += distribution[i];
 if(d <= sum) return i;
 }
 //Should never happen if distribution is a valid probability distribution
 throw new IllegalArgumentException("Distribution is invalid? d="+d+",
 sum="+sum);
 }
}

In the following sections we discuss this code listing and explain how the major sec‐
tions work together to model and generate Shakespeare.

Setting up input data and vectorization
The input data is automatically downloaded and converted into NDArrays by the
support classes included in the example, as demonstrated in the following snippet:

CharacterIterator iter = getShakespeareIterator(miniBatchSize,exampleLength);

We’ll leave it to you to explore how this works under the hood as interest dictates.

LSTM network architecture
Just as in the previous two examples, here we use the same builder pattern for setting
up the layers of the LSTM network.

//Set up network configuration:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .learningRate(0.1)
 .rmsDecay(0.95)
 .seed(12345)
 .regularization(true)
 .l2(0.001)
 .weightInit(WeightInit.XAVIER)
 .updater(Updater.RMSPROP)
 .list()
 .layer(0, new GravesLSTM.Builder().nIn(iter.inputColumns())

Modeling Sequence Data by Using Recurrent Neural Networks | 197

 .nOut(lstmLayerSize)
 .activation(Activation.TANH).build())
 .layer(1, new GravesLSTM.Builder().nIn(lstmLayerSize).nOut(lstmLayerSize)
 .activation(Activation.TANH).build())
 .layer(2, new RnnOutputLayer.Builder(LossFunction.MCXENT)
 .activation(Activation.SOFTMAX) //MCXENT + softmax for
 //classification
 .nIn(lstmLayerSize).nOut(nOut).build())
 .backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength)
 .tBPTTBackwardLength(tbpttLength)
 .pretrain(false).backprop(true)
 .build();

General comments on hyperparameters. In this example, we again see SGD as the opti‐
mization algorithm and the learning rate set to 0.1. Regularization is turned on, with
L2 set to 0.001. The updater is RMSPROP, which is different than the other examples
we’ve seen thus far.

Hidden layers
We use the special GravesLSTM layers with tanh activation functions for the lay‐
ers other than the output layer.

Output layer
The output layer is different than we’ve seen so far because we are using a special
RnnOutputLayer to handle the different types of output that is possible from a
Recurrent Neural Network, as illustrated here:

.layer(2, new RnnOutputLayer.Builder(LossFunction.MCXENT)
 .activation(Activation.SOFTMAX) //MCXENT + softmax for
 //classification
 .nIn(lstmLayerSize).nOut(nOut).build())

You can also see that even though again we’re using a softmax activation function
for the output layer, the loss function used here is LossFunction.MCXENT.

RMSProp in Practice

RMSProp by design has a normalizing effect on the scale of the
updates. This means that parameter updates with different scales
(different layers, or different parameters within the same layer) end
up having about the same size after using this updater.

198 | Chapter 5: Building Deep Networks

Training the LSTM network
The following code example shows how to train the network:

//Do training, and then generate and print samples from network
int miniBatchNumber = 0;
for(int i=0; i<numEpochs; i++){
 while(iter.hasNext()){
 DataSet ds = iter.next();
 net.fit(ds);
 if(++miniBatchNumber % generateSamplesEveryNMinibatches == 0){
 System.out.println("--------------------");
 System.out.println("Completed " + miniBatchNumber +
 " minibatches of size " + miniBatchSize +
 "x" + exampleLength + " characters");
 System.out.println("Sampling characters from network given
 initialization \"" + (generationInitialization == null ? "" :
 generationInitialization) + "\"");
 String[] samples =
 sampleCharactersFromNetwork(
 generationInitialization,net,iter,rng,nCharactersToSample,
 nSamplesToGenerate);
 for(int j=0; j<samples.length; j++){
 System.out.println("----- Sample " + j + " -----");
 System.out.println(samples[j]);
 System.out.println();
 }
 }
 }

 iter.reset(); //Reset iterator for another epoch
}

System.out.println("\n\nExample complete");

We’re using the DL4J API a bit differently in this example. As opposed to calling
the .fit() method on the iterator itself, here we see it being called on mini-batches
explicitly. This allows us a finer level of control about what we can do between calls
to .fit() on a mini-batch. In this case, it allows us to generate samples from the net‐
work during a pass over the input Shakespeare dataset.

As the training progresses, we should see output on the console in which the loss
function is seeing progressively less error during training:

o.d.o.l.ScoreIterationListener - Score at iteration 0 is 217.28348109866505
o.d.o.l.ScoreIterationListener - Score at iteration 1 is 213.24020789706773
o.d.o.l.ScoreIterationListener - Score at iteration 2 is 212.96001041971766
o.d.o.l.ScoreIterationListener - Score at iteration 3 is 175.06079409241767
o.d.o.l.ScoreIterationListener - Score at iteration 4 is 165.25272077487378

Modeling Sequence Data by Using Recurrent Neural Networks | 199

10 Image from https://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series.

In this example, we see output similar to the preceding snippet periodically interrup‐
ted with the output of generated sentence samples from the in-progress network.

Generating Shakespeare samples
To generate samples from the network, we call the support method listed in the
example that generates a synthetic passage from our model, as shown here:

String[] samples = sampleCharactersFromNetwork(generationInitialization,net,iter,
 rng,nCharactersToSample,nSamplesToGenerate);
for(int j=0; j<samples.length; j++){
 System.out.println("----- Sample " + j + " -----");
 System.out.println(samples[j]);
 System.out.println();
}

This is the part of the code that prints the output to the console periodically during
training.

Classifying Sensor Time-series Sequences Using LSTMs
In this example, we take the reader through a sequence classification example using
an LSTM Recurrent Neural Network. We use use the Synthetic Control Chart Time
Series Data Set from the University of California, Irvine (UCI) machine learning
repository. This code example will build a model to classify univariate time-series as
belonging to one of six categories:

• Normal (C)
• Cyclic (B)
• Increasing trend (E)
• Decreasing trend (A)
• Upward shift (D)
• Downward shift (F)

Figure 5-1 presents renders10 of examples from each of these categories.

200 | Chapter 5: Building Deep Networks

https://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series
https://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series
https://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series

Figure 5-1. Renders of synthetic time-series sequences from the UCI repository

These six classes of sequences are a great example of real data that would be generated
in the embedded sensor realm and give us a practical dataset with which to work.

Java code listing for recurrent classification example
Example 5-4 presents the Java code for our next example, the recurrent classification
example, in which we build a model to classify the sequences in “UCI’s Synthetic
Control Chart Time Series Data Set.”

Example 5-4. Java code for UCI sequence classification example

public class UCISequenceClassificationExample {
 private static final Logger log = LoggerFactory
 .getLogger(UCISequenceClassificationExample.class);

 //'baseDir': Base directory for the data. Change this if you want to save the
 //data somewhere else
 private static File baseDir = new File("src/main/resources/uci/");
 private static File baseTrainDir = new File(baseDir, "train");
 private static File featuresDirTrain = new File(baseTrainDir, "features");
 private static File labelsDirTrain = new File(baseTrainDir, "labels");

Modeling Sequence Data by Using Recurrent Neural Networks | 201

http://bit.ly/2tZM946

 private static File baseTestDir = new File(baseDir, "test");
 private static File featuresDirTest = new File(baseTestDir, "features");
 private static File labelsDirTest = new File(baseTestDir, "labels");

 public static void main(String[] args) throws Exception {
 downloadUCIData();

 // ----- Load the training data -----
 //Note that we have 450 training files for features: train/features/0.csv
 //through train/features/449.csv
 SequenceRecordReader trainFeatures = new CSVSequenceRecordReader();
 trainFeatures.initialize(new NumberedFileInputSplit(featuresDirTrain
 .getAbsolutePath() + "/%d.csv", 0, 449));
 SequenceRecordReader trainLabels = new CSVSequenceRecordReader();
 trainLabels.initialize(new NumberedFileInputSplit(labelsDirTrain
 .getAbsolutePath() + "/%d.csv", 0, 449));

 int miniBatchSize = 10;
 int numLabelClasses = 6;
 DataSetIterator trainData = new SequenceRecordReaderDataSetIterator(
 trainFeatures, trainLabels, miniBatchSize, numLabelClasses,
 false, SequenceRecordReaderDataSetIterator.AlignmentMode.ALIGN_END);

 //Normalize the training data
 DataNormalization normalizer = new NormalizerStandardize();
 normalizer.fit(trainData); //Collect training data statistics
 trainData.reset();

 //Use previously collected statistics to normalize on-the-fly. Each DataSet
 //returned by 'trainData' iterator will be normalized
 trainData.setPreProcessor(normalizer);

 // ----- Load the test data -----
 //Same process as for the training data.
 SequenceRecordReader testFeatures = new CSVSequenceRecordReader();
 testFeatures.initialize(new NumberedFileInputSplit(featuresDirTest
 .getAbsolutePath() + "/%d.csv", 0, 149));
 SequenceRecordReader testLabels = new CSVSequenceRecordReader();
 testLabels.initialize(new NumberedFileInputSplit(
 labelsDirTest.getAbsolutePath() + "/%d.csv", 0, 149));

 DataSetIterator testData = new SequenceRecordReaderDataSetIterator(
 testFeatures, testLabels, miniBatchSize, numLabelClasses,
 false, SequenceRecordReaderDataSetIterator.AlignmentMode.ALIGN_END);

 testData.setPreProcessor(normalizer); //Note that we are using the exact
 //same normalization process as the
 //training data

 // ----- Configure the network -----

202 | Chapter 5: Building Deep Networks

 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(123) //Random number generator seed for
 //improved repeatability. Optional.
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .weightInit(WeightInit.XAVIER)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .learningRate(0.005)
 .gradientNormalization(GradientNormalization
 .ClipElementWiseAbsoluteValue) //Not always required, but helps
 //with this data set
 .gradientNormalizationThreshold(0.5)
 .list()
 .layer(0, new GravesLSTM.Builder().activation(Activation.TANH).nIn(1)
 .nOut(10).build())
 .layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction
 .MCXENT)
 .activation(Activation.SOFTMAX).nIn(10).nOut(numLabelClasses)
 .build())
 .pretrain(false).backprop(true).build();

 MultiLayerNetwork net = new MultiLayerNetwork(conf);
 net.init();

 net.setListeners(new ScoreIterationListener(20)); //Print the score (loss
 //function value) every 20 iterations

 // -- Train the network, evaluating the test set performance at each epoch --
 int nEpochs = 40;
 String str = "Test set evaluation at epoch %d: Accuracy = %.2f, F1 = %.2f";
 for (int i = 0; i < nEpochs; i++) {
 net.fit(trainData);

 //Evaluate on the test set:
 Evaluation evaluation = net.evaluate(testData);
 log.info(String.format(str, i, evaluation.accuracy(), evaluation.f1()));

 testData.reset();
 trainData.reset();
 }

 log.info("----- Example Complete -----");
 }

 //This method downloads the data, and converts the "one time series per line"
 //format into a suitable
 //CSV sequence format that DataVec (CsvSequenceRecordReader) and DL4J can read.
 private static void downloadUCIData() throws Exception {
 if (baseDir.exists()) return; //Data already exists, don't download it again

Modeling Sequence Data by Using Recurrent Neural Networks | 203

 String url =
 "https://archive.ics.uci.edu/ml/machine-learning-databases/
 synthetic_control-mld/synthetic_control.data";
 String data = IOUtils.toString(new URL(url));

 String[] lines = data.split("\n");

 //Create directories
 baseDir.mkdir();
 baseTrainDir.mkdir();
 featuresDirTrain.mkdir();
 labelsDirTrain.mkdir();
 baseTestDir.mkdir();
 featuresDirTest.mkdir();
 labelsDirTest.mkdir();

 int lineCount = 0;
 List<Pair<String, Integer>> contentAndLabels = new ArrayList<>();
 for (String line : lines) {
 String transposed = line.replaceAll(" +", "\n");

 //Labels: first 100 examples (lines) are label 0, second 100 examples are
 //label 1, and so on
 contentAndLabels.add(new Pair<>(transposed, lineCount++ / 100));
 }

 //Randomize and do a train/test split:
 Collections.shuffle(contentAndLabels, new Random(12345));

 int nTrain = 450; //75% train, 25% test
 int trainCount = 0;
 int testCount = 0;
 for (Pair<String, Integer> p : contentAndLabels) {
 //Write output in a format we can read, in the appropriate locations
 File outPathFeatures;
 File outPathLabels;
 if (trainCount < nTrain) {
 outPathFeatures = new File(featuresDirTrain, trainCount + ".csv");
 outPathLabels = new File(labelsDirTrain, trainCount + ".csv");
 trainCount++;
 } else {
 outPathFeatures = new File(featuresDirTest, testCount + ".csv");
 outPathLabels = new File(labelsDirTest, testCount + ".csv");
 testCount++;
 }

 FileUtils.writeStringToFile(outPathFeatures, p.getFirst());
 FileUtils.writeStringToFile(outPathLabels, p.getSecond().toString());
 }
 }
}

204 | Chapter 5: Building Deep Networks

11 For more details on this step, go to http://deeplearning4j.org/usingrnns#data.

In the sections that follow, we look at the various parts of the code.

Setting up input data and vectorization

In Example 5-4 we don’t need to manually retrieve the data because the downloadUCI
Data() method does that for us. It also splits the 600 time-series examples into a
training set of 450 and a test set of 150 examples. It then writes the data in a format
suitable for loading by using the CSVSequenceRecordReader for sequence classifica‐
tion. With this format, we have one time-series per file, and a separate file for the
labels.

For example, train/features/0.csv represents the features for record 0 while the file
train/labels/0.csv represents the label for record 0. Because the data is a univariate
time-series, we have only one column in the CSV file. Normally, each column would
contain multiple values (e.g., one time-step per row). Furthermore, because we have
only one label for each time-series, the labels CSV files contain only a single value.

If we isolate part of the code to load the training data, as shown in the code that fol‐
lows, we can see how to use the SequenceRecordReader in DL4J to read the CSV file,
11 create the labels, and then create a DataSetIterator to work with this specific type
of sequence data:

// ----- Load the training data -----
//Note that we have 450 training files for features: train/features/0.csv through
//train/features/449.csv
SequenceRecordReader trainFeatures = new CSVSequenceRecordReader();
trainFeatures.initialize(new NumberedFileInputSplit(featuresDirTrain
 .getAbsolutePath() + "/%d.csv", 0, 449));
SequenceRecordReader trainLabels = new CSVSequenceRecordReader();
trainLabels.initialize(new NumberedFileInputSplit(labelsDirTrain
 .getAbsolutePath() + "/%d.csv", 0, 449));

int miniBatchSize = 10;
int numLabelClasses = 6;
DataSetIterator trainData = new SequenceRecordReaderDataSetIterator(
 trainFeatures, trainLabels, miniBatchSize, numLabelClasses,
 false, SequenceRecordReaderDataSetIterator.AlignmentMode.ALIGN_END);

//Normalize the training data
DataNormalization normalizer = new NormalizerStandardize();
normalizer.fit(trainData); //Collect training data statistics
trainData.reset();

//Use previously collected statistics to normalize on-the-fly. Each DataSet
//returned by 'trainData' iterator will be normalized
trainData.setPreProcessor(normalizer);

Modeling Sequence Data by Using Recurrent Neural Networks | 205

http://deeplearning4j.org/usingrnns#data

Toward the end of this code snippet, we can see the DataNormalizer object being cre‐
ated to collect dataset statistics. This allows us to collect global dataset statistics and
normalize the training data for better training.

Network architecture and training
Our neural network base architecture is an LSTM Recurrent Neural Network, which
you can see being set up with the MultiLayerConfiguration object in the following
code snippet:

// ----- Configure the network -----
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(123) //Random number generator seed for improved repeatability.
 //Optional.
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .weightInit(WeightInit.XAVIER)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .learningRate(0.005)
 .gradientNormalization(GradientNormalization
 .ClipElementWiseAbsoluteValue) //Not always required, but helps with
 //this data set
 .gradientNormalizationThreshold(0.5)
 .list()
 .layer(0, new GravesLSTM.Builder().activation(Activation.TANH).nIn(1)
 .nOut(10).build())
 .layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
 .activation(Activation.SOFTMAX).nIn(10).nOut(numLabelClasses)
 .build())
 .pretrain(false).backprop(true).build();

Here, we need only a single LSTM layer connected to a softmax output layer. We’re
using the XAVIER weight initialization method with NESTEROVS update strategy and a
learning rate of 0.005.

As with the other code examples, we train for a number of epochs until our error rate
has fallen sufficiently, as demonstrated here:

// ----- Train the network, evaluating the test set performance at each epoch ---
int nEpochs = 40;
String str = "Test set evaluation at epoch %d: Accuracy = %.2f, F1 = %.2f";
for (int i = 0; i < nEpochs; i++) {
 net.fit(trainData);

 //Evaluate on the test set:
 Evaluation evaluation = net.evaluate(testData);
 log.info(String.format(str, i, evaluation.accuracy(), evaluation.f1()));

 testData.reset();
 trainData.reset();
}

206 | Chapter 5: Building Deep Networks

log.info("----- Example Complete -----");

Here, again, we’re calling the .fit() method to train on our vectorized and normal‐
ized input training set. We then use the Evaluation object to measure how well our
Recurrent Neural Networks model generalizes to our held-out test data.

Using Autoencoders for Anomaly Detection
To demonstrate practical use of autoencoders, we’ll show anomaly detection performs
on the MNIST dataset using a simple autoencoder without pretraining.

The goal is to identify outlier digits; that is, those digits that are unusual or not like
the typical digits. In this example, we do this by using reconstruction error: stereotyp‐
ical examples should have low reconstruction error, whereas outliers should have
high reconstruction error.

Also in this example, we’ll set up the model configuration as in the other examples,
but our model architecture will be different. For autoencoders, we’re using Dense
Layers (fully connected) for most layers, but we’re focused on an a series of layers that
“funnels” down and then “expands” back out to the output layer.

Java Code Listing for Autoencoder Example
Example 5-5 shows the Java code for the anomaly autoencoder example.

Example 5-5. Java code for autoencoder to find anomalies

public class MNISTAnomalyExample {

 public static void main(String[] args) throws Exception {

 //Set up network. 784 in/out (as MNIST images are 28x28).
 //784 -> 250 -> 10 -> 250 -> 784
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(12345)
 .iterations(1)
 .weightInit(WeightInit.XAVIER)
 .updater(Updater.ADAGRAD)
 .activation(Activation.RELU)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .learningRate(0.05)
 .regularization(true).l2(0.0001)
 .list()
 .layer(0, new DenseLayer.Builder().nIn(784).nOut(250)
 .build())
 .layer(1, new DenseLayer.Builder().nIn(250).nOut(10)
 .build())

Using Autoencoders for Anomaly Detection | 207

http://bit.ly/2tQiQAP

 .layer(2, new DenseLayer.Builder().nIn(10).nOut(250)
 .build())
 .layer(3, new OutputLayer.Builder().nIn(250).nOut(784)
 .lossFunction(LossFunctions.LossFunction.MSE)
 .build())
 .pretrain(false).backprop(true)
 .build();

 MultiLayerNetwork net = new MultiLayerNetwork(conf);
 net.setListeners(Collections.singletonList((IterationListener) new
 ScoreIterationListener(1)));

 //Load data and split into training and testing sets. 40000 train, 10000 test
 DataSetIterator iter = new MnistDataSetIterator(100,50000,false);

 List<INDArray> featuresTrain = new ArrayList<>();
 List<INDArray> featuresTest = new ArrayList<>();
 List<INDArray> labelsTest = new ArrayList<>();

 Random r = new Random(12345);
 while(iter.hasNext()){
 DataSet ds = iter.next();
 SplitTestAndTrain split = ds.splitTestAndTrain(80, r); //80/20 split
 //(from miniBatch
 //= 100)
 featuresTrain.add(split.getTrain().getFeatureMatrix());
 DataSet dsTest = split.getTest();
 featuresTest.add(dsTest.getFeatureMatrix());
 INDArray indexes = Nd4j.argMax(dsTest.getLabels(),1); //Convert from
 //one-hot
 //representation
 //-> index
 labelsTest.add(indexes);
 }

 //Train model:
 int nEpochs = 30;
 for(int epoch=0; epoch<nEpochs; epoch++){
 for(INDArray data : featuresTrain){
 net.fit(data,data);
 }
 System.out.println("Epoch " + epoch + " complete");
 }

 //Evaluate the model on test data
 //Score each digit/example in test set separately
 //Then add triple (score, digit, and INDArray data) to lists and sort by
 //score
 //This allows us to get best N and worst N digits for each type
 Map<Integer,List<Triple<Double,Integer,INDArray>>> listsByDigit =
 new HashMap<>();
 for(int i=0; i<10; i++) listsByDigit.put(i,new ArrayList<Triple<Double,

208 | Chapter 5: Building Deep Networks

 Integer,INDArray>>());

 int count = 0;
 for(int i=0; i<featuresTest.size(); i++){
 INDArray testData = featuresTest.get(i);
 INDArray labels = labelsTest.get(i);
 int nRows = testData.rows();
 for(int j=0; j<nRows; j++){
 INDArray example = testData.getRow(j);
 int label = (int)labels.getDouble(j);
 double score = net.score(new DataSet(example,example));
 listsByDigit.get(label).add(new ImmutableTriple<>(score, count++,
 example));
 }
 }

 //Sort data by score, separately for each digit
 Comparator<Triple<Double, Integer, INDArray>> c
 = new Comparator<Triple<Double, Integer, INDArray>>() {
 @Override
 public int compare(Triple<Double, Integer, INDArray> o1, Triple<Double,
 Integer, INDArray> o2) {
 return Double.compare(o1.getLeft(),o2.getLeft());
 }
 };

 for(List<Triple<Double, Integer, INDArray>> list : listsByDigit.values()){
 Collections.sort(list, c);
 }

 //Select the 5 best and 5 worst numbers (by reconstruction error) for each
 //digit
 List<INDArray> best = new ArrayList<>(50);
 List<INDArray> worst = new ArrayList<>(50);
 for(int i=0; i<10; i++){
 List<Triple<Double,Integer,INDArray>> list = listsByDigit.get(i);
 for(int j=0; j<5; j++){
 best.add(list.get(j).getRight());
 worst.add(list.get(list.size()-j-1).getRight());
 }
 }

 //Visualize the best and worst digits
 MNISTVisualizer bestVisualizer = new MNISTVisualizer(2.0,best,"Best
 (Low Rec. Error)");
 bestVisualizer.visualize();

 MNISTVisualizer worstVisualizer = new MNISTVisualizer(2.0,worst,"Worst
 (High Rec. Error)");
 worstVisualizer.visualize();
 }

Using Autoencoders for Anomaly Detection | 209

 public static class MNISTVisualizer {
 private double imageScale;
 private List<INDArray> digits; //Digits (as row vectors), one per INDArray
 private String title;
 private int gridWidth;

 public MNISTVisualizer(double imageScale, List<INDArray> digits,
 String title) {
 this(imageScale, digits, title, 5);
 }

 public MNISTVisualizer(double imageScale, List<INDArray> digits,
 String title, int gridWidth) {
 this.imageScale = imageScale;
 this.digits = digits;
 this.title = title;
 this.gridWidth = gridWidth;
 }

 public void visualize(){
 JFrame frame = new JFrame();
 frame.setTitle(title);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel panel = new JPanel();
 panel.setLayout(new GridLayout(0,gridWidth));

 List<JLabel> list = getComponents();
 for(JLabel image : list){
 panel.add(image);
 }

 frame.add(panel);
 frame.setVisible(true);
 frame.pack();
 }

 private List<JLabel> getComponents(){
 List<JLabel> images = new ArrayList<>();
 for(INDArray arr : digits){
 BufferedImage bi = new BufferedImage(28,28,BufferedImage
 .TYPE_BYTE_GRAY);
 for(int i=0; i<784; i++){
 bi.getRaster().setSample(i % 28, i / 28, 0, (int)(255*arr
 .getDouble(i)));
 }
 ImageIcon orig = new ImageIcon(bi);
 Image imageScaled = orig.getImage().getScaledInstance((int)
 (imageScale*28),(int)(imageScale*28),Image.SCALE_REPLICATE);
 ImageIcon scaled = new ImageIcon(imageScaled);
 images.add(new JLabel(scaled));
 }

210 | Chapter 5: Building Deep Networks

 return images;
 }
 }
}

In the sections that follow, we’ll comment on specific parts of the example’s code.

Setting Up Input Data
Following is the section of the example code that loads the MNIST dataset with a cus‐
tom iterator.

//Load data and split into training and testing sets. 40000 train, 10000 test
DataSetIterator iter = new MnistDataSetIterator(100,50000,false);

List<INDArray> featuresTrain = new ArrayList<>();
List<INDArray> featuresTest = new ArrayList<>();
List<INDArray> labelsTest = new ArrayList<>();

Random r = new Random(12345);
while(iter.hasNext()){
 DataSet ds = iter.next();
 SplitTestAndTrain split = ds.splitTestAndTrain(80, r); //80/20 split
 //(from miniBatch
 //= 100)
 featuresTrain.add(split.getTrain().getFeatureMatrix());
 DataSet dsTest = split.getTest();
 featuresTest.add(dsTest.getFeatureMatrix());
 INDArray indexes = Nd4j.argMax(dsTest.getLabels(),1); //Convert from one-hot
 //representation ->
 //index
 labelsTest.add(indexes);
}

We’re handling the training and test data differently in this example compared to pre‐
vious examples so that we can demonstrate variations on how to use the DL4J and
ND4J APIs. In the while loop, we manually separate the dataset into test and train
datasets.

Autoencoder Network Architecture and Training
As discussed previously, the network architecture for the autoencoder typically is sha‐
ped like a funnel and then expands back out to the full input dataset size at the output
layer. We seek to learn the most efficient form of the input data by using autoencod‐
ers. Autoencoders learn to best represent the data, hence their name. Following is the
code to set up our autoencoder:

Using Autoencoders for Anomaly Detection | 211

//Set up network. 784 in/out (as MNIST images are 28x28).
//784 -> 250 -> 10 -> 250 -> 784
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(12345)
 .iterations(1)
 .weightInit(WeightInit.XAVIER)
 .updater(Updater.ADAGRAD)
 .activation(Activation.RELU)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .learningRate(0.05)
 .regularization(true).l2(0.0001)
 .list()
 .layer(0, new DenseLayer.Builder().nIn(784).nOut(250)
 .build())
 .layer(1, new DenseLayer.Builder().nIn(250).nOut(10)
 .build())
 .layer(2, new DenseLayer.Builder().nIn(10).nOut(250)
 .build())
 .layer(3, new OutputLayer.Builder().nIn(250).nOut(784)
 .lossFunction(LossFunctions.LossFunction.MSE)
 .build())
 .pretrain(false).backprop(true)
 .build();

This architecture has four layers, with the last layer having the full 784 units that the
input layer has for the input data. We’ve set all of the activation functions in this net‐
work as ReLUs because we’ve found it best for working with this dataset.

Training the autoencoder network uses the same general pattern we’ve seen with the
other DL4J examples in this chapter, as demonstrated here:

//Train model:
int nEpochs = 30;
for(int epoch=0; epoch<nEpochs; epoch++){
 for(INDArray data : featuresTrain){
 net.fit(data,data);
 }
 System.out.println("Epoch " + epoch + " complete");
}

We loop through the epochs of training and train on the data. The interesting variant
in how we’re using the API here is in this line:

net.fit(data,data);

Here, we notice that the data also is being used as the output for the network. This is
because with autoencoders we’re learning to reconstruct the data itself, so the data is
both the input and the output, causing us to call the fit() method a little differently
than in previous examples.

212 | Chapter 5: Building Deep Networks

Evaluating the Model
When we run the example code, it generates an image for the best learned images and
then another image for the images with the worst reconstruction error. Figure 5-2
depicts the generated image for the best learned (e.g., the one that had the lowest
reconstruction error) handwritten digit images.

Figure 5-2. Digits best learned by the autoencoder

The images that had the highest reconstruction error are composed in another ren‐
der, as shown in Figure 5-3.

Figure 5-3. Hard-to-learn handwritten digits

You can visually see how some of these images would certainly be considered anoma‐
lous compared to the other set of images. We don’t always know what an anomaly
might look like for our data, but if we base it on a model such as an autoencoder, we
have a tool that doesn’t need to see the anomalies beforehand.

Using Autoencoders for Anomaly Detection | 213

12 Bowman et al. 2015. “Generating Sentences from a Continuous Space.”

Using Variational Autoencoders to Reconstruct MNIST
Digits
In Chapter 3, we introduced the concept of the variational autoencoder (VAE) as a
way to reconstruct input data in an unsupervised learning fashion.

VAEs have many uses but the most common use cases include:

• Unsupervised learning as well as semisupervised learning of features, the general
idea being a large amount of unlabeled data and a small amount of labeled data
(we can get much better results than using labeled data alone, when labeled data
is limited).

• Anomaly detection (unsupervised).
• As a generative model (e.g., to generate samples) they can generate images (as in

this example), but also things like sentences.12

In this example, we show you how to generate variations of the MNIST digit dataset
to show the capabilities of VAEs as generative models.

Code Listing to Reconstruct MNIST Digits
Our next example (Example 5-6) is a simple example of training a VAE on MNIST to
demonstrate the generative capabilities of VAEs. This example intentionally has a
small hidden state Z (two values) for visualization on a two-dimensional grid.

After training, this example plots two things:

• The MNIST digit reconstructions versus the latent space
• The latent space values for the MNIST test set, as training progresses (every N

mini-batches)

Note that for both plots, there is a slider at the top. Change this to see how the recon‐
structions and latent space changes over time.

Example 5-6. Modeling MNIST digits with VAEs in Java

public class VariationalAutoEncoderExample {
 private static final Logger log =
 LoggerFactory.getLogger(VariationalAutoEncoderExample.class);

 public static void main(String[] args) throws IOException {
 int minibatchSize = 128;
 int rngSeed = 12345;

214 | Chapter 5: Building Deep Networks

https://arxiv.org/abs/1511.06349
http://bit.ly/2tU4zT8

 int nEpochs = 150; //Total number of training epochs

 //Plotting configuration
 int plotEveryNMinibatches = 100; //Frequency with which to collect data
 //for later plotting
 double plotMin = -4; //Minimum values for plotting
 //(x and y dimensions)
 double plotMax = 4; //Maximum values for plotting
 //(x and y dimensions)
 int plotNumSteps = 16; //Number of steps for reconstructions,
 //between plotMin and plotMax

 //MNIST data for training
 DataSetIterator trainIter = new MnistDataSetIterator(minibatchSize, true,
 rngSeed);

 //Neural net configuration
 Nd4j.getRandom().setSeed(rngSeed);
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(rngSeed)
 .iterations(1).optimizationAlgo(OptimizationAlgorithm
 .STOCHASTIC_GRADIENT_DESCENT)
 .learningRate(1e-3)
 //.updater(Updater.RMSPROP).rmsDecay(0.95)
 .updater(Updater.ADAM)
 .weightInit(WeightInit.RELU)
 .regularization(true).l2(1e-5)
 .list()
 .layer(0, new VariationalAutoencoder.Builder()
 .activation(Activation.LEAKYRELU)
 .encoderLayerSizes(512, 512) //2 encoder layers, each of
 //size 256
 .decoderLayerSizes(512, 512) //2 decoder layers, each of
 //size 256
 .pzxActivationFunction("identity") //p(z|data) activation function
 .reconstructionDistribution(new BernoulliReconstructionDistribution(
 //Bernoulli distribution for p(data|z)
 //(binary or 0 to 1 data only)
 Activation.SIGMOID.getActivationFunction()))
 .nIn(28 * 28) //Input size: 28x28
 .nOut(2) //Size of the latent variable
 //space: p(z|x). 2 dimensions
 //here for plotting, use more
 //in general
 .build())
 .pretrain(true).backprop(false).build();

 MultiLayerNetwork net = new MultiLayerNetwork(conf);
 net.init();

 //Get the variational autoencoder layer
 org.deeplearning4j.nn.layers.variational.VariationalAutoencoder vae

Using Variational Autoencoders to Reconstruct MNIST Digits | 215

 = (org.deeplearning4j.nn.layers.variational.VariationalAutoencoder)
 net.getLayer(0);

 //Test data for plotting
 DataSet testdata = new MnistDataSetIterator(10000, false, rngSeed).next();
 INDArray testFeatures = testdata.getFeatures();
 INDArray testLabels = testdata.getLabels();
 //X/Y grid values, between plotMin and plotMax
 INDArray latentSpaceGrid =
 getLatentSpaceGrid(plotMin, plotMax, plotNumSteps);

 //Lists to store data for later plotting
 List<INDArray> latentSpaceVsEpoch = new ArrayList<>(nEpochs + 1);
 //Collect and record the latent space values before training starts
 INDArray latentSpaceValues = vae.activate(testFeatures, false);
 latentSpaceVsEpoch.add(latentSpaceValues);
 List<INDArray> digitsGrid = new ArrayList<>();

 //Perform training
 int iterationCount = 0;
 for (int i = 0; i < nEpochs; i++) {
 log.info("Starting epoch {} of {}",(i+1),nEpochs);
 while (trainIter.hasNext()) {
 DataSet ds = trainIter.next();
 net.fit(ds);

 //Every N=100 minibatches:
 // (a) collect the test set latent space values for later plotting
 // (b) collect the reconstructions at each point in the grid
 if (iterationCount++ % plotEveryNMinibatches == 0) {
 latentSpaceValues = vae.activate(testFeatures, false);
 latentSpaceVsEpoch.add(latentSpaceValues);

 INDArray out = vae.generateAtMeanGivenZ(latentSpaceGrid);
 digitsGrid.add(out);
 }
 }

 trainIter.reset();
 }

 //Plot MNIST test set - latent space vs. iteration
 //(every 100 minibatches by default)
 PlotUtil.plotData(latentSpaceVsEpoch, testLabels, plotMin, plotMax,
 plotEveryNMinibatches);

 //Plot reconstructions - latent space vs. grid
 double imageScale = 2.0; //Increase/decrease this to zoom in on the
 //digits
 PlotUtil.MNISTLatentSpaceVisualizer v =
 new PlotUtil.MNISTLatentSpaceVisualizer(imageScale, digitsGrid,

216 | Chapter 5: Building Deep Networks

 plotEveryNMinibatches);
 v.visualize();
 }

 //This simply returns a 2d grid: (x,y) for x=plotMin to plotMax, and y=plotMin
 //to plotMax
 private static INDArray getLatentSpaceGrid(double plotMin, double plotMax,
 int plotSteps) {
 INDArray data = Nd4j.create(plotSteps * plotSteps, 2);
 INDArray linspaceRow = Nd4j.linspace(plotMin, plotMax, plotSteps);
 for (int i = 0; i < plotSteps; i++) {
 data.get(NDArrayIndex.interval(i * plotSteps, (i + 1) * plotSteps),
 NDArrayIndex.point(0)).assign(linspaceRow);
 int yStart = plotSteps - i - 1;
 data.get(NDArrayIndex.interval(yStart * plotSteps,
 (yStart + 1) * plotSteps), NDArrayIndex.point(1)).assign(linspaceRow
 .getDouble(i));
 }
 return data;
 }
}

In the sections that follow, we’ll explain the generated latent space grid and the gener‐
ated MNIST images.

Examining the VAE Model
Figure 5-4 presents the generated image produced by the code for this example.
These are the reconstructions over the latent space at a specific iteration of training
the network.

Latent Space Variables

In statistics, latent space variables are variables that are derived or
inferred through a mathematical model. This is in contrast to vari‐
ables that are observed.

You can generate different variations of the images based on the length the training
runs and the training settings.

Using Variational Autoencoders to Reconstruct MNIST Digits | 217

Figure 5-4. MNIST digits generated by the VAE example

To better understand how these images were generated, let’s relate this example back
to the network architecture for VAEs introduced in Chapter 3. Figure 5-5 shows the
network architecture for the VAE.

218 | Chapter 5: Building Deep Networks

Figure 5-5. VAE network architecture

In Figure 5-6 the scatterplot of the VAE latent space of the MNIST test data is just the
encoder part of the network shown in Figure 5-5.

Figure 5-6. Scatterplot of the VAE latent space versus epoch on MNIST test dataset

Using Variational Autoencoders to Reconstruct MNIST Digits | 219

Understanding the scatterplot
The scatterplot in Figure 5-6 is the projection of the variable latent space versus the
epoch. We project the MNIST test set data (e.g., x) into the values p(z|x), where p(z|x)
is Gaussian with two values and z is the latent variable.

We can think of z as a probabilistic version of the bottleneck in a compression
autoencoder. During training, we essentially randomly sample from z to give us
actual numbers. Obviously, we can’t forward pass a probability distribution, but we
can forward pass numbers drawn from that probability distribution (e.g., a Monte
Carlo estimate approach of sorts).

Our modeling assumption is that we begin by assuming that the data is generated by
first starting with p(z) (e.g., some probability distribution over the latent space and
we sample from it). We then assume that there’s some process that generates data x,
using a distribution p(x|z).

We take the mean of p(z|x) and plot it on the scatterplot. In general, we’d have more
than two values, but we are using two only because we want pretty pictures.

Understanding the generated images
The generated images in Figure 5-4 are just the righthand side of the network
in Figure 5-6. Specifically, we generate a 16 × 16 grid of values in the range –4 to +4,
and then we feed forward those values as if they were the mean value of p(z|x).

To understand the render another way, we’re just setting the z values and doing for‐
ward pass through the decoder to give us p(x|z) (the MNIST data reconstructions).

In this case, p(x|z) is a Bernoulli distribution and is bounded in the range 0 to 1. This
means that we can just plot those probabilities (which also happens to be the mean
value for the Bernoulli distribution), where 0 to 1 becomes 0 to 255 for pixel intensi‐
ties. In this case, both x and p(x|z) have the same size: 784 in/out (from MNIST’s
28 × 28 size images).

The Relationship Between Scatterplot and Generated Images

In a sense the scatterplot and the generated images are the same
thing, just in different directions.

220 | Chapter 5: Building Deep Networks

13 Nogueira dos Santos and Zadrozny. 2014. “Learning Character-level Representations for Part-of-Speech Tag‐
ging.”

14 Mikolov et al. 2013. “Efficient Estimation of Word Representations in Vector Space.”
15 Le and Mikolov. 2014. “Distributed Representations of Sentences and Documents.”
16 Mikolov et al. 2013. “Efficient Estimation of Word Representations in Vector Space.”

Applications of Deep Learning in Natural Language
Processing
Deep learning has shown to be effective in the area of Natural Language Processing
(NLP). Techniques such as Part-of-Speech (POS) tagging,13 character generation, and
learning word embeddings are common applications of deep learning. Here are some
NLP applications we’ll focus on in this chapter:

• Learning word embeddings by using Word2Vec14

• Distributed representations of sentences with paragraph vectors15

• Document classification with paragraph vectors

We’ll look at examples of each of these in the sections that follow.

Learning Word Embedding Using Word2Vec
Word2Vec detects similarities between words mathematically by learning the context
in surrounding words. Word2Vec creates vectors that are distributed numerical rep‐
resentations of word features, such as the context of individual words. Word2Vec
trains on a text corpus as input data and produces a list of word vectors/embeddings
as the output model. The word meanings and relationships in the produced word
embeddings are encoded spatially and have useful characteristics such as vector arith‐
metic, as we’ll see later.

The Word2Vec model and algorithm
The algorithm begins by building a vocabulary from the input training data and then
builds the representations of the individual words. Initially, we’re not building a vec‐
tor per document in the same way we’ve done with the other vectorization techni‐
ques. However, with Word2Vec, the output dataset from training on the input corpus
is the unique set of words in the corpus with a vector attached to each word. Each
vector in this output contains the word’s context (or usage). Word2Vec uses a feed-
forward Neural Network Language Model (NNLM)16 to build these contextual word
vectors in an unsupervised learning fashion. In practice, this is a two-layer neural
network trained with SGD.

Applications of Deep Learning in Natural Language Processing | 221

http://jmlr.org/proceedings/papers/v32/santos14.pdf
http://jmlr.org/proceedings/papers/v32/santos14.pdf
https://arxiv.org/abs/1301.3781
https://cs.stanford.edu/~quocle/paragraph_vector.pdf
https://arxiv.org/pdf/1301.3781v3.pdf
http://bit.ly/2sUs2PU

Word vectors represent a sequence of words in a way that allows us to model their
context. They represent how a word is used with respect to the words around them.
This is really handy when there is a lot of contextual information around the word to
be classified in scenarios such as Named-Entity Resolution (NER), POS tagging, and
Semantic Role Labeling (SRL).

Feature Count of Generated Word2Vec Vectors

Each word vector has about 50 to 300 features as the result of the
distributed representation of words learned by the neural network.

Another technique in this space, Latent Semantic Indexing (LSI), detects dimensions
that appear to go together and merges them into a single one, which helps speed
computations like clustering. The designers of Word2Vec considered many
approaches for estimating continuous representations of words, including Latent
Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). Word2Vec has been
shown to preform significantly better than LSA for preserving linear regularities
among words, and is less computationally expensive than LDA.

Modeling context
Word vectors retain context of the source text around the word in the form of multi-
word windows. For the purpose of machine learning, we define a word’s meaning as
the words that surround it most consistently. With enough data, we can use these
semantics and build representations of the words in the corpus that fairly accurately
model a word’s meaning. Word2Vec creates features from windows of words where
some of the features include the context of individual words.

When we build a Word2Vec model, we use a moving window across (typically) five
words in the moving window at a time. The concept of using moving windows to
train Word2Vec crosses over into many similar techniques, such as POS tagging, SRL,
and NER. Word2Vec uses what’s called a Viterbi algorithm to build the model. The
Viterbi algorithm calculates the most likely sequence of events (labels) given the
probability of going from one state to another or “a transition matrix.”

Learning similar meaning and semantic relationships
We can find similar words by using a vector distance metric such as Euclidean dis‐
tance (we described this in Chapter 1) or cosine distance. This gives us words that
have short cosine similarity distances or, more generally, “close representations.”
Table 5-3 lists some examples of words most similar to “France” based on a trained
Word2Vec model.

222 | Chapter 5: Building Deep Networks

https://en.wikipedia.org/wiki/Cosine_similarity

Table 5-3. Word2Vec cosine similarity

Word Cosine distance
Spain 0.678515
Belgium 0.665923
Netherlands 0.652428
Italy 0.633130
Switzerland 0.622323
Luxembourg 0.610033
Portugal 0.577154
Russia 0.571507
Germany 0.563291
Catalonia 0.534176

Understanding Cosine Distance

A perfect match represented by the cosine distance of 1.0 would be
between two of the same words (identity, or “Amsterdam” equals
“Amsterdam”). The closer the cosine distance is to the value 1.0, the
more similar the two word vectors’ meanings are.

We need to train our Word2Vec model on large datasets with sufficient vector dimen‐
sionality to see strong regularities in the word vector space.

Vector arithmetic and word embedding
We also can do some basic operations with the Word2Vec vectors. Here’s an example:

vector('Rome') = vector('Paris') - vector('France') + vector('Italy')

This operation results in a vector that is very close to vector('Rome'). Other inter‐
esting similarity semantics include showing the word “big” is similar to the word
“bigger” in the same sense that “small” is similar to “smaller.” An interesting exercise
is to calculate the word that is similar to small in the same sense as biggest is similar
to big. We do this by computing simple algebraic operations with the vector represen‐
tations of words:

vector('smallest') = vector("biggest") − vector("big") + vector("small")

We then search vector space for the word closest to our search term measured by our
distance metric (cosine distance here) in a 1NN-search fashion to find our word vec‐
tor. When our word vectors are well trained, we should find the correct word (small‐
est) using this technique. We also can find subtle relationships such as a capital cities
of countries (e.g., France is to Paris as Germany is to Berlin).

Applications of Deep Learning in Natural Language Processing | 223

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

17 Mikolov, Le, and Sutskever. 2013. “Exploiting Similarities among Languages for Machine Translation.”
18 Feng et al. 2015. “Applying Deep Learning to Answer Selection: A Study and An Open Task.”

These semantic relationships can be effective in improving existing NLP techniques
such as machine translation,17 information retrieval, and question answering18 sys‐
tems. Let’s now take a look at a basic example of using Word2Vec.

Java code listing for Word2Vec example
The code in Example 5-7 learns vector representation from raw text sentences. It’s a
small example to demonstrate the larger potential of learning the semantic meaning
of words in a corpus.

Example 5-7. Word2Vec example

public class Word2VecRawTextExample {

 private static Logger log =
 LoggerFactory.getLogger(Word2VecRawTextExample.class);

 public static void main(String[] args) throws Exception {

 // Gets Path to Text file
 String filePath = new ClassPathResource("raw_sentences.txt").getFile()
 .getAbsolutePath();

 log.info("Load & Vectorize Sentences....");
 // Strip white space before and after for each line
 SentenceIterator iter = new BasicLineIterator(filePath);
 // Split on white spaces in the line to get words
 TokenizerFactory t = new DefaultTokenizerFactory();

 /*
 CommonPreprocessor will apply the following regex to each token:
 [\d\.:,"'\(\)\[\]|/?!;]+
 So, effectively all numbers, punctuation symbols and some special symbols
 are stripped off.
 Additionally it forces lower case for all tokens.
 */
 t.setTokenPreProcessor(new CommonPreprocessor());

 log.info("Building model....");
 Word2Vec vec = new Word2Vec.Builder()
 .minWordFrequency(5)
 .iterations(1)
 .layerSize(100)
 .seed(42)
 .windowSize(5)

224 | Chapter 5: Building Deep Networks

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44931.pdf
https://arxiv.org/abs/1508.01585v2
http://stanford.io/2sV1gHc
http://bit.ly/2txt1HL

 .iterate(iter)
 .tokenizerFactory(t)
 .build();

 log.info("Fitting Word2Vec model....");
 vec.fit();

 log.info("Writing word vectors to text file....");

 // Write word vectors to file
 WordVectorSerializer.writeWordVectors(vec, "pathToWriteto.txt");

 // Prints out the closest 10 words to "day". An example on what to do with
 //these Word Vectors.
 log.info("Closest Words:");
 Collection<String> lst = vec.wordsNearest("day", 10);
 System.out.println("10 Words closest to 'day': " + lst);

 }
}

In the section that follow, we’ll discuss specific parts of this code to better understand
what is happening in the example.

Understanding the Word2Vec example
In the following code snippet, we see how the raw sentences file included with the
code example repository is referenced and loaded by using a SentenceIterator
object:

// Gets Path to Text file
String filePath = new ClassPathResource("raw_sentences.txt").getFile()
 .getAbsolutePath();

log.info("Load & Vectorize Sentences....");
// Strip white space before and after for each line
SentenceIterator iter = new BasicLineIterator(filePath);
// Split on white spaces in the line to get words
TokenizerFactory t = new DefaultTokenizerFactory();

/*
 CommonPreprocessor will apply the following regex to each token:
 [\d\.:,"'\(\)\[\]|/?!;]+
 So, effectively all numbers, punctuation symbols and some special symbols are
 stripped off.
 Additionally it forces lower case for all tokens.
*/
t.setTokenPreProcessor(new CommonPreprocessor());

Applications of Deep Learning in Natural Language Processing | 225

Here, the preprocessing is performed by using the CommonPreprocessor object. Most
of the text manipulation for this example is performed under the hood with these
classes to make this a simpler example.

The Word2Vec architecture looks different than some of the previous network archi‐
tectures in this chapter. This is because the Word2Vec class is largely self-contained in
DL4J:

log.info("Building model....");
Word2Vec vec = new Word2Vec.Builder()
 .minWordFrequency(5)
 .iterations(1)
 .layerSize(100)
 .seed(42)
 .windowSize(5)
 .iterate(iter)
 .tokenizerFactory(t)
 .build();

You might also notice how the sentence iterator is set directly with the network archi‐
tecture. This is not a major difference in functionality yet more of a legacy API design
that has stayed around for this specific network.

Given that the sentence iterator was already set for this network we simply call
the .fit() method with no other parameters to train the network, as in the following
snippet:

log.info("Fitting Word2Vec model....");
vec.fit();

After the .fit() method completes, the example saves the network and prints out the
10 words closest to the word “day.”

Other practical uses of Word2Vec
The output of the Word2Vec neural network is a vocabulary in which each item has a
vector attached to it, which can be fed into a deep learning net or simply queried to
detect relationships between words. We also can use Word2Vec vectors for document
classification, as we’ll see later in the chapter (using paragraph vectors).

To do canonical document classification, after we’ve generated word vectors from a
corpus, we take every word occurring in the document we want to classify and sum
their word vectors together. This gives a vector that represents the document while
including the contextual information included with each word vector. We then use
this document vector in the same way as a TF-IDF generated vector for a document
would be used.

226 | Chapter 5: Building Deep Networks

19 Baroni, Dinu, and Kruszewski. 2014. “Don’t count, predict! A systematic comparison of context-counting vs.
context-predicting semantic vectors.”

20 Le and Mikolov. 2014. “Distributed Representations of Sentences and Documents.”

Learning Global Vectors for Word Representation by Using GloVe
An alternative method to Word2Vec is called GloVe.

GloVe is an unsupervised learning algorithm for building word embeddings. It builds
the model based on aggregated global word-word co-occurrence statistics from the
input data (e.g., group of text documents). The major difference to note is where
Word2Vec is a “predictive” model, GloVe is a “count-based” model.19 It’s worth noting
that GloVe is considered to be more difficult to train and tune as compared to
Word2Vec.

DL4J has a GloVe example similar to the preceding Word2Vec exercise, which you
can find in the examples repository.

Distributed Representations of Sentences with Paragraph Vectors
If we continue with the ideas established with Word2Vec, we can expand this techni‐
que to model arbitrarily larger sequences (e.g., sentences or documents) to be mod‐
eled in a similar fashion. In this example, we’ll create paragraph vectors (e.g.,
Doc2Vec).

Historically, machine learning algorithms have required fixed-length representations
of documents for modeling. One of the most common methods for doing this is the
bag-of-words vectorization method. The bag-of-words method creates a count for
every unique word in the document in a vector. This has two major issues:

• We lose the ordering of words
• We are not modeling the semantics of the words

With paragraph vectors, we learn a fixed-length vector representing variable length
sequences of text (e.g., sentences, paragraphs, or documents). Each logical record is
represented by a dense vector. Research20 has shown the paragraph vector method to
outperform the bag-of-words method and other text representation approaches.
Paragraph vectors also have been shown to improve accuracy on several text classifi‐
cation and sentiment analysis problems.

In this example, we work with paragraph vectors in the Doc2Vec implementation in
DL4J. Doc2Vec is an extension of Word2Vec that learns to correlate labels and words,
rather than words with other words. Doc2Vec learns the input corpus as an unsuper‐

Applications of Deep Learning in Natural Language Processing | 227

http://bit.ly/2sxHemC
http://bit.ly/2sxHemC
https://cs.stanford.edu/~quocle/paragraph_vector.pdf
http://nlp.stanford.edu/projects/glove/
http://bit.ly/2sNV7S9
https://github.com/deeplearning4j/oreilly-book-dl4j-examples/

vised training method because we don’t need to explicitly give it labels. Let’s take a
look at a code example using DL4J to model paragraph vectors.

Building paragraph vectors
In the code in Example 5-8 we build a distributed representation (paragraph vectors)
of all sentences present in the training corpus. The training data for the example is
included in the example repository, so you need only execute the class after the repos‐
itory has been cloned and is running locally.

Example 5-8. Building paragraph vectors by using DL4J in Java

public class ParagraphVectorsTextExample {

 private static final Logger log =
 LoggerFactory.getLogger(ParagraphVectorsTextExample.class);

 public static void main(String[] args) throws Exception {
 ClassPathResource resource = new ClassPathResource("/raw_sentences.txt");
 File file = resource.getFile();
 SentenceIterator iter = new BasicLineIterator(file);

 AbstractCache<VocabWord> cache = new AbstractCache<>();

 TokenizerFactory t = new DefaultTokenizerFactory();
 t.setTokenPreProcessor(new CommonPreprocessor());

 /*
 if you don't have LabelAwareIterator handy, you can use synchronized
 labels generator it will be used to label each document/sequence/line
 with it's own label.
 But if you have LabelAwareIterator ready, you can can provide it,
 for your in-house labels
 */
 LabelsSource source = new LabelsSource("DOC_");

 ParagraphVectors vec = new ParagraphVectors.Builder()
 .minWordFrequency(1)
 .iterations(5)
 .epochs(1)
 .layerSize(100)
 .learningRate(0.025)
 .labelsSource(source)
 .windowSize(5)
 .iterate(iter)
 .trainWordVectors(false)
 .vocabCache(cache)
 .tokenizerFactory(t)
 .sampling(0)
 .build();

228 | Chapter 5: Building Deep Networks

http://bit.ly/2sOGTAb

 vec.fit();

 /*
 In training corpus we have few lines that contain pretty close words
 involved.
 These sentences should be pretty close to each other in vector space
 line 3721: This is my way .
 line 6348: This is my case .
 line 9836: This is my house .
 line 12493: This is my world .
 line 16393: This is my work .
 this is special sentence, that has nothing common with previous sentences
 line 9853: We now have one .
 Note that docs are indexed from 0
 */

 double similarity1 = vec.similarity("DOC_9835", "DOC_12492");
 log.info("9836/12493 ('This is my house .'/'This is my world .') similarity:
 " + similarity1);

 double similarity2 = vec.similarity("DOC_3720", "DOC_16392");
 log.info("3721/16393 ('This is my way .'/'This is my work .') similarity:
 " + similarity2);

 double similarity3 = vec.similarity("DOC_6347", "DOC_3720");
 log.info("6348/3721 ('This is my case .'/'This is my way .') similarity: "
 + similarity3);

 // likelihood in this case should be significantly lower
 double similarityX = vec.similarity("DOC_3720", "DOC_9852");
 log.info("3721/9853 ('This is my way .'/'We now have one .') similarity: "
 + similarityX + "(should be significantly lower)");
 }
}

As you can see in the results, the first three similarity queries produce higher similar‐
ity scores than the last one, which is significantly lower.

Understanding the paragraph vectors example
The paragraph vectors example is similar structurally to the previous Word2Vec
example in how we load the input training data, set up the network, and then train on
the data. Again, the file and directory handling is done automatically by the included
helper classes:

Applications of Deep Learning in Natural Language Processing | 229

ClassPathResource resource = new ClassPathResource("/raw_sentences.txt");
File file = resource.getFile();
SentenceIterator iter = new BasicLineIterator(file);

AbstractCache<VocabWord> cache = new AbstractCache<>();

TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());

/*
 if you don't have LabelAwareIterator handy, you can use synchronized labels
 generator it will be used to label each document/sequence/line with
 it's own label.
 But if you have LabelAwareIterator ready, you can can provide it, for your
 in-house labels
*/
LabelsSource source = new LabelsSource("DOC_");

The paragraph vector implementation in DL4J uses a helper class called Paragraph
Vectors, as shown here:

ParagraphVectors vec = new ParagraphVectors.Builder()
 .minWordFrequency(1)
 .iterations(5)
 .epochs(1)
 .layerSize(100)
 .learningRate(0.025)
 .labelsSource(source)
 .windowSize(5)
 .iterate(iter)
 .trainWordVectors(false)
 .vocabCache(cache)
 .tokenizerFactory(t)
 .sampling(0)
 .build();

vec.fit();

Key hyperparameters are set directly using methods on this class because Paragraph
Vectors has a more dedicated API (like Word2Vec) as compared to the broader
approach other networks use with the MultiLayerConfiguration class.

Again, we call the .fit() method, and at the end of the example, we see a few docu‐
ments compared against one another with the cosine similarity metric (as we saw in
the Word2Vec example). This example should give you a great feel for how to build
paragraph vectors with DL4J. In the next example, let’s take a look at how to incorpo‐
rate paragraph vectors into a broader application using them for classification.

230 | Chapter 5: Building Deep Networks

21 Perozzi, Al-Rfou, and Skiena. 2014. “DeepWalk: Online Learning of Social Representations.”

Generalizing Sequence Vectors

Paragraph vectors are an implementation of sequence vectors. The
DL4J project has a general purpose implementation of skipgram
that underlies models such as Word2Vec, paragraph vectors, and
DeepWalk.21

Hinton on the Potential Implications of Paragraph Vectors
In a 2015 speech to the Royal Society in London, Geoffrey Hinton said the following:

The implications of this for document processing are very important. If we convert a
sentence into a vector that captures the meaning of the sentence, then Google can do
much better searches; they can search based on what’s being said in a document.
Also, if you can convert each sentence in a document into a vector, then you can take
that sequence of vectors and [try to model] natural reasoning. And that was some‐
thing that old fashioned AI could never do.
If we can read every English document on the web, and turn each sentence into a
thought vector, you’ve got plenty of data for training a system that can reason like
people do.
Now, you might not want it to reason like people do, but at least we can see what they
would think.
What I think is going to happen over the next few years is this ability to turn senten‐
ces into thought vectors is going to rapidly change the level at which we can under‐
stand documents.
To understand it at a human level, we’re probably going to need human level resour‐
ces and we have trillions of connections [in our brains], but the biggest networks we
have built so far only have billions of connections. So we’re a few orders of magnitude
off, but I’m sure the hardware people will fix that.

Using Paragraph Vectors for Document Classification
As mentioned earlier in the chapter, we can use paragraph vectors in the context of
NLP and document classification. In this example, we’ll use a paragraph vector model
similar to the one in the last example in an application to build a document classifier
that gives us one of three labels as output similar to the following:

Document 'health' falls into the following categories:
 health: 0.29721372296220205
 science: 0.011684473733853906
 finance: -0.14755302887323793

Applications of Deep Learning in Natural Language Processing | 231

https://arxiv.org/abs/1403.6652
http://bit.ly/2tPQeHM

As you can see in the preceding snippet, the label with the highest score is our classi‐
fication. Let’s take a look at Example 5-9 for our paragraph vectors classification
application.

Example 5-9. Using paragraph vectors to classify documents in Java

public class ParagraphVectorsClassifierExample {

 ParagraphVectors paragraphVectors;
 LabelAwareIterator iterator;
 TokenizerFactory tokenizerFactory;

 private static final Logger log =
 LoggerFactory.getLogger(ParagraphVectorsClassifierExample.class);

 public static void main(String[] args) throws Exception {

 ParagraphVectorsClassifierExample app =
 new ParagraphVectorsClassifierExample();
 app.makeParagraphVectors();
 app.checkUnlabeledData();
 /*
 Your output should be like this:
 Document 'health' falls into the following categories:
 health: 0.29721372296220205
 science: 0.011684473733853906
 finance: -0.14755302887323793
 Document 'finance' falls into the following categories:
 health: -0.17290237675941766
 science: -0.09579267574606627
 finance: 0.4460859189453788
 so,now we know categories for yet unseen documents
 */
 }

 void makeParagraphVectors() throws Exception {
 ClassPathResource resource = new ClassPathResource("paravec/labeled");

 // build a iterator for our dataset
 iterator = new FileLabelAwareIterator.Builder()
 .addSourceFolder(resource.getFile())
 .build();

 tokenizerFactory = new DefaultTokenizerFactory();
 tokenizerFactory.setTokenPreProcessor(new CommonPreprocessor());

 // ParagraphVectors training configuration
 paragraphVectors = new ParagraphVectors.Builder()
 .learningRate(0.025)
 .minLearningRate(0.001)
 .batchSize(1000)

232 | Chapter 5: Building Deep Networks

http://bit.ly/2sOpJ5Q
http://bit.ly/2sOpJ5Q

 .epochs(20)
 .iterate(iterator)
 .trainWordVectors(true)
 .tokenizerFactory(tokenizerFactory)
 .build();

 // Start model training
 paragraphVectors.fit();
 }

 void checkUnlabeledData() throws FileNotFoundException {
 /*
 At this point we assume that we have model built and we can check
 which categories our unlabeled document falls into.
 So we'll start loading our unlabeled documents and checking them
 */
 ClassPathResource unClassifiedResource =
 new ClassPathResource("paravec/unlabeled");
 FileLabelAwareIterator unClassifiedIterator = new FileLabelAwareIterator
 .Builder()
 .addSourceFolder(unClassifiedResource.getFile())
 .build();

 /*
 Now we'll iterate over unlabeled data, and check which label it could be
 assigned to
 Please note: for many domains it's normal to have 1 document fall into few
 labels at once, with different "weight" for each.
 */
 MeansBuilder meansBuilder = new MeansBuilder(
 (InMemoryLookupTable<VocabWord>)paragraphVectors.getLookupTable(),
 tokenizerFactory);
 LabelSeeker seeker = new LabelSeeker(iterator.getLabelsSource().getLabels(),
 (InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable());

 while (unClassifiedIterator.hasNextDocument()) {
 LabelledDocument document = unClassifiedIterator.nextDocument();
 INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
 List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);

 /*
 please note, document.getLabel() is used just to show which document we're
 looking at now,as a substitute for printing out the whole document name.
 So, labels on these two documents are used like titles,
 just to visualize our classification done properly
 */
 log.info("Document '" + document.getLabel()
 + "' falls into the following categories: ");
 for (Pair<String, Double> score: scores) {
 log.info(" " + score.getFirst() + ": " + score.getSecond());
 }
 }

Applications of Deep Learning in Natural Language Processing | 233

 }
}

The overall idea in Example 5-9 is to use the ParagraphVectors class in the same
way that we use LDA (e.g., “topic space modeling”).

In this example, we assume that we have few labeled categories that we can use for
training, and then a few unlabeled documents. Our goal with the application is to
determine which category these unlabeled documents fall into by taking advantage of
information contained in the paragraph vector.

Understanding the paragraph vectors classification example
This example has some similar mechanics as the previous example yet has been
extended to classify unlabeled documents. Here’s the main driver code:

public static void main(String[] args) throws Exception {

 ParagraphVectorsClassifierExample app =
 new ParagraphVectorsClassifierExample();
 app.makeParagraphVectors();
 app.checkUnlabeledData();

You can see how the previous example has been wrapped by the .makeParagraphVec
tors() method. The next line proceeds to use this paragraph vector model to classify
new unlabeled documents. Within the .checkUnlabledData() method is the list of
documents being classified inside the loop with the code:

LabelledDocument document = unClassifiedIterator.nextDocument();
INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);

The next lines take the generated scores and print them to the screen:

log.info("Document '" + document.getLabel() + "'
 falls into the following categories: ");
for (Pair<String, Double> score: scores) {
 log.info(" " + score.getFirst() + ": " + score.getSecond());
}

To produce the output:

Document 'health' falls into the following categories:
 health: 0.29721372296220205
 science: 0.011684473733853906
 finance: -0.14755302887323793

The highest score

health: 0.29721372296220205

234 | Chapter 5: Building Deep Networks

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

22 Nay. 2016. “Gov2Vec: Learning Distributed Representations of Institutions and Their Legal Text.”
23 Grover and Leskovec. 2016. “node2vec: Scalable Feature Learning for Networks.”

would be considered our classification. You can clearly see in the preceding output
the document was classified as “health,” which is correct because it matches the asso‐
ciated label in the data.

Further exploration of the Word2Vec approach
As we mentioned earlier in the chapter with regard to CNNs, many of the applica‐
tions referenced here for different architectures are just a good starting place. In gen‐
eral terms, embeddings are mappings of relationships in data as learned by a neural
network. Other interesting variants of the Word2Vec approach include applications
in the following areas:

• Extensions into specific domains
• Graph analysis
• Recommendations
• Image identification

Extensions into specific domains: Gov2Vec. One interesting application of Word2Vec is
an extension into the domain of legal text analysis in government called Gov2Vec.
This is description from the author’s paper:22

We compare policy differences across institutions by embedding representations of the
entire legal corpus of each institution and the vocabulary shared across all corpora into
a continuous vector space. We apply our method, Gov2Vec, to Supreme Court opin‐
ions, Presidential actions, and official summaries of Congressional bills.

This variant of neural word embeddings is able to understand the relationships to
how Congress and the President might or might not veto a bill, and how that evolves
over time. They are able to answer such questions as the following:

How does Obama and the 113th House differ in addressing climate change and how
does this vary from environmental or economic perspectives?

Vector arithmetic approaches are something we’ll most likely see more of as deep
learning evolves.

Graphs and Node2Vec. In the domain of graph analysis, there is Node2Vec,23 an algo‐
rithmic framework for learning continuous feature representations for nodes in net‐
works. An interesting property of Node2Vec is that it is scalable to very large graphs
(millions of nodes/edges or more).

Applications of Deep Learning in Natural Language Processing | 235

http://aclweb.org/anthology/W16-5607
https://arxiv.org/abs/1607.00653

24 Barkan and Koenigstein. 2016. “Item2Vec: Neural Item Embedding for Collaborative Filtering.”
25 Schroff, Kalenichenko, and Philbin. 2015. “FaceNet: A Unified Embedding for Face Recognition and Cluster‐

ing.”

Recommendation engines and Item2Vec. Another interesting application of the concept
is Item2Vec, in which the approach is used for recommendation systems.24 In this
paper, the authors show the neural word embedding approach used as an item-based
collaborative filtering technique for recommendations.

Computer vision and FaceNet. In the arena of image identification, there is FaceNet,25 in
which we see an application of neural network embeddings used to generate repre‐
sentation of facial features (images).

Overall, the Word2Vec approach is an interesting method to use embeddings to map
the relationships between input data. It allows us to further use data for clustering,
classification, and comparison.

236 | Chapter 5: Building Deep Networks

https://arxiv.org/abs/1603.04259
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
http://crockpotveggies.com/2016/11/05/triplet-embedding-deeplearning4j-facenet.html

CHAPTER 6

Tuning Deep Networks

All things are poisons, for there is nothing without poisonous qualities. It is only the dose
which makes a thing poison.

—Paracelsus, fifteenth-century Renaissance physician, botanist, alchemist, astrologer,
and occultist

Basic Concepts in Tuning Deep Networks
In this chapter, we take a look at the methods and strategies for training neural net‐
works. We examine the following:

• Matching network architecture to the problem at hand
• The basics of hyperparameter tuning
• Better understanding the process of learning

Obviously, this chapter can’t be comprehensive of the entire breadth of published tun‐
ing work in the space of deep learning. Our strategy was to sample the most relevant
material and create a narrative that exposes you to the core concepts in deep architec‐
ture tuning. Chapter 7 then specifically focuses on tuning techniques for the most
well-known architectures in deep networks:

• Deep Belief Networks (DBNs)
• Convolutional Neural Networks (CNNs)
• Recurrent Neural Networks

Let’s begin with a general idea, or intuition, on how we want to approach building
different neural networks with different goals.

237

https://en.wikipedia.org/wiki/Paracelsus

Tuning Restricted Boltzmann Machines

In this chapter, we cover tuning Restricted Boltzmann Machines
(RBMS) in the context of tuning DBNs.

An Intuition for Building Deep Networks
As we get underway, you should ask yourself two questions:

• What kind of input data will I be modeling?
• What is the output I want to know after this model is constructed?

Understanding what kind of data you’re modeling will largely dictate what class of
deep learning architecture and input layer you need to implement. Determining what
you want to know from data of this class will inform you as to whether you want to
get class scores (classify something with probabilities) or produce a real-valued target
output (regression). This also will determine what kind of output layer you need to
use. There are variations and caveats in many corners of deep networks, but these two
questions will help get you started down the path of constructing a well-designed
foundation for your deep network architecture. When you understand these two
things, you can move to the next tier of design decisions, which focus on setting up
the parameters themselves:

• Number of layers
• Parameter count per layer

You also need to take into consideration the memory requirements needed for a par‐
ticular network architecture decision based on parameter counts. The number of lay‐
ers and parameter count per layer will ultimately express how much capacity the
network has to represent the structure in the data. For some problems, we can repre‐
sent a surprisingly complicated model with relatively few parameters (total neuron
count).

Now that you have an architecture and layers, here are some other items to consider:

• Weight initialization strategy
• Activation function
• Loss function
• Optimization algorithm
• Mini-batching
• Regularization

The weight initialization strategy typically corresponds to our architecture type along
with the input data type. Initializing the weights well or poorly can help or hinder the
learning process. You’ll need an activation function for each layer to model nonlinear

238 | Chapter 6: Tuning Deep Networks

relationships between the input and output data. Activation functions help you to
learn certain types of features along with setting up your output layers to give you
answers like regression or classification. You want to match certain layer types (acti‐
vation function types) with certain loss functions in specific architectural situations.

Affecting Learning with Loss Functions

Loss functions are how you define what you want the network to
learn (classification or regression, for example). You need to match
them with both an appropriate activation function and the type of
data/labels you have.

Depending on your problem space, you’ll also want to consider different types of
optimization methods.

Regularization methods help prevent the model from getting too focused on noise in
the data and keep the weights as small as possible to generalize across the full data
population—for example, examples not seen during training. As we’ll see in this
chapter, many of the aforementioned design decisions are tied together or have an
impact on all other architectural decisions of the network. We’ll spend the bulk of this
chapter explaining how these design interdependencies work. Let’s now formalize
some of these high-level ideas into a more distinct step-by-step process that you can
use as a guide for network architecture construction.

Building the Intuition as a Step-by-Step Process
The previous section discussed in general what we need to do to build a deep network
architecture. In the steps that follow, we formalize the process in a guide that you can
use for most any neural network modeling problem.

1. Determine what our input data should be:
a. The input data type informs us as to architecture

2. Determine what our intended result should be:
a. Gives us guidance on configuring architecture
b. Determines the output layer type

3. Set up architecture of network to support problem:
a. Choice of model, architecture, and cost function are all important
b. Depending on the architecture, we’ll select a number of hidden layers
c. Choose activations per layer based on the overall architecture of the network

and the intent of the specific layer
4. Work with training data to handle the following tasks:

a. Clean data
b. Produce visualizations
c. Perform vectorization and normalization

Basic Concepts in Tuning Deep Networks | 239

d. Balance classes (as necessary)
e. Create test, train, and validate splits

5. Develop a hyperparameter tuning strategy with a balanced subset of the data:
a. Increase the subset data size and tweak hyperparameters as needed

6. If the final training dataset is large, use Spark to train on more data faster (where
appropriate).

These steps are still high level in terms of specific tuning detail, but they give us a
general path to follow when building any deep network. By the end of this chapter, we
hope that you will be armed with a good set of basic tuning principles to approach the
emerging domains in data science today. Let’s now dig into the specifics of deep net‐
work tuning, beginning with the first step in our process: matching input data and
network architectures.

Matching Input Data and Network Architectures
As discussed in the previous section, we want to begin our deep network design
process by thinking in terms of what our source dataset represents. Here are some
examples:

• Columnar data
• Image data
• Audio data
• Video data
• Time-series data

For columnar—or, comma-separated values (CSV)—data, typically we’re dealing with
a relational database management system (RDBMS) export of a table or the result-
denormalized table of multiple sets of data joined together, as shown in the following
example:

M,0.455,0.365,0.095,0.514,0.2245,0.101,0.15,15
M,0.35,0.265,0.09,0.2255,0.0995,0.0485,0.07,7
F,0.53,0.42,0.135,0.677,0.2565,0.1415,0.21,9
M,0.44,0.365,0.125,0.516,0.2155,0.114,0.155,10
I,0.33,0.255,0.08,0.205,0.0895,0.0395,0.055,7
I,0.425,0.3,0.095,0.3515,0.141,0.0775,0.12,8

We have neither image pixels to extract features from nor any time dependencies to
deal with (time-series data), so our architecture can be relatively vanilla. Here, we rec‐
ommend that you begin with a simple multilayer perceptron neural network.

For image classification tasks, we want to use a CNN. In recent years, CNNs have
demonstrated that they provide best-of-class results for image processing tasks (refer
to Chapter 4 for more on this).

240 | Chapter 6: Tuning Deep Networks

Sequential data is any situation in which we have a series of inputs to our model. This
is commonly seen in the wild as log data produced by servers or sensors. Time-series
data also falls into this bucket. We define time-series data as any data that has a series
of values each coupled with a value of time. These values, ordered chronologically,
track an entity’s activity over time. In most machine learning models, we need to do
some sort of feature extraction to produce one single input vector per set of time-
series data for our training algorithm. For any sequential or time-series data, you
should plan to use Recurrent Neural Networks, which have the ability to model N
number of input vectors and are not restricted to a single input vector (refer to Chap‐
ter 4 for a refresher). This gives us the ability to model activity over time.

We typically see good results on audio input data with Recurrent Neural Networks.
Audio data has a temporal nature to it in which we see a time-series of audio samples
to produce a waveform, which makes it a good match for Recurrent Neural Networks.

When working with video data, we need to do more elaborate computational gym‐
nastics to extract answers from the series of images. One way to approach this is to
combine convolutional, max-pooling, dense (feed-forward) and recurrent (Long
Short-Term Memory [LSTM]) layers to classify each frame of a video. Another
approach is to extract the individual frames of the video into image files and then use
CNNs to analyze the individual frames.

Dealing with Video Data

Using optical flow preprocessing helps a lot in practice. It helps to
capture some short-term temporal relationships in the data (e.g.,
movement between consecutive frames) that are not present in a
single frame.

Summary
We’ve provided you with an idea of where to begin with regard to different network
architectures, given a specific data input type. Table 6-1 sums it all up neatly.

Table 6-1. Matching input type to network architecture

Input data type Suggested architecture
Columnar aka CSV data Multilayer perceptron
Image CNN
Sequential Recurrent Neural Network—LSTM, specifically
Audio Recurrent Neural Network—LSTM, specifically
Video Hybrid CNN + Recurrent Neural Network

Matching Input Data and Network Architectures | 241

The Revolving Door of Network Architectures

Although the suggested architecture for each data type might work
well, be aware that there is a large amount of ongoing research.
New variations of architectures are published at a rapid pace these
days, so you should consider the suggestions presented here as nice
starting points but also be on the lookout for research extending
these architectures.

In the next section, we further flesh-out our architecture heuristics by looking at how
to set up layer and neuron counts.

Relating Model Goal and Output Layers
The previous section discussed matching our input data type to a specific neural net‐
work architecture. Now, it’s time to examine output layers, which involve more
thought because they are based on what kind of answer we expect from the model we
produce.

Every layer has an associated activation function for passing information to the next
layer. If we were trying to get output from the network, we’d have a final layer called
an “output layer” and set its activation function type according to our intended out‐
put or answer (e.g., classification or regression, as we’ll see momentarily).

Regression Model Output Layer
In regression models, we’re generating a real-valued output number such as the price
of a house based on its square footage. The two main considerations for a regression
model’s output layer are the loss function and the activation function.

Loss function
For the regression output layer loss function, we have multiple valid choices. The
most common are mean squared error (MSE) or sum of squared errors (L2).

Activation function
In this case, we use the identity (linear) output function.

Regression Output Layer and Other Edge Cases
Sometimes, we see the tanh activation function used for regression output layers
(only if all data is guaranteed to be in the range [−1, 1]) and then softplus or a recti‐
fied linear variant (leaky ReLU, randomized leaky ReLU) if data is guaranteed to be in
the range [0, ∞).

What about Rectified Linear Unit (ReLU) for regression, for which the labels data is
in the range [0, ∞)? Though the activation function itself can produce the correct

242 | Chapter 6: Tuning Deep Networks

range of output values—that is, also [0, ∞)—there is another problem to be aware of:
the so-called “dying ReLU” problem.

Essentially, there’s a chance that a ReLU can become stuck in the zero output section
of the activation function. If this occurs, the output for that ReLU (our network pre‐
diction) will always be 0, regardless of the network inputs. Other ReLU variants (leaky
and randomized leaky) and softplus don’t have this issue.

Classification Model Output Layer
In classification models, we have N number of output units in the output layer and we
produce a class score for each output unit. If N = 1, then we have a model with a sin‐
gle label. In this case, we’d be classifying the presence of a condition or no condition
(e.g., spam versus not spam). If N > 1 then we’re scoring the input with respect to
each of the classes, and we use a different output layer configuration. In this variation,
we might be classifying a document as to what category—sports, business, politics—it
belongs to. There is also the case for which the document could belong to multiple
categories—for example, sports and business.

Single-label classification models
In the basic single-label example, or binary classifier, we want to use a sigmoid activa‐
tion function for our output layer. This will give us a single output with a value some‐
where between 0.0 and 1.0, indicating whether the document is indeed spam.

When working with a single output label (for which we have a single value in the
range of 0.0 to 1.0 for two classes), use the cross-entropy loss function for the output
layer.

Single Output or Two Outputs for a Binary Classifier?
There is a variation for which we might use a softmax activation function with the
output layer with two outputs for a binary classifier. In this situation, the output is
going to be two double values that sum to 1.0, and the larger value is the index of the
label. In this variation, with softmax we want to use the MCXENT loss function.

There is debate around which output layer is the best way to model binary classifica‐
tion models. Mathematically, using a sigmoid single output is the same as using a
softmax output layer with two output units (with MCXENT/NegativeLogLikelihood
and one-hot representation, [1,0] or [0,1] instead of 0 or 1).

Relating Model Goal and Output Layers | 243

Models with more than two labels
There are two situations we need to consider when we have more than two labels:

• Sometimes we have multiple labels and we want the model to give us the most
likely single label. This is called multiclass classification.

• Other times we have multiple labels and we want multiple labels per output (e.g.,
person + car). This is called multilabel classification.

We look at each scenario below.

Multiclass classification models. Recalling our discussion from Chapter 2, if we have a
multiclass modeling problem yet we care only about the best score across these
classes, we’d use a softmax activation function for the output layer. The number of
output units is equal to the number of classes we want to classify in this scenario.

The outputs of all the units in the output layer will sum to 1.0. Given our outputs are
probabilities per class, we probably won’t see exactly 1.0 or exactly 0.0 per output, but
some value in between 0.0 and 1.0. We select the class (output unit) with the highest
probability as our classification result. We use an arg-max() function to get the index
of the class with the highest score (the predicted class).

We see part of a neural network set up in the following example with a softmax acti‐
vation function on the output layer:

.layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.SOFTMAX)
 .nIn(numHiddenNodes).nOut(numOutputs).build())

In the specific output layer section in this example, we see the layer type being speci‐
fied with the .activation() method.

Most of the time, we’ll see negative log likelihood used with the softmax activation
function, as we saw in the previous code snippet. Sometimes, we might see multiclass
cross-entropy used similarly, but it’s equivalent to negative log likelihood.

The data representation should be “one-hot” for the output. This would be relevant
when building the input/output training vectors because we need to remember to
convert the output vector to the one-hot representation. DL4J’s RecordReaderDataSe
tIterator can do this class index (0 to [number of classes – 1]) to the one-hot vector
conversion for us automatically.

244 | Chapter 6: Tuning Deep Networks

https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Multi-label_classification

1 See Morin and Bengio. 2005. “Hierarchical Probabilistic Neural Network Language Model” and Mikolov et al.
2013. “Distributed Representations of Words and Phrases and their Compositionality.”

2 Hierarchial softmax is not the only option. An alternative that solves the same problem is seen in Vishwana‐
than et al. 2015. “BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large
Vocabularies.”

Dealing with a Large Number of Labels

For the case in which the number of intended labels reaches the
ten-thousands, we’d want to use a hierarchial softmax output layer.
Hierarchical softmax1 is a fast(er) approximation to softmax suit‐
able for a large number of classes.2 We should consider it for com‐
putational reasons and not to improve accuracy.

Multilabel classification models. If we want to get multiple classifications per output
(e.g., “person + car”), we do not want softmax as an output layer activation function.
Instead, we’d use the sigmoid activation function for our output layer with multiple
output units, each representing a different class. Each unit then gives us a probability
for every class independently.

Again, we’d use the binary cross-entropy (LossFunction.XENT) loss function for the
output layer in this scenario.

The data representation we want to use for the output vector in the training data
would be a 0 or 1 for each class. This would differ from the one-hot representation
mentioned earlier because we could have multiple label entries as 1.0, whereas one-
hot can have only 1.

Multiple Output Layers

Suppose we wanted to use a neural network to predict the make of
a car (Ford, Toyota, GM, etc.) and also its type (SUV, sport, truck,
etc.). In this scenario, we’d need to use ComputationGraph + multi‐
ple output layers. For more information, go to https://deeplearn‐
ing4j.org/compgraph#multitask.

Quick Reference: Softmax Versus Sigmoid Activation Functions

The softmax activation function bounds the sum of the outputs to
be 1.0 (i.e., probabilities) versus the sigmoid activation function,
which bounds the output values individually. For example, the
probabilities of the output of a softmax layer will all add up to 1.0
yet the output of a sigmoid layer might have every unit with 0.9 as
the output. Sigmoid layers do not have this “lateral” constraint.

Relating Model Goal and Output Layers | 245

http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1511.06909
https://arxiv.org/abs/1511.06909
https://deeplearning4j.org/compgraph#multitask
https://deeplearning4j.org/compgraph#multitask

Working with Layer Count, Parameter Count, and Memory
In neural networks, the number of layers and neurons per layer determine how many
total parameters the model has. The number of total parameters in the network is
dependent on the types of layers and the number of connections (or weights) between
the neurons in each layer (plus the bias weights).

Layer Type and Neuron Count

The type of layer involved also can affect the number of parameters
in the network. For given layer input/output sizes, LSTM layers
have many more neurons than a vanilla Recurrent Neural Network
layer, which has more than a DenseLayer in DL4J. An example
would be how a DenseLayer has more parameters than a similarly
sized CNN layer.

As the number of parameters grows, the function we can model becomes more com‐
plex. After a point, the number of parameters becomes so large that we create a model
that overfits too many of the nuances of the dataset and won’t generalize as well.

For different network architectures, there are variations in how the layers, neurons,
and connection weights are set up. There are some high-level ideas about neural net‐
works that mainly apply to feed-forward multilayer perceptron neural networks. We
cover the specific architectures later in the chapter.

Feed-Forward Multilayer Neural Networks
For feed-forward multilayer perceptron neural networks, input layers are required to
have the same number of input units as the input vector. The output layer will simply
be equal to the number of labels for classification and a single neuron for regression.
In the sections that follow, we discuss strategies for determining layer and neuron
counts for neural networks.

Determining hidden-layer count
Hidden-layer count and dataset size have a relationship, as well. As our dataset size
grows, we want to have more hidden layers. An example of this would be that MNIST
needs only around three to four hidden layers (with accuracy decreasing beyond that
depth), but Facebook’s DeepFace uses nine hidden layers on what we can only guess
to be a very large dataset.

246 | Chapter 6: Tuning Deep Networks

Rule of Thumb for Hidden-Layer Count

The rule of thumb for hidden layers is the larger the dataset, the
more hidden layers and neurons we can use without overfitting.
With more training data, we’re less likely to overfit. We can have a
larger network and possibly achieve better accuracy. If the network
size is too small with a larger input dataset, we run the risk of
underfitting and our accuracy will not reach its best case for the
dataset.

Another factor that can drive the layer and parameter count up even higher is larger
variation in the dataset.

Determining neuron count per layer
If our network has too few neurons in the hidden layers, we’ll struggle to model the
data well during training. If our network has too many parameters, we will either deal
with overfitting issues or take more processing time to find a good model fit.

Here’s a good way to think about neuron count: the neuron count of progressive lay‐
ers should decline. We also want to be careful such that no hidden layer is less than a
quarter of the input layer’s nodes. When we have too many hidden-layer neurons, we
also increase the chance that we’ll overfit the dataset.

Rule of Thumb for Layer Neuron Counts

We want the right combination of layer size, regularization, and
amount of data. Large layers plus insufficient regularization will
hurt generalization. Larger (and more) layers (technically, more
parameters) often need more aggressive regularization (and/or
more data) to avoid overfitting.

In some cases, using the same number of hidden parameters for all layers as opposed
to a decreasing neuron count works generally better; however, this effect might work
only on certain types of datasets.

Controlling Layer and Parameter Counts
It is a common (initial) idea to remove parameters (or neurons) from a neural net‐
work to solve training issues such as overfitting. In practice, conversely, more often
than not we want to select a hidden-neuron count above the optimal value.

It has been empirically shown that the optimal number of hidden neurons is much
larger when using unsupervised pretraining (RBMs in DBNs) neural networks. An
example of this would be a hidden-neuron count going from hundreds of units to

Working with Layer Count, Parameter Count, and Memory | 247

3 Bengio. 2012. “Practical Recommendations for Gradient-Based Training of Deep Architectures,” in Muller et
al. 2012. Neural Networks: Tricks of the Trade, Second Edition.

4 Li, Karpathy. “CS231n: Convolutional Neural Networks for Visual Recognition.” (Course Notes)

thousands of units.3 Instead, to combat overfitting it is suggested to use regularization
techniques such as the following:

• L1
• L2
• Dropout
• Input noise
• DropConnect

The reasoning is that smaller networks will have few local minima (but possibly bad
models) and larger networks will have more local minima.4 We don’t want to use a
smaller network just because we fear overfitting the training dataset. Instead, throw
as many parameters at the problem as our computational platform will allow and use
the aforementioned techniques to combat overfitting.

Don’t Go Overboard with Parameters

Throw more parameters at the problem but be pragmatic about it.
Having a single layer with 1,000,000 neurons might not be the best
idea, even though the hardware could handle it.

As the variation and size of the training dataset grows, we recommend that you
slowly increase the hidden-layer count and the neuron count per layer.

Adding More Data to Control Overfitting

One of the best ways to control overfitting is to use more training
data (where possible).

Getting the parameter count for a network
There are two ways in practice to get the parameter count for a network:

• Hand-calculate the number for an architecture
• Use the DL4J API to calculate the parameter count

We can determine the number of parameters in a network by simply adding up the
number of parameters in each layer. Table 6-2 gives the number of parameters for
some commonly used layers.

248 | Chapter 6: Tuning Deep Networks

https://arxiv.org/abs/1206.5533
http://cs231n.stanford.edu/

5 For more details on calculating input sizes, see Stanford’s CS231n notes and DL4J’s ConvolutionMode Javadoc.
(Note alternatively you can use DL4J’s InputType functionality to have this numInputs value calculated and
set for you, and use DL4J to get your network configuration.)

Table 6-2. Calculating parameter count per network layer type

Layer type Number of parameters
Fully connected (e.g., Dense, MLP, OutputLayer in DL4J) nL − 1nL + nL

Convolutional dL − 1dLkHkW + dL

LSTM RNN (e.g., GravesLSTM) 4nL nL − 1 + 1 + nL 4nL + 3

Standard (vanilla) RNN nL − 1nL + nL 2
+ nL

Here’s how the parameters are calculated:

nL – 1

Number of inputs (size of previous layer, L – 1)

nL

Size of the current layer L

kH and kW

Convolutional layer kernel sizes in the height and width dimensions

dL – 1 and dL

The input and output depths/channels for the convolutional layer

Note that some layer types don’t have any parameters: for example, subsampling and
activation layers as well as DL4J’s LossLayer. One complication here is for networks
combining both convolutional layers and dense (or output) layers. For the dense (or
output) layer, after a convolutional/subsampling layer, we need to establish the size of
the activations array of the last convolutional layer. We want to use its length (per
example) as the nL − 1 value for the dense/output layer. For example, if our final con‐
volution layer outputs 5 × 5 activation with 100 channels, we should use nL − 1 = 5 × 5
× 100 = 2,500 as the input to the dense/output layer.5

Suppose that we have a DL4J configuration. How do we check the number of parame‐
ters? Here’s a simple way:

MultiLayerConfiguration configuration = ...
MultiLayerNetwork network = new MultiLayerNetwork(configuration);
network.init();

System.out.println("Total number of parameters: " + network.numParams());
for(int i=0; i<network.getnLayers(); i++){
 System.out.println("Layer " + i + " number of parameters: " +

Working with Layer Count, Parameter Count, and Memory | 249

 network.getLayer(i).numParams());
}

Estimating Network Memory Requirements
If our network configuration is too large for the hardware we are running on, train‐
ing will fail when the memory is completely consumed. Though not strictly related to
tuning, it’s an important topic for large networks—after all, we can’t tune our network
if we can’t train it in the first place.

When training a neural network, memory use comes from the allocation of multi-
dimensional arrays (INDArrays in DL4J). There are six different uses for these arrays
when training a neural network:

• Network parameters
• Parameter gradients (same size as network parameters)
• Network activations
• Network activation gradients (same size as network activations)
• Updater state (i.e., history for Momentum or RMSProp—an integer multiple of the

number of parameters)
• Training data

In addition, we need to consider overhead for working memory/temporary arrays,
shape buffer information, asynchronously preloaded data, and everything else the
Java Virtual Machine (JVM) needs to run.

Mathematically, the minimum memory requirements for training a neural network
(in bytes) can be estimated as

Nbytes, train = 4 nparams 2 + u + m 2a + d

whereas for using the network at test time (after training), we require only

Nbytes, test = 4 nparams + m a + d

where:

• u is the size of the updater (u = 0 for SGD, u = 1 for Momentum, RMSProp, and
Adagrad; u = 2 for Adam and Adadelta updaters)

• m is the mini-batch size
• a is the size of the network activations for a single example (all layers)
• d is the size of a single example

250 | Chapter 6: Tuning Deep Networks

Parallel Processing and Memory Calculations

When scaling out training to multiple machines (using Spark or
ParallelWrapper), we need to multiply Nbytes, train by the number
of model replicas.

A Note About DL4J, Memory, and Precision
By default, DL4J (via ND4J) uses 32-bit floating-point (FP32) numbers for all INDAr
rays. This means an INDArray with N elements will consume 4N bytes. 64-bit
floating-point (FP64) numbers can also be used for network training, which can
sometimes help with numerical stability issues (though numerical stability issues are
typically indicative of other tuning problems, anyway). However, FP64 has both a
memory (2x) and performance penalty (up to 32x on consumer graphics processing
unit [GPUs], or 2x on Tesla GPUs). CPU performance on FP64 will also suffer to a
lesser degree, due to memory and cache effects.

Finally, note also that 16-bit floating-point (FP16) format is also available in DL4J for
training on GPUs using CUDA. FP16 format reduces the memory requirements by a
factor of two compared to the default FP32 data format, allowing for a larger network,
larger batch sizes, or both. However, the FP16 memory savings come at the cost of
significantly reduced numerical precision, which can make networks more difficult to
tune. If you are new to tuning neural networks or are having trouble tuning your net‐
work, stick with the FP32 default, unless you really need it. As for performance: FP16
performance is very poor on most consumer GPUs, hence FP16 is used only as a stor‐
age format in DL4J. Actual operations are performed after first converting data to
FP32.

If we run into memory issues given our hardware, we have a few options:

1. Reduce the mini-batch size m
2. Get better hardware (or use a cloud service such as Azure, Amazon Web Service,

or Google Cloud)
3. Use FP16 instead of FP32 on GPUs (but beware of reduced numerical precision)
4. Use a smaller network

Weight Initialization Strategies
Weight initialization can greatly affect the training process. You should take care in
matching the appropriate weight initialization strategy with the appropriate problem
context. Initializing weights is a key starting place in the learning process for neural
networks and deep networks.

Weight Initialization Strategies | 251

6 Martens. 2010. “Deep learning via Hessian-free optimization.”

In general terms, we use the following strategy as a baseline in weight initialization:

• Biases can generally be initialized to zero
• Hidden weights need to be initialized such that they break symmetry between

hidden units

We break the symmetry between hidden units by adding randomization to the weight
initialization process. Weight initialization should be a function of the number of
inputs (and maybe also outputs).

Use WeightInit.XAVIER weight initialization, or use WeightI
nit.RELU when using ReLU or leaky ReLU activation functions.

If weights are too large, it can mean large outputs and large gradients, which can
obviously have a detrimental effect during learning. We also need to deal with initial‐
izing the biases of the network units, as well. The early stages of learning can be affec‐
ted by how we initialize the bias of the visible units. There are different ways to
initialize the network biases, but we typically default to 0. Initial hidden biases of 0
are usually fine outside of scenarios in which we are targeting a specific sparsity prob‐
ability.

Two specific situations we’ll call out in this section are weights connected to tanh and
ReLU units, respectively. Typically, they are set randomly, by sampling from a (typi‐
cally Gaussian or uniform) distribution with some variance. In a lot of cases, we can
just use the following guidelines and move on:

• For ReLU family activation functions (ReLU, Leaky ReLU, Randomized-Leaky
ReLU, etc.), use WeightInit.RELU weight initialization in DL4J.
This is also known as He initialization in some contexts, based on the 2015 paper
by He et al., “Delving Deep into Rectifiers.”

• For most other activation functions (tanh, identity, etc.) use WeightInit.XAVIER.
This is also known as Glorot initialization, based on the 2010 paper by Glorot
and Bengio, “Understanding the Difficulty of Training Deep Feedforward Neural
Networks.”
For weights connected to tanh units, other initialization methods involve con‐
cepts such as Sparse Initialization.6

252 | Chapter 6: Tuning Deep Networks

http://icml2010.haifa.il.ibm.com/papers/458.pdf

7 Gloriot and Bengio. 2010. “Understanding the difficulty of training deep feedforward neural networks.”
8 Saxe, McClelland, and Ganguli. 2013. “Exact solutions to the nonlinear dynamics of learning in deep linear

neural networks.”

• For biases, these are typically initialized to 0 (this is the default in DL4J).

In a nutshell, the ReLU and Xavier initializations are designed based on the network
architecture (layer sizes) and assumptions about the activation function to do two
things:

• Ensure the variance of network activations are constant for all layers. For exam‐
ple, activations don’t grow too large or too small in later layers in the network.

• Ensure that the variance of activation (and hence parameter) gradients are con‐
stant for all layers. For example, gradients don’t grow too large or small by the
time they are backpropagated to the earlier network layers.

Weight Initialization and Serving Two Masters

ReLU/Xavier initializations can’t optimize those two con‐
straints (activation/gradient variances) exactly in networks with
different layer sizes (or if activation function assumptions don’t
hold).7

Orthogonal Weight Initialization of RNNs
In Chapter 7 we look at tuning strategies for specific architectures such as LSTMs. It’s
worth noting here that LSTMs and Gated Recurrent Units (GRUs) have been shown
to have better performance in some cases with orthogonal weight initialization.8

Using Activation Functions
Table 6-3 presents notes for matching data distribution types to some of the activa‐
tion functions in feed-forward networks.

Table 6-3. Target distributions versus output layer activation functions in feed-forward
networks

Target distribution Output layer activation function
Binary (0, 1) Sigmoid Activation Function
Categorical Targets (1 of C coding) Softmax Activation Function
Continuous-valued (bounded range) Sigmoid or tanh (with scaled range of outputs to range of targets)

Using Activation Functions | 253

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
https://arxiv.org/abs/1312.6120v3
https://arxiv.org/abs/1312.6120v3

9 http://www.deeplearningbook.org/

Target distribution Output layer activation function
Positive (no known upper bound) ReLU family activation function, softplus activation function

(or use logarithmic normalization to transform to unbounded continuous)

Continuous-valued (not bounded) Linear activation function (equates to no activation function)

Sigmoid functions are the most common in neural network literature. The sigmoidal
class of functions were popular 20 years ago in neural network practice; today, they
have largely fallen out of favor for use in hidden layers.

Sigmoid and Information Loss

Compared to ReLU activation functions, sigmoid functions more
often discard information due to saturation in both forward- and
backpropagation, giving nonlinear effects to the network due to a
single parameter in a small neighborhood.9

Sigmoid has issues with zero gradient with large magnitude input. This becomes less
of a problem with mini-batch, but we need to be mindful to carefully initialize the
weights to avoid saturation.

The Decline of the Sigmoid Activation Function

We prefer the leaky ReLU activation function in place of the sig‐
moid activation function these days. The leaky ReLU activation
function has neither the vanishing gradient problem of sigmoid/
tanh, nor the “dying ReLU” problem of the vanilla ReLU.
The best practice is to not use sigmoid for hidden layers.

ReLU activation functions (piecewise linear units) are the most popular type of hid‐
den unit we see in modern deep networks today. We see ReLUs used commonly in
CNNs as the activation function of convolution layers. Stochastic Gradient Descent
(SGD) has been found to speed up learning with ReLUs when compared to sigmoid
and tanh functions. ReLUs are also computationally cheaper than sigmoid and tanh
functions.

254 | Chapter 6: Tuning Deep Networks

http://www.deeplearningbook.org/

The Dying ReLU Problem

You must be careful when using ReLUs because some units might
never activate (sometimes referred to as the “dying ReLU prob‐
lem”) across the entire training dataset.
Networks can still learn with many “dead” ReLU units; however,
these units won’t contribute to the network output, resulting in
wasted computational effort and lower effective network capacity.
The best practice is to use the leaky ReLU variation, which (unlike
the vanilla ReLU) has nonzero gradient for all input values.

The hard tanh activation function has a similar zero-gradient issue to the ReLU acti‐
vation function, in that parts of the input range have zero gradient: specifically, for
inputs below –1 and above +1, the gradient is zero.

A Note About Maxout
A maxout model is a feed-forward network that uses a maxout unit. Maxout units are
considered a generalization of ReLUs but without the dying unit issue. Maxout units
also double the number of parameters per neuron, increasing the overall parameter
count.

Maxout units have been shown to learn in conditions in which ReLUs do not perform
as well. The difference between ReLUs and maxout units is that maxout units are
piecewise linear, where each piece of the linear function has its own weight vector.
This aspect of maxout units helps them to avoid becoming stuck in learning in places
where ReLUs tend to do so.

Summary Table for Activation Functions
Table 6-4 summarizes the activation functions discussed in this section.

Table 6-4. List of common activation functions and where they are used

Function name Where to use it
Linear Output layer for regression

Sigmoid • Output layer for binary classification
• Outputs values on the range [0,1]
• Fallen out of favor, not to be used in hidden layers

Tanh • Continuous data, more than [–1,1]
• LSTM Layers

Softmax Multiclass classification model output layer

Using Activation Functions | 255

Function name Where to use it
ReLU • RBMs

• CNN layers
• Multilayer perceptron network layers

In general, we recommend exploring ReLU activation functions for general use, but
be careful with the learning rate and watch for dead neurons in the network. To com‐
bat these effects you could try the leaky ReLU activation function or the maxout acti‐
vation function. Tanh activation functions are another alternative but have been
noted to perform worse than ReLU and maxout activation functions in practice. Sig‐
moid units are generally used only for single-label classification on the output layer
and have fallen out of favor for use in hidden layers.

Applying Loss Functions
Loss functions let the optimization function know how well it’s doing at the intended
task. Previously in the chapter, we referenced the use of loss functions in the context
of the model goal (e.g., output layer loss functions). Following are a few notes about
other scenarios for loss functions, where to use them most effectively, and any caveats
about how they are used. To be direct, loss functions are used only in two places:

• Output layers (or, LossLayer)
• Layers that support unsupervised layer-wise pretraining; for example, autoencod‐

ers, RBMs, and VAEs

Most layers (convolutional, dense, LSTM, etc.) do not (and cannot) have a loss func‐
tion because they can’t be pretrained in a layer-wise manner.

Beyond the classification loss functions we listed earlier in the chapter, other classifi‐
cation loss functions include hinge loss and logistic loss. Hinge loss is the most com‐
monly used loss function when the network must be optimized for a hard
classification; for example, 0 = no fraud and 1 = fraud, which by convention is called a
0-1 classifier. Logistic loss functions are used when probabilities are of greater interest
than hard classifications. Great examples of these would be flagging potential fraud,
with a human-in-the-loop solution or predicting the probability of someone clicking
on an ad, which can then be linked to a dollar amount. Predicting valid probabilities
means generating numbers between 0 and 1.

256 | Chapter 6: Tuning Deep Networks

Binary Classification and Hinge Loss

We use the hinge loss mostly for binary classifications. There are
extensions for multiclass classification (e.g., one versus all or one
versus one) for the hinge loss that are not covered here.

Understanding the Debug Output During Training
During training, we’ll see command-line output such as the following:

21:36:00.358 [main] INFO o.d.o.l.ScoreIterationListener
 - Score at iteration 0
 is 0.5154157920151949

The value at the end is the average of the loss function for each example in the current
mini-batch. This number will not always begin and end at the same levels and is
dependent on the loss function used in the network architecture. If we take MSE, for
example, we’d get a different progress score as opposed to, say, a negative log likeli‐
hood loss function.

Here’s the easiest way to understand this number: “low is good, high is bad,” and we
want to see it generally drop over time.

To turn on this debugging output, add the following line to an example:

myNetwork.setListeners(new ScoreIterationListener(1));

Table 6-5 presents a summary of where to use each loss function.

Table 6-5. A summary of loss functions and where to use them

Loss function Where to use it Properties
Reconstruction entropy RBMs, autoencoders Used for feature engineering
Squared loss Output layer Regression
Cross-entropy Output layer Binary classification
Multiclass cross-entropy Output layer Classification
Root MSE Autoencoder, RBMs, output layer Feature engineering, regression
Hinge loss Output layer Classification
Negative log likelihood Output layer Classification

Applying Loss Functions | 257

Cross-Entropy, Logistic Loss, and Negative Log Likelihood

You might see these loss functions used in a similar manner across
literature and examples. As noted in Chapter 2, cross-entropy has
its origin in information theory, whereas negative log likelihood for
classification has its origin in statistical modeling. These methods
are mathematically the same, so although it might not matter
which is used, it tends to confuse people.

Understanding Learning Rates
The learning rate hyperparameter in neural networks is one of the most important (if
not the most important) hyperparameter to set when tuning a neural network. It has a
strong impact on both the stability and efficiency of training times.

Figure 6-1 shows how if the rate is too large (left), our network training will likely be
unstable (or diverge entirely). If our learning rate is too small (right), training can
take orders of magnitude longer than it needs to.

Figure 6-1. SGD and learning rate

We ideally want to see a large learning rate in the beginning of training and then see it
fall over time as we approach convergence of the training process. If we are using
Momentum, it can be advantageous to slowly increase the Momentum
value (described in the next section) as we train as the learning rate falls.

Momentum and Certain Updaters

If you’re using an updater such as Adam or RMSProp, the Momen‐
tum schedules are not used.

258 | Chapter 6: Tuning Deep Networks

10 Bengio. 2012. “Practical Recommendations for Gradient-Based Training of Deep Architectures,” in Muller et
al. 2012. Neural Networks: Tricks of the Trade, Second Edition.

Increasing the Learning Rate Setting

Increasing the learning rate initial setting is not always helpful
because although we may initially learn well, our algorithm will
learn more slowly in the long term.

Ideally we want to use some type of nonstatic learning rate scheme in which learning
rates can be set on multiple tiers:

• Globally
• Per layer
• Per neuron
• Per parameter (where we have more parameters per neuron, bias, etc.)10

We want the learning rate to begin to drop only near the end of learning. We want a
learning rate schedule that decays over time as if we could take the extra computa‐
tional time we want to train longer with a slower decay rate. We want this decay rate
to adapt per parameter and not be too aggressive to hinder learning too quickly.

Using the Ratio of Updates-to-Parameters
A simple and effective approach for setting the learning rate is to use the ratio of
updates-to-parameters (or specifically, the mean magnitudes thereof). Recall that the
updates are what we have after we apply our updater (RMSProp, Momentum, and so
on, and learning rate) to the gradients; that is, our learning equation becomes
θ θ − u with update u. If we let our updates vector (of length N, same length as our
parameters vector) be u and parameter vector be θ, the ratio of parameters-to-
updates is given as follows:

update: parameterratio =
1
N ∑n = 1

N ui
1
N ∑n = 1

N θi

This ratio measures how much we are changing the parameters relative to the current
value of the parameters. We can find this ratio in two places in DL4J’s UI: on the
Overview page (lower left) and also on the Model page (first graph after selecting a
layer vertex). Note that the ratio is presented in DL4J’s tuning UI as the logarithm to
the base 10, as seen in Figure 6-2.

Understanding Learning Rates | 259

11 You also could use other measures, such the ratio of L2 norms, for this purpose; these aren’t available in
DL4J’s training UI, but you could calculate them manually.

Figure 6-2. DL4J’s tuning UI showing the Update:Parameter Ratios graph

When using DL4J, to view the training progress shown in Figure 6-2, after the net‐
work starts training, go to http://localhost:9000/.

Using the Ratio to Set the Learning Rate

To set our learning rate, we want an update:parameter ratio of
approximately 0.001, which corresponds to a value of log10 ratio =
−3 in DL4J’s training UI.

For example, a log ratio of –4 (i.e., 0.0001) would mean we should increase our learn‐
ing rate; a log ratio of –2 (0.01) means we should decrease our learning rate.11

Specific Recommendations for Learning Rates
Learning rate settings tend to begin with a larger setting and fall over time through a
decay mechanism. If the learning rate starts out too large, we generally see the aver‐
age training loss to increase. The best learning rate is generally close (by a 2x factor)
to the largest learning rate that does not cause the learning process to diverge.

260 | Chapter 6: Tuning Deep Networks

Good Initial Learning Rates

Ideally, we begin with a large learning rate, and if the learning pro‐
cess diverges, we divide this rate by a factor and try again until the
learning process begins to converge.
We suggest starting out with the following learning rates and then
see which is the most stable: [0.1, 0.01, 0.001], with 0.001 being
one of the most popular places to begin.

We also suggest trying learning rate methods in the following order:

1. Adam

• Currently recommended as the default method to use

2. Nesterov Momentum
3. RMSProp

• Uses moving average of squared gradients
• Doesn’t have issue when learning rates become monotonically smaller, as in

AdaGrad

4. AdaGrad

Other supported options in DL4J include:

• AdaDelta

We Still Need to Watch Learning Rates

If we set the learning rate too high, training with AdaGrad will still
be unstable (as in any other method). AdaGrad can’t increase the
learning rate. In fact, the effective (per-parameter) learning rate
with AdaGrad is mononotically decreasing.
AdaGrad does act like a per-weight learning rate decay mechanism.
However, a downside of AdaGrad is that the monotonic learning
rate usually proves too aggressive and stops learning too early.
Implementations such as DL4J have AdaGrad builtin, so users can
worry less about hand-tuning the learning rate.

Understanding Learning Rates | 261

http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/#ada

12 Sutskever. 2013. “Training Recurrent Neural Networks” (PhD Thesis).

Working with Momentum/Nesterovs in DL4J

Momentum helps the learning process escape local minima and
find better solutions to the optimization process.12

We typically see Momentum values around 0.9. Other common
values near this setting that are commonly used are: [0.5, 0.9, 0.95,
0.99]. A typical initial setting in Momentum would be 0.5 and then
anneal it to 0.9 or so over multiple epochs. It’s also critical to
have .updater(Updater.NESTEROVS) in addition to .momen

tum(0.5). Without these two settings momentum will not be
enabled.

When a hidden unit has a very large fan-in (where many connections are coming in),
the updates need to be smaller, given that many small changes in the same direction
can have unintended effects on the sign of the gradient. In this context, the learning
rate should be smaller. For biases, we see updates that can be bigger yet no adverse
effects are seen. These mechanisms can make tuning the learning rate a challenge.

Here are a few other things to keep in mind:

• Learning rates are network specific: what works in one network might not work
in another.

• Keep in mind that the “update:parameter” heuristic is a guide only; it doesn’t
always work, but it’s frequently a good place to start.

• The required learning rate depends (sometimes a lot) on other hyperparameters.
For example, different updaters (Momentum, RMSProp, AdaGrad, etc.) can
require different learning rates; changing the weight initalization or number/
type/size of layers can also require the learning rate to be retuned. Thus, we
should always check our learning rate after making significant changes to our
network.

• Give the network some time to settle down before reading the update ratio chart
—perhaps a few dozen to a few hundred iterations (parameter updates) after
training has begun. The first few updates after starting training are often larger.

• It’s normal—and expected—for the bias update ratio to begin much larger than
0.001; after all, biases are usually initialized to 0.0. Thus, the initial update ratios
will be large, and will reduce in magnitude over time.

• In some cases, it can be necessary to set different learning rates for different lay‐
ers in order to get the correct ratio. However, this can be indicative of other prob‐
lems, such as vanishing/exploding gradients, poor weight initialization, or
problems with data normalization. Adam and RMSProp updaters may help to

262 | Chapter 6: Tuning Deep Networks

http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf

13 Le, Jaitly, and Hinton. 2015. “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units.”

mitigate this problem, as they can have a normalizing/scaling effect on the
gradients.

How Sparsity Affects Learning
The sparsity hyperparameter is commonly used in deep learning. Sparsity encourages
hidden units to be sparse (or near zero). Sparse representations have been thought to
be good because they encourage representations that separate the underlying factors
of representation.13

Sparsity helps training to become unstuck when weights get large values and have
issues backing out of them. Sparsity sometimes interacts with other hyperparameters
that dictate the size of the network. As the number of hidden nodes increases, our
sparsity factor should increase. How sparsity interplays with network size also will be
affected by the type of activation function we’re using for the network architecture.

To understand how well the sparsity setting is working, we take a look at the histo‐
gram of the mean activities of the hidden units. From that we can set the sparsity so
that the hidden units have mean probabilities near that of the target. If the probabili‐
ties are tightly clustered around the target value, we need to lessen the sparsity set‐
ting. This way it will interfere less with the main goal of the learning process.

Sparsity and Certain Network Architectures

Sparsity is not available for DenseLayers and LSTM layers in DL4J.

Sparsity Target Values

For quality learning we want to set the sparsity target between 0.01
and 0.1–9.

Applying Methods of Optimization
The most prevalent methodology for optimizing deep learning networks is SGD; it is
relatively easy to implement but is challenging to tune and parallelize.

Some researchers have made the argument that adding additional parameters to neu‐
ral networks fails to reduce underfitting on large datasets and wastes capacity. These

How Sparsity Affects Learning | 263

http://arxiv.org/abs/1504.00941

researchers have pointed to SGD as the cause and suggested using second-order
methods to mitigate these issues, including:

• Broyden-Fletcher-Goldfarb-Shanno (BFG)—Limited-memory BFGS (L-BFGS)
• Conjugate Gradient (CG)
• Hessian-free

Table 6-6 provides a quick reference table on best practices for initial optimization
method for each network architecture.

Table 6-6. Optimization algorithms for different architectures

Network Common training methods and notes
DBNs SGD

CNNs SGD (+Dropout)

Recurrent Neural Networks SGD, Hessian-free

Note of the effect of training dataset size on optimization method choice. When deal‐
ing with smaller datasets, we suggest using the second-order optimization methods
and setting the batch size to the full dataset. When dealing with larger datasets, we
suggest using SGD with a mini-batch setting. You could also try a second-order
method here with a mini-batch setting lower than the full dataset size.

Table 6-7 presents a comparison of each method.

Table 6-7. Comparison of optimization methods

Method First-order
info

Second-order info Pros Cons

SGD Gradient None Fast to converge, lowest cost
per parameter update

Not as robust

L-BFGS Gradient Curvature information
is estimated from the
gradients

Able to find better local
minima

Can train better than SGD, higher cost
per parameter update, higher memory
costs

CG Gradient Curvature information
is estimated from the
gradients

— Higher cost per parameter
update, higher memory costs

SGD
Hessian-
free

None Curvature Automatically derives step
size, uses conjugate gradient
to find next step

Not generalizable to all architectures,
higher cost per parameter
update, higher memory costs

Although we offer Table 6-7 as a quick comparison, for the most part you should
focus on starting out with SGD; thus, in the following section, we dive into specific
best practices for it.

264 | Chapter 6: Tuning Deep Networks

14 Sutskever et al. 2013. “On the importance of initialization and momentum in deep learning.”
15 LeCun et al. 1998. “Efficient BackProp” in Muller et al. 2012. Neural Networks: Tricks of the Trade Second Edi‐

tion.
16 Bottou. 2012. “Stochastic Gradient Descent Tricks” in Muller et al. 2012. Neural Networks: Tricks of the Trade

Second Edition.

SGD Best Practices
SGD works well with Momentum and a well-designed random weight initialization
scheme. It has been shown to be effective at training both DBNs and Recurrent Neu‐
ral Networks14 to levels on par with Hessian-free optimization. Researchers have seen
that a carefully tuned SGD method is hard to beat on large classification problems.15

Following is a quick summary of the best ways to begin training with SGD in deep
learning:

• Use a good shuffle method on the input training set16

• Watch both the error percent over iterations and the validation error rate
— We want to see training error decrease
— We can stop training early if we see validation error flatten out

• Use smaller subsets of the training data to try out variations of hyperparameters
(specifically for tuning the learning rate)

• Combine with Momentum, AdaGrad, and RMSProp
• Set learning rate appropriately: too large or small is bad
• Normalize the input data (not specific to SGD, but worth repeating because it’s

often forgotten)

For smaller problems with real-valued outputs (function approximation, control
problems, etc.), CG offers great performance. With the second-order methods we
typically see larger mini-batch sizes (10,000) than with the SGD methods.

SGD as the Most Frequent Starting Place

In practice people seem to use SGD + (Momentum or AdaGrad or
RMSProp, etc.) more frequently than second-order methods.

Using Parallelization and GPUs for Faster Training
As our machine learning application goals grow more ambitious, we need larger
models to accommodate them. This means that we need to train more parameters,
which takes more training time. We also want to train on larger datasets to get a more
complete view of the model, where we see I/O overhead begin to dominate after a
point (see also Jeff Dean’s 12 Numbers in Appendix C). In the context of a single

Using Parallelization and GPUs for Faster Training | 265

http://www.cs.utoronto.ca/~ilya/pubs/2013/1051_2.pdf

17 Zinkevich et al. 2011. “Parallelized Stochastic Gradient Descent.”
18 Dean and Ghemawat. 2004. “MapReduce: Simplified Data Processing on Large Clusters.”

machine, we are at the mercy of the raw clock speeds of modern CPUs. Computer
architectures have hit a hardware power limit and new gains are seen by combining
the power of multiple CPU cores together in different forms of parallel processing.
We can quickly hit the limits of sequential learning in modern machine learning
activities.17 Bandwidth of storage and network per computer has not been able to
keep up with the increase in data. We need to begin thinking about data analysis algo‐
rithms that are able to perform most steps in a distributed fashion.

Touching Disk at Scale

Accessing a hard drive can be expensive in terms of computational
latency. For example, if we have a 2 terabyte hard drive and we can
read from the disk at 100 MB/s, it will take around six hours to
read the entire contents. For more information on the different
latencies of computer architecture take a look at Appendix C on
“Jeff Dean’s 12 Numbers.”

Online Learning and Parallel Iterative Algorithms
The move from batch learning algorithms to online learning algorithms has been able
to deal with increasing dataset sizes for more than a decade now. However, whenever
we have more than a single drive of data, this task becomes computationally impracti‐
cal to process all data by SGD due to I/O overhead. In the world of big data, we need
to move the data less so we end up looking for methods to parallelize execution of
programs.

In recent work traditionally serial learning processes have been redesigned for paral‐
lel computations. This is accomplished by having a core perform the local computa‐
tions and then combining the work from several cores centrally to produce a global
result.18 As our dataset exceeds the capacities of a few drives, we begin to rethink how
we design our storage and processing systems. This was the impetus for the design of
MapReduce and the Google File System at Google in the early 2000s (and by exten‐
sion the work done by Doug Cutting and Michael Cafarella on Hadoop in the
mid-2000s).

We can parallelize computer programs and more specifically learning algorithms in
different ways. Any parallel program is composed of simultaneously executing pro‐
cesses. The different forms of parallelism relate to how we decompose the process
into parts that can be run in different places in parallel. Two main ways to do this are
task parallelism and data parallelism.

266 | Chapter 6: Tuning Deep Networks

http://martin.zinkevich.org/publications/nips2010.pdf
http://bit.ly/2uvKRe6

19 Agarwal, Chapelle, Dudik, and Langford. 2011. A Reliable Effective Terascale Linear Learning System.”, http://
hunch.net/~vw/, and McDonald, Hall, and Mann. 2010. “Distributed training strategies for the structured per‐
ceptron.”

Task parallelism
With task parallelism (also known as functional parallelism), we divide the work to be
done into several separate tasks that are then scheduled on different processing units
for execution. The processing units could be local threads or a core on a different
physical machine.

Data parallelism
With data parallelism we divide the work based on applying the same function to a
different parts of a dataset. The tasks to perform the work are then scheduled on dif‐
ferent threads (locally or on a remote machine in a distributed cluster), which makes
data parallelism a subset of task parallelism. With data parallelism, we spread the
computation across multiple processing units in a parallel computation environment.
These units can be threads on the same core, threads on different cores, or cores on
entirely different physical machines in a cluster.

As we parallelize iterative-class algorithms such as SGD we can use local thread-
parallelism effectively with the parameter-averaging technique.19 As the data size
grows, however, we begin to see issues with copying the data to the parallel process‐
ing units. The first intuition is to move to a system that is capable of handling big
data, such as Hadoop.

Big Data?
It’s very common to hear the term “big data” in today’s marketing around enterprise
software. The term has become so ubiquitous that it has even been mentioned by the
President and is frequently referenced in the Wall Street Journal. Interestingly enough,
most people struggle to define the term even though it’s used far and wide. We define
big data in the practical sense that the data is processed where it is stored, where we
move the computation to the data. MapReduce is architecturally built around this
concept. Many companies and tools claim to handle big data, but, simply put, if we
move the data before we process it, we aren’t working with big data.

Using Parallelization and GPUs for Faster Training | 267

https://arxiv.org/abs/1110.4198
http://hunch.net/~vw/
http://hunch.net/~vw/
http://bit.ly/2tZoukr
http://bit.ly/2tZoukr

20 See Cloudera and Hortonworks

How Long Does It Take to Scan a Petabyte?

A great example of the constraint of big data is that moving data
becomes a nonstarter after a certain point. A great example of this
is calculating how long it takes to run a linear scan over a petabyte
of data at the rate of a single commodity drive (around 40 MB/s).
This basic scan/copy operation will take around 310 days on a sin‐
gle processing unit at 40 MB/s.

Apache Hadoop is a great place to store and manage a large amount of data such as
web logs or sensor readings because it has been shown in enterprises around the
world to be petabyte-scale. The traditional parallel framework that was originally
included in Hadoop distributions20 was the MapReduce framework. MapReduce par‐
allelization is based around using the location of large amounts of data where it is
stored. It pushes computation (or tasks) to the local hosts where the data block is
stored and executes locally there to maximize the throughput on the physical spindle.

What Is MapReduce?
MapReduce is a traditional batch-class parallelization inspired by the map and reduce
functions commonly used in functional programming. It processes key and value
pairs from a map task (locally executing on a host that has the data block to reduce
I/O and network cost), shuffling the data into partitions for each reducer to operate
on in the reduce phase. Implementations such as Hadoop handle machine failures
transparent to the programmer, whereas traditionally this was part of the program‐
ming experience in parallel programming. However, MapReduce does not fit well
with iterative-class algorithms due to issues with the setup time per pass over the
dataset.

Issues with Iterative Algorithms and MapReduce

If you wanted to make 100 passes over the dataset and your Map‐
Reduce scheduling cost is 30 seconds per dataset pass, this gives
you an overhead of (100 × 30) 3,000 seconds. This is 50 minutes of
just scheduling overhead time, which ends up dominating many
training processes. This dynamic precludes MapReduce from being
a good parallel framework for parallel iterative algorithms.

Parallel optimization methods have attracted increasing attention in recent years as a
way to scale-up machine learning algorithms. From MapReduce class parallelism to

268 | Chapter 6: Tuning Deep Networks

http://www.cloudera.com
http://hortonworks.com
http://hadoop.apache.org/

21 Ngiam et al. 2011. “On optimization methods for deep learning.”
22 Dean et al. 2012. “Large Scale Distributed Deep Networks.”

more iterative methods of parallelism, we’re seeing many forms of parallel speedup.
SGD has been the focus of many research papers21 that have parallelized SGD without
using the MapReduce framework. We also see the evolution of open source frame‐
works (Vowpal Wabbit and Apache Spark) for the parallelization of iterative methods
for which parameter averaging is a central theme in the implementation.

Parallelizing SGD in DL4J
Another publication22 out of Google describes such a parallel system for iterative class
algorithms such as parallel SGD. This system is called Downpour SGD and takes
advantage of certain features such as AdaGrad, large numbers of model replicas, and
Sandblaster (parallel L-BFGS). Downpour (and components) was the inspiration for
DL4J’s parallelization architecture, which is depicted in Figure 6-3.

Figure 6-3. DL4J’s Parameter averaging parallelization strategy

Using Parallelization and GPUs for Faster Training | 269

http://stanford.io/2tZLDDs
http://bit.ly/2uyl9pH
http://hunch.net/~vw/
http://spark.apache.org/

One of the major research papers that inspired DL4J’s parallelization strategy was the
work by Jeff Dean and his team at Google on their SandBlaster tool.

Who Is Jeff Dean?
Jeff Dean is a distinguished research engineer at Google where he has worked on
some of the core systems. Jeff joined Google in mid-1999 and and is a Google senior
fellow in the Knowledge Group. As just mentioned, Jeff led the design and implemen‐
tation of DistBelief and SandBlaster (ICML 2012). DistBelief is Google’s large-scale
distributed system for training deep neural networks and has been used for image
recognition, speech recognition, Natural Language Processing (NLP), and other
machine learning tasks. Following are some of the other influential machine learning
and distributed systems projects Jeff has led:

• Five generations of crawling, indexing, and query serving systems
• Initial development of Google’s AdSense for Content product
• Design and implementation of MapReduce
• Design and implementation of BigTable
• Design and implementation of Spanner

Little known fact:

Jeff Dean writes directly in binary. He then writes the source code as documentation for
other developers.

DL4J supports many possible runtimes (e.g., AWS, threaded, Spark-YARN on
Hadoop) but all of them use the parameter averaging strategy (as of today). This tech‐
nique is common in parallel iterative research literature, as referenced earlier, and we
designed around a common set of general patterns that was ported to each runtime.

Parameter Server

A parameter server design is currently being added to the project,
but for now, parameter averaging is a worthy approach to many
parallel deep learning modeling problems.

Parallel SGD execution
A high-level execution flow of this pattern is as follows. Each worker is given a split of
the total dataset and runs its own training algorithm over the mini-batches on just
the records in the split. Per mini-batch, the worker sends its parameter vector back to
the master node to perform parameter averaging at the super step stage of the pro‐
cessing flow.

270 | Chapter 6: Tuning Deep Networks

Controlling Parameter Averaging

Parameter averaging frequency is configurable in DL4J. We con‐
sider parameter averaging “per mini-batch” to be inefficient. A
good setting has shown to be “per 5–20 mini-batches" in practice.

The master node then sends this new global parameter vector back to the workers so
that they can perform the next mini-batch within their data split. This continues until
we have completed a pass over all records in the dataset or we’ve completed N passes
over the dataset (refer to refer to Chapter 9 on Spark for more information).

We can illustrate this with an example of training in parallel. Suppose that we have 10
parallel workers each with even splits of 100 records per worker (to make it easy).
Each worker will then further subdivide the split into mini-batches of 10 records. The
workers (in parallel) will perform the learning process on each mini-batch until they
complete their 100 records, or “split,” of the total dataset. Parallelization gives us the
luxury of having relatively slow learning at the worker level but allowing the training
time to drastically speed up. Experimental results in literature and open source imple‐
mentations show that the speed improvements are close to linear in the number of
machines.

Parallel training might see different types of training effects in practice than serial
training.

The two major hyperparameters we focus on when dealing with parallel training are
mini-batch size and regularization. We need to consider these two more closely in
parallel training because they can behave differently than in serial training.

Mini-batching
One example is that in parallel training when we have a mini-batch size that is
too large, we see mini-batches that have outliers from the dataset. This situation
creates a longer training convergence period because it’s more difficult for the
learning process to gain the information from the outliers in larger mini-batches.

Regularization
Another example is that solving problems with more variance (small regulariza‐
tion constant) derives more model value from parallelization. The major differ‐
ence in training with parameter averaging as opposed to in a serial fashion is
reduced I/O overhead and the ability to take advantage of data locality (in imple‐
mentations that move compute workers to the data block host location). Another
side effect is that parameter averaging acts as a regularizing function on the
parameter vector.

Using Parallelization and GPUs for Faster Training | 271

GPUs
The parameter average method is not the only way to speed up iterative class algo‐
rithms. Let’s take a look at another method based on using GPUs that can use vector‐
ized math implementations on its specialized hardware. The common graphics card
shipped today with a desktop PC has a peak memory bandwidth several times higher
than modern CPUs.

Modern GPUs have more than 1,000 CUDA cores.

An interesting property of GPUs is that they can work concurrently with thousands
of threads and scheduling linear algebra work on cores is possible with little over‐
head. This class of fine-grained parallelism makes GPUs an attractive candidate for
speeding up our large-scale linear algebra computations in machine learning.

We want to perform our memory accesses in a fashion that allows greater parallelism.
GPUs give us a variant of this where memory accesses are coalesced, and the hard‐
ware can perform them in parallel where the effective access speed is several times
faster than between the normal CPU and RAM scenario. This makes the main bottle‐
neck transferring data between the CPU’s RAM and the GPU’s RAM. To give a rela‐
tive sense in this context, we see that in most cases this transfer time dominates even
large matrix × matrix computations on the GPU (e.g., matrix operation taking only
0.5 percent of the time in a 1,000 × 1,000–matrix multiplication). We can achieve
more efficiency from our hardware and GPUs if we transfer more data at one time
into RAM and perform multiple operations in a larger batch.

As we can see in Appendix C, we want to batch memory operations when we touch
hardware. After we have an efficient transfer of data into the GPU hardware, we can
then take advantage of the thousands of extra threads operating on separate blocks of
data within the training batch sent to the GPU at one time. These factors are the
major drivers for the linear algebra architecture of DL4J in how we use batching to
accelerate computation of many parameters across large neural networks. To further
accelerate these computations we created ND4J to make the vectorized computation
easily portable between linear algebra runtimes on different systems and different
GPUs.

272 | Chapter 6: Tuning Deep Networks

http://bit.ly/2tZpTr6

ND4J: An Adaptable Execution Engine

DL4J was built from the beginning with the idea that we’d need to
operate on CPUs, GPUs, or on a parallel framework. You will find
considerable flexibility working with swappable ND4J backends,
giving you options on execution.
To learn more about setting up GPUs as a ND4J backend, see
Appendix E.

Controlling Epochs and Mini-Batch Size
In Chapter 2, we introduced the concept of the mini-batch. It’s been shown that
dividing the training input dataset into mini-batches allows us to more efficiently
train the network. A mini-batch tends to be anywhere from 10 input vectors up to the
full input dataset.

This method also allows us to compute certain linear algebra operations (specifically
matrix–matrix multiplications) in a vectorized fashion. In this scenario, we also have
the option of sending the vectorized computations to GPUs if they are present.

Here are a couple of key terms to understand with respect to how we control training:

Epoch
An epoch is a full pass over the entire input dataset. Many times we train on mul‐
tiple epochs of a dataset before finding training convergence.

Mini-batch size
Mini-batch size is the number of records (or vectors) we pass into our learning
algorithm at the same time. This contrasts with where we’d pass in a single input
record on which to train.

The relationship between how fast our algorithm can learn the model is typically U-
shaped (batch size versus training speed). This means that initially as the batch size
becomes larger, the training time will decrease. Eventually, we’ll see the training time
begin to increase when we exceed a certain batch size that is too large.

As mini-batch size increases, more computation means gradients
might be smoother but are more costly to compute.

Ideally, each mini-batch trained on should contain an example of each class to reduce
the sampling error when estimating the gradient for the entire training set.

Controlling Epochs and Mini-Batch Size | 273

Understanding Mini-Batch Size Trade-Offs
In principle (with appropriate tuning), a neural network can learn with any mini-
batch size. In practice, we need to choose a mini-batch size that balances the follow‐
ing:

• Memory requirements
• Computational efficiency
• Optimization efficiency

Memory requirements have been covered in an earlier section, so we won’t talk about
them here.

Regarding computational efficiency, DL4J (and other modern deep learning libraries)
parallelize learning at the level of mathematical operations such as matrix multiplica‐
tions and vector operations (additions, element-wise multiplications, etc.). This
means that too small a mini-batch size results in poor hardware utilization (especially
on GPUs), and too large a mini-batch size can be inefficient—again, we average gra‐
dients over all examples in the mini-batch, which means eventually the computa‐
tional cost of adding more gradients outweighs the benefit.

For performance (this is most important in the case of GPUs), we should use a multi‐
ple of 32 for the batch size, or multiples of 16, 8, 4, or 2 if multiples of 32 can’t be used
(or result in too large a change given other requirements). In short, the reason for this
is simple: memory access and hardware design is better optimized for operating on
arrays with dimensions that are powers of two, compared to other sizes.

We should also consider powers of two when setting our layer
sizes. For example, we should use a layer size of 128 over size 125,
or size 256 over size 250, and so on.

With regard to optimization efficiency, it’s sufficient to note that we cannot choose the
mini-batch size totally in isolation from the other hyperparameters such as learning
rate—a larger mini-batch size means smoother gradients (i.e., more accurate/consis‐
tent gradients), which, in conjunction with appropriate tuning, allow for faster learn‐
ing for a given number of parameter updates. The trade-off of course is that each
parameter update will take longer to compute. Using a larger mini-batch size might
help our network to learn in some difficult cases, such as for noisy or imbalanced
datasets.

So, what mini-batch size should we choose? In practice, 32 to 256 is common for
CPU training, and 32 to 1,024 is common for GPU training. Usually, something in
this range is good enough for smaller networks, though you should probably test this
for larger ones (where training time can be prohibitive).

274 | Chapter 6: Tuning Deep Networks

https://svail.github.io/rnn_perf/
https://svail.github.io/rnn_perf/

However, memory requirements can limit the maximum batch size for large net‐
works anyway.

For distributed training, it’s not uncommon to use smaller mini-
batch sizes per executor on shared hardware (such as when train‐
ing on Spark with multiple executors per machine).

Finally, don’t forget that the number of parameter updates per epoch is reduced when
we increase the mini-batch size (where an epoch refers to one full pass of the training
data). The number of parameter updates per epoch is just the total number of exam‐
ples in our training set divided by the mini-batch size.

The Relationship Between Mini-Batch Size and Epochs

If we increase our mini-batch size by a factor of two, we need to
increase the number of epochs by a factor of two in order to main‐
tain the same number of parameter updates.

How to Use Regularization
Some types of regularization help drive down weights in the parameter vectors that
become too large too fast (e.g., L1 and L2). In some contexts or machine learning
textbooks, weight decay is referred to as regularization. Other types of regularization,
such as dropout and dropconnect, use other methods to mitigate overfitting besides
reducing large weights. In general, we want to use regularizaton methods in our
training because it does more than just prevent overfitting.

Regularization can give us a more efficient representation of the model by using dif‐
ferent methods to prevent our parameter values from becoming too large. Finding
the right combination of settings for regularization is typically done via manual tun‐
ing but also can be accomplished with “random search” or “grid search.” In the sec‐
tion that follow, we’ll give a short summary of each regularization method and how it
affects the overall training process.

Priors as Regularizers
Applying a prior function is a common machine learning technique for regularizing
the parameter vector. Weight decay is typically performed through a regularizing
function such as the L1 or L2 prior functions. In some cases, these functions are com‐

How to Use Regularization | 275

23 Zou and Hastie. 2005. “Elastic Net.”
24 Bengio. 2012. “Practical Recommendations for Gradient-Based Training of Deep Architectures,” in Muller et

al. 2012. Neural Networks: Tricks of the Trade Second Edition.
25 Li, Karpathy. “CS231n: Convolutional Neural Networks for Visual Recognition” (Course Notes).

bined,23 which is common for deep networks. Table 6-8 shows how we use a different
prior function depending on what type of input data we’re modeling.

Table 6-8. Summary of where to use prior functions

Prior function name How it’s used
L1 Sparse models
L2 Dense models

In the literature we see both L1 and L2 regularizers used at the same time with sepa‐
rate settings for each function. For cases in which we’re using early stopping, we
might not want to use L2 regularization at all, because early stopping is more efficient
at performing the same mechanics as L2.24 L1 regularization has been consistently
shown to act as a useful form of feature selection.

In practice, L2 regularization is more frequently used. Here are a couple of ways in
which L1 and L2 compare and contrast with each other:

• L2 more heavily penalizes large weights, but doesn’t drive small weights to 0.
• L1 has less of a penalty for large weights, but leads to many weights being driven

to 0 (or very close to 0), meaning that the resultant weight vector can be sparse.

We can combine L1 and L2 in the one network.

In practice we see L2 regularization give better performance over
L1 outside of explicit feature selection.25

As you’ll see in the next section, how much data we’re using also can have effects on
the results of the modeling process.

Max-Norm Regularization
In this form of regularization, we set an upper bound on the L2 norm of the incom‐
ing weight vector for each individual hidden unit. This is in contrast to penalizing the
squared length of the entire weight vector, as we’d normally do with the L2 norm.

276 | Chapter 6: Tuning Deep Networks

http://users.stat.umn.edu/~zouxx019/Papers/elasticnet.pdf
http://cs231n.stanford.edu/

26 Srivastava et al. 2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.”

Using a method based on constraints rather than the penalty strategy keeps weights
from growing too large regardless of how big the incoming weight update is.

Max-norm regularization allows us to start with large learning rates coupled with a
learning rate decay strategy (e.g., AdaGrad) giving us the ability to more completely
search the weight-space compared to other methods with smaller learning rates. It
has been shown to work well with SGD in deep neural networks even without drop‐
out.

Dropout
Dropout is a powerful method of regularization that we can use across many types of
models. Dropout is a computationally inexpensive way of regularization during
model training by removing units from the network. Dropout works with nearly
every type of neural network architecture and has been shown to work well with
SGD. Dropout works by setting a unit’s activations to 0.0 temporarily. For input layer
neurons, dropout is done with a probability (e.g., probability of retaining, or remov‐
ing an activation) between 0.5 and 1.0.

Sometimes we’ll use no dropout at all on the input, especially for
noisy or sparse datasets.

In hidden layers, dropout is done with a probability of 0.5. By randomly omitting
neurons we can prevent coadaptation among detectors, which helps drive better gen‐
eralization in models on held-out data.

Output Layers and Dropout

It is not common to use dropout on the output layer.

In general, almost all settings for dropout help, short of extreme settings. A setting of
0.5 for dropout is common and has been seen to work well on a range of networks
and goals. Dropout in all hidden layers works more effectively than in only one hid‐
den layer. Dropout also tends to make the activations of hidden units sparse even
when other regularization techniques are absent, leading to sparse representations.26

How to Use Regularization | 277

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

We can apply dropout (with probability 0.5) in DL4J by adding the following to our
network configuration:

.regularization(true).dropout(0.5).

The Dropout Probability

In DL4J, the dropout probability (set by using the dropout(dou
ble) configuration option) is the probability of retaining an activa‐
tion. That is, dropout(0.7) means that an activation is retained 70
percent of the time, and set to zero 30 percent of the time. Note
that in DL4J dropout(0.0) is used to mean “disable dropout for
this layer” (as 0 percent probability of retaining an activation
doesn’t make sense).
According to the original dropout paper by Srivastava et al., the
effect of dropout doesn’t depend strongly on the dropout probabil‐
ity. In most cases, just set it to 0.5 and move on. However, if you
have a very large network (relative to the amount of training data),
you might want to use a lower probability of retaining an activation
(which corresponds to stronger regularization).

More notes on using dropout:

• Dropout is often combined with other regularization methods, such as L2 regula‐
rization, in practice.

• As a general rule, you should avoid using dropout on the first layer in your net‐
work (disable it by setting dropout(0.0) on that layer): this will avoid wiping out
important parts of your input dataset.

DL4J, Dropout, and Recurrent Neural Networks

For Recurrent Neural Networks, dropout is generally applied only
on the activations into the layer and not the recurrent activations
within the layer. Applying dropout on the recurrent activations can
make it too difficult to learn temporal dependencies. DL4J applies
dropout on the input activations only, when applied to a Recurrent
Neural Network.

Issues with dropout
Dropout has been seen in research to be less effective as the number of training
records rises up into the tens of millions. Dropout has also been shown to increase
training time by a factor of two to three times than the same network architecture
with no dropout enabled. Noise in the gradients for learning is higher with dropout
than standard SGD.

278 | Chapter 6: Tuning Deep Networks

27 Ibid.
28 Zeiler and Fergus. 2013. “Stochastic Pooling for Regularization of Deep Convolutional Neural Networks.”
29 Goodfellow, Shlens, and Szegedy. 2014. “Explaining and Harnessing Adversarial Examples.”
30 Bengio et al. 2009. “Curriculum Learning.”

A way to combat the gradient noise is to use a higher Momentum setting (up from 0.9
to 0.95 to 0.99). In some cases, this will cause the weights to become large, which we
manage through the use of max-norm regularization.27

Dropconnect

Dropconnect simply sets some weights (temporarily) to
zero. Dropconnect is related to dropout, but isn’t really a variant of
dropout—they operate on different things.

Other Regularization Topics
Here are a few other items to keep in mind about regularization:

Stochastic pooling28

This is a regularization technique for CNNs (specifically) by which we use a form
of randomized pooling for building ensembles of CNNs. Each network attends to
a different spatial location of each feature map.

Adversarial training29

Inputs that you can create by using small but intentionally badly formed varia‐
tions of the training dataset. This will generate a network model that gives the
wrong answer with high confidence. In practice this has been shown to reduce
overfitting and result in models resistant to adversarial examples.

Curriculum learning30

This variation of training involves beginning with easier-to-learn examples from
the training set for training mini-batches earlier and then progressively training
on more difficult examples over time. This strategy results in faster training and
convergence to better solutions while acting as a regularizer for the network, as
well. Results have shown mixed success.

How to Use Regularization | 279

http://www.matthewzeiler.com/pubs/iclr2013/iclr2013.pdf
https://arxiv.org/abs/1412.6572
http://bit.ly/2tTSGwr
http://cs.nyu.edu/~wanli/dropc/

Parallelization and Regularization

You should prefer to remove noise from the weights in the parame‐
ter vectors during learning due in part to the use of learning rates.
One way to remove some noise from the final weights is to average
the weights across several updates. You also can accomplish this
through the parameter averaging effect in the parallel runtime
modes described later in the chapter.
In some cases of parallelization, we’d use no prior function as a reg‐
ularizer because parameter averaging achieves the intended effect
itself.

Working with Class Imbalance
Often, we work with training datasets in machine learning for which the classes are
significantly unbalanced with respect to the number of each type of class. This typi‐
cally occurs in domains in which the event we’re most interested in predicting occurs
far less often than when the event does not occur. Examples of this would be predict‐
ing whether someone will click an ad on a web page.

PhysioNet and Predicting Intensive Care Unit Death

The PhysioNet Challenge dataset mentioned in Chapter 1 is a great
example of a challenging unbalanced dataset. Getting a lot of data
on a (hopefully) rare event such as Intensive Care Unit death can
be a challenge.

For the majority of learning methods, if we train the model on data that is 99 percent
negative and 1 percent positive the model will just learn to always predict the domi‐
nant class (e.g., negative). We might not initially think anything is wrong because the
average correct score will appear exceptionally high and we might think the model is
just highly accurate. We end up in this situation because we’re minimizing error in
our learning process and we can achieve 99 percent correct by always predicting posi‐
tive.

A good practice for building models in imbalanced data situations is to not optimize
for percent predictions correct, strictly; instead, we should focus on model evalua‐
tions such as F1 score or Area Under the Curve (AUC). We need our model to make
some positive predictions but hopefully when it’s the most appropriate.

280 | Chapter 6: Tuning Deep Networks

https://physionet.org/challenge/2012/

A Word on Model Calibration
For the domains in which we see a large class imbalance, we often see unequal conse‐
quences for incorrectly predicting certain classes. An example of this would be not
detecting a serious disease when a patient actually has the disease (false negative) and
the patient consequently dying. In this example, the consequences of not detecting a
fatal disease are much greater than predicting falsely that the patient has the disease.
From this perspective, better understanding model evaluation is crucial for the real-
world application of machine learning.

To deal with the issue of model evaluation, we use a method called model calibration.
Model calibration is generally based on deriving a transformation that changes the
values or probabilities to better estimates. Table 6-9 summarizes these calibration
techniques.

Table 6-9. A taxonomy of calibration problemsa

Type Task Problem Global/local What is calibrated?
CD Classification Expected class distribution is different from

real class distribution
Global or local Predictions

CP Classification Expected/estimated probability of right
guesses is different from real proportion

Local Probability/
confidence

RD Regression Expected output is different from real
average output

Global or local Predictions

RP Regression Expected/estimated error confidence
intervals or probability density functions are
too narrow or too broad

Local Probability/
confidence

a Bella et al. 2009. “Calibration of Machine Learning Models.”

As noted in the original paper, types CD and RD need to modify predictions in order
to calibrate the results. Although we don’t further cover these methods in this book,
we felt compelled to note the topic for further study.

There are two main ways to can deal with class imbalance during the training
process:

• Subsampling from the larger class(es) or oversampling from the more infrequent
class(es)

• Weighting the training instances based on a weighted loss function

Let’s now take a closer look at each of these.

Working with Class Imbalance | 281

http://users.dsic.upv.es/~flip/papers/BFHRHandbook2010.pdf

31 With regard to sampling variants, with multiple training epochs, there isn’t generally much practical differ‐
ence between the two with deep learning, whereas there is quite a difference between the two for things like
SVMs and random forests.

Methods for Sampling Classes
Our first approach for dealing with class imbalance is to sample the larger class such
that we are left with a balanced training dataset (e.g., 50 percent positive, 50 percent
negative). A criticism of this method would be that we’re throwing away good data
but the upside is that we’re making training more efficient.

One approach is to use post scaling. This is the process by which we train a network
normally but scale outputs following the training. The results are less consistent com‐
pared to other methods.

Another approach is called probabilistic sampling. This is when we select samples by
first randomly (e.g., through some probability) selecting a class and then randomly
selecting a sample in the class.

The last approach we’ll note is super sampling where we duplicate the lower-frequency
classes to supersample them up to the count of the other classes.31

Weighted Loss Functions
An alternative method to dealing with class imbalance during train is to use a lower
weight to training examples that are in the larger class. This helps balance out the
training impact of unbalanced datasets and tends to create models that have a better
ability to detect the more rare labels in generalization.

To help you understand this concept further, we’ll illustrate it with a small section of
code. In the following code snippet, we can see an INDArray being created to hold the
class weights for the weighting of the classes in the weighted loss function:

INDArray weights = Nd4j.create(new double[]{0.1, 0.4, 1.0});

We then pass these weights into a new instance of our loss function as highlighted in
this code snippet:

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(1)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.learningRate(learningRate)
.updater(Updater.NESTEROVS).momentum(0.9)
.list()
.layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.RELU)

282 | Chapter 6: Tuning Deep Networks

 .build())
.layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
 .weightInit(WeightInit.XAVIER)
 .activation(Activation.SOFTMAX)
 .lossFunction(new LossNegativeLogLikelihood(weights))
 .nIn(numHiddenNodes).nOut(numOutputs).build())
.pretrain(false).backprop(true).build();

The motivation behind the use of a weighted loss function is to change the optimiza‐
tion target to more heavily penalize incorrect predictions on the infrequent class. Ide‐
ally, this drives the network away from the poor local optima of always predicting the
most commonly occurring class(es).

Understanding Relative Weight Values

A weight of 1.0 is equivalent to no weighting (e.g., {1.0, 1.0, 1.0}).
In this configuration, all 1.0s is identical to providing no weight
array at all. We want to use smaller weights for frequently occur‐
ring classes.

Dealing with Overfitting
Overfitting is the tendency of machine learning workflows to learn the training data‐
set so well that it performs poorly on unseen datasets. We’d say that this model does
not generalize well to larger datasets.

If our model picks up chance occurrence patterns in the training data, our model will
perform poorly on data beyond our test cases. If we train our model so that it learns
the input data so well it cannot perform well on data beyond our test cases, our model
will be not as useful as it could be. In both of these cases, we have overfit our training
data and our model has picked up random correlations that will not benefit the
model with scoring unseen data.

Better Generalization

Our goal with models in machine learning is to generalize the
information contained in our training dataset such that the model
will perform well on more data from similar sources.

All machine learning workflows have the tendency to overfit to some degree, the trick
is to know when to stop training so that our model generalizes well yet picks up the
least amount of overfitting possible. As we model more complex datasets with deep
learning networks, we invariably use larger parameter counts in the networks. The
trade-off becomes that we must add parameters at a rate that allows us to model more
complex datasets while not doing it so fast that we introduce unnecessary overfitting.

Dealing with Overfitting | 283

To detect overfitting, we can evaluate the performance on a held-out test set. It is
important that this test set isn’t used for training; otherwise, it won’t inform us as to
how the network will perform on unseen data. As far as strategies to fix overfitting,
we can use one or more of the following:

• Increased regularization (L1, L2, Dropout, DropConnect)
• Early stopping
• A larger training dataset
• A smaller network

Regularization is typically the first step in handling overfitting. L1 and L2 regulariza‐
tion can help (and has already been discussed). Dropout is a frequently used and usu‐
ally quite effective approach to regularizing neural networks.

Overfitting Rule and Parameter Count

When the model is not allowed to have enough parameters, it will
not be accurate. As the model takes on too many parameters, the
accuracy on the training data will look good, but the model will
overfit and the holdout data accuracy will diverge from the training
data accuracy.

Using Network Statistics from the Tuning UI
The network statistics tool in the DL4J suite is a tool with which we can visualize and
understand what the neural network is actually doing, in real time. By inspecting the
current state (and trajectory) of things like the activations, gradients, and updates, we
can identify network training/configuration issues, and implement strategies to cor‐
rect the issues.

Setting up DL4J’s tuning user interface is straightforward:

UIServer uiServer = UIServer.getInstance();
StatsStorage statsStorage = new InMemoryStatsStorage();
uiServer.attach(statsStorage);
int listenerFrequency = 1;
myNetwork.setListeners(new StatsListener(statsStorage, listenerFrequency));

See the user interface examples for details on how to configure the StatsListener to
save the stats to a storage device, change the UI port, or post results to a remote UI.
Note that we use listenerFrequency to set how frequently the information (activa‐
tions, updates, etc.) is collected. We might want to increase this number to reduce the
overhead associated with collecting the stats. Collecting stats information every 10
iterations can be sensible, or even less frequently (if we just want to track a reasonably
well tuned network over a longer time period).

284 | Chapter 6: Tuning Deep Networks

DL4J’s training UI has a number of pages, the first of which is the Overview page.
The Overview page comprises four sections, as depicted in Figure 6-4.

Figure 6-4. The DL4J network statistics tool

Here’s what the Overview page offers:

• Upper-left: model score versus iteration (and a moving average of the score)
• Upper-right: network information summary
• Lower-left: update:parameter ratios
• Lower-right: activations, gradients, and updates versus time

Here, the “score” refers to the value of the loss function (MSE, negative log likelihood,
etc.), plus any regularization terms (e.g., L1, L2) that are added to the loss function.
The second page in the UI is the model page, as shown in Figure 6-5. This allows us
to visualize the model structure and get more details for each layer individually.

Using Network Statistics from the Tuning UI | 285

Figure 6-5. The DL4J training UI Model page

The Model page in Figure 6-5 is split into two sections. On the left, there is an over‐
view of the network structure, showing the layers (and vertices, in the case of a Com‐
putationGraph). On the right is a summary table (layer configuration) number of
graphs, including the following:

• The ratio of updates to parameters for each parameter type, over time (it also has
tabs for the mean magnitudes of the parameters and the mean magnitudes of the
updates)

• The layer activations (mean and mean ±2 standard deviations) over time
• Histograms for each parameter type for the layer
• Histograms of updates (for each parameter type) for the layer
• Learning rates over time for each parameter (note: this will be flat, unless we are

using learning rate schedules)

Shutting Down the User Interface Server

We can shut down the UI by calling UIServer.getIn

stance().stop(); or by simply terminating the JVM manually,
after we are done. The UI server will remain operational until then,
even if training has completed.

Finally, another useful tool is to calculate the loss (or accuracy) on a test set; that is,
the data not used for training. This is more useful for identifying overfitting, whereas

286 | Chapter 6: Tuning Deep Networks

the UI is used more to identify and fix optimization difficulties. It’s common to begin
tuning with the UI first, and later add calculation of test set loss/accuracy.

Detecting Poor Weight Initialization
In a nutshell, the ReLU and Xavier initializations are designed based on the network
architecture (layer sizes) and assumptions about the activation function to do two
things:

• Ensure that the variance of network activations are constant for all layers (i.e.,
activations don’t grow too large or too small in later layers in the network)

• Ensure that the variance of activation (and hence parameter) gradients are con‐
stant for all layers; that is, gradients don’t grow too large or small by the time they
are backpropagated to the earlier network layers.

Unfortunately, it is not possible to guarantee that both of these requirements are
simultaneously satisfied in general. Most notably, when adjacent network layers differ
in size (e.g., a layer of size 1,024 followed by a layer of size 10, or vice versa), or when
the activation function differs significantly from the Xavier/ReLU initialization
assumptions (e.g., is not ReLU/tanh/identity, or something similar in shape) we might
need to use a different initialization. This is more of an issue in deep networks
because they might be able to get away with a suboptimal initialization in networks
with only a handful of layers.

There are two ways to detect bad weight initialization. First, we can use the (log10)
Activations Standard Deviation chart on the Overview page, as illustrated in
Figure 6-6.

Figure 6-6. (log10) Activations Standard Deviation chart

Using Network Statistics from the Tuning UI | 287

This was produced by taking the ReLU weight initialization (with ReLU activation
function) and reducing the weight initialization variance by a factor of three. With
this (intentionally poor) weight initialization, the activations decrease layer by layer
until they have virtually vanished by the final layer. It is also possible to detect this by
looking at the charts of layer activations versus iteration, on the Model page, as seen
in Figure 6-7.

Figure 6-7. Layer Activations Charts

Activations also can grow too large if the weight initialization is too large. We can
identify this by using the same two charts shown in Figure 6-7.

In general, we want the log standard deviation of activations to be
somewhere on the order of 1.0 for the hidden layers.

There is one thing you should know, when interpreting these charts: poor data nor‐
malization can look somewhat similar to poor weight initialization. Usually, we can
identify this by directly looking at the activation charts; for example, we can see that
the input standard deviation is 1 in Figure 6-7, log10(1) = 0. This is a good scale for the
inputs. Consequently, we also should check our data normalization if we see unusu‐
ally large or small activations.

Detecting Nonshuffled Data
Neural network training is generally done by using mini-batches, where a mini-batch
is defined as a subset of our data (typically 32 to 1,024 examples). To get better results
during training, our data should be shuffled. This means that examples should be
presented in random order, not (for example) all of one class, followed by all of
another class in the same mini-batch. If we’re doing a good job shuffling the training
data, our training should look something like that depicted in Figure 6-8.

288 | Chapter 6: Tuning Deep Networks

Figure 6-8. Training model score graph from UI

To illustrate how poor shuffling can adversely affect training, let’s consider the case of
the MNIST dataset previously mentioned in the book. Suppose we train a network to
predict digits on MNIST, but instead of presenting the examples in random order (as
we normally would) we first sort the examples by the label digit such that we train on
mini-batches with only class 0 examples, and then with only class 1, and so on.

Figure 6-9, demonstrates that this poorly shuffled data produces a different pattern in
the model score over time.

Figure 6-9. Training model scores with spikes

The model being used here normally would train decently on shuffled data and pro‐
duce a graph similar to Figure 6-8. However, because the data was poorly shuffled we

Using Network Statistics from the Tuning UI | 289

see periodic large spikes in the training scores, which correspond to a switch between
digits in the training mini-batches. The takeaway here is that when we see these peri‐
odic spikes, we most likely have an issue with how the training data was prepared.
This is generally an easy fix in the data preparation pipeline and then we can be on
our way.

A Note on the Order of Examples Within a Mini-Batch

It’s also worth mentioning that shuffling the examples within a sin‐
gle mini-batch makes no difference. That is, if we have 32 examples
in a mini-batch, it doesn’t matter at all what the order of those 32
examples are. This is due to the fact that gradients are averaged
over all examples in a mini-batch, before being applied to the
model.

Detecting Issues with Regularization
Just like with setting the learning rate, setting a too large or too small value for the L1
or L2 regularization parameter value can lead to poor-quality training results. Setting
too large a value can result in our weights being driven to 0. If we set too small a value
this can contribute to overfitting or unstable learning in some cases. An overly large
L1/L2 value (driving our weights to 0) can be detected using the Param tab on the
Model page. The Param tab shows the mean magnitudes of the parameters, as illus‐
trated in Figure 6-10.

Figure 6-10. Weight values falling toward zero on the UI

We can see the mean weight magnitudes begin higher and then bleed off over the
course of iterations, indicating our regularization methods have been too aggressive
and we should lower the L1/L2 regularization parameter value.

290 | Chapter 6: Tuning Deep Networks

Another issue we can detect with the same tool is detecting insufficient regulariza‐
tion. We’d like a nice, normal distribution shape for our weights in the Layer Parame‐
ters Histogram, as shown in Figure 6-11.

Figure 6-11. Layer Parameters Histogram panel with normal weights

It’s also quite common for a small number of parameters to grow quite large when we
don’t have enough regularization. In this case, the Layer Parameters Histogram
might, as depicted in Figure 6-12.

Figure 6-12. Layer Parameters Histogram with a few large weights

In Figure 6-12, it can be a little difficult to see what’s happening because there’s only a
small number that are growing large in this instance (note that the bar barely registers
on the histogram). In extreme cases, the largest parameters can diverge toward ±∞ as
training progresses.

Using Network Statistics from the Tuning UI | 291

CHAPTER 7

Tuning Specific Deep Network
Architectures

All you really need to know for the moment is that the universe is a lot more complicated
than you might think, even if you start from a position of thinking it’s pretty damn compli‐
cated in the first place.

—Douglas Adams, Hitchhiker’s Guide to the Universe

In this chapter, we build on the concepts learned in Chapter 6 on general deep net‐
work tuning. We take a deeper look at tuning specific architectures such as the fol‐
lowing:

• Convolutional Neural Networks (CNNs)
• Recurrent Neural Networks
• Deep Belief Networks (DBNs)

Given that computer vision is one of the more popular applications in the world of
deep learning, let’s begin by learning to tune the CNN architecture.

Convolutional Neural Networks (CNNs)
CNNs have some general design patterns and then specific convolutional architecture
design patterns. We reviewed general network design patterns in Chapter 6. In this
section, we review techniques that are relevant to the CNN architecture. Most of the
content for this section is focused specifically on laying out patterns of convolutional
layers and pooling layers.

The convolution stage uses multiple filters to learn different features from the input
to the layer, as outlined in Chapter 4. The output of this stage is transformed with an
activation function—the Rectified Linear Unit (ReLU) activation function.

293

The Detector Stage

Some CNN literature will separate out the detector stage as its own
layer or stage in the CNN architecture. This detector stage is simply
the activation function for a layer and for DL4J we consider the
activation function as part of the layer. For the purposes of this
book, we group the concept of the detector stage as part of the con‐
volution stage.

Pooling layers are commonly inserted between successive convolutional layers. We
want to follow convolutional layers with pooling layers to progressively reduce the
spatial size (width and height) of the data representation. This progressively reduces
the number of parameters and needed computation in the network. Reducing the
parameter size in this way also helps with overfitting. Most other topics in tuning,
such as output layer strategies, have already been covered in Chapter 6.

Common Convolutional Architectural Patterns
We often see a single convolutional layer between every pool layer. We see this pattern
demonstrated in the following:

• Input layer
• Convolutional layer
• Pooling layer
• Convolutional layer
• Pooling layer
• Fully connected layer
• Another (possible) fully connected layer

Sometimes, we’ll see multiple convolutional layers in a sequence before we see a pool‐
ing layer.

In larger networks it’s a good idea to see two convolutional layers
stacked before every pooling layer. This allows the larger networks
to develop more complex features before we downsample with the
pooling layer.

To further understand the architectural pattern, let’s revisit the LeNet example from
Chapter 5. This network, first published in 1998 by Yan LeCun, is one of the most
famous convolutional architectures. It has been shown to successfully model MNIST,
as we did in “Modeling Handwritten Images Using CNNs” on page 182. Here’s a list
of the specific layer architecture:

294 | Chapter 7: Tuning Specific Deep Network Architectures

• Input layer
• Convolutional layer: 20 filters [5 × 5]
• Max pooling layer: [2 × 2]
• Convolutional layer: 50 filters [5 × 5]
• Max pooling layer: [2 × 2]
• Fully connected layer

Example 7-1 shows this architecture represented in a configuration in Java code from
the example in Chapter 5. In the interest of brevity, we’ve included only the configu‐
ration portion of the code here so that you can compare the just-described architec‐
ture layout to the specific LeNet configuration.

Example 7-1. LeNet DL4J model configuration in Java

/*
 Construct the neural network
 */
log.info("Build model....");
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)
 .iterations(iterations) // Training iterations as above
 .regularization(true).l2(0.0005)
 .learningRate(.01)
 .weightInit(WeightInit.XAVIER)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new ConvolutionLayer.Builder(5, 5)
 //nIn and nOut specify depth. nIn here is the nChannels and nOut
 //is the number of filters to be applied
 .nIn(nChannels)
 .stride(1, 1)
 .nOut(20)
 .activation(Activation.IDENTITY)
 .build())
 .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(2, new ConvolutionLayer.Builder(5, 5)
 //Note that nIn need not be specified in later layers
 .stride(1, 1)
 .nOut(50)
 .activation(Activation.IDENTITY)
 .build())
 .layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())

Convolutional Neural Networks (CNNs) | 295

 .layer(4, new DenseLayer.Builder().activation(Activation.RELU)
 .nOut(500).build())
 .layer(5, new OutputLayer.Builder(LossFunctions.LossFunction
 .NEGATIVELOGLIKELIHOOD)
 .nOut(outputNum)
 .activation(Activation.SOFTMAX)
 .build())
 .setInputType(InputType.convolutionalFlat(28,28,1)) //See note below
 .backprop(true).pretrain(false).build();

In Example 7-1, each convolutional layer is followed by a pooling layer. The network
is capped off with a fully connected DenseLayer followed by an output layer with a
softmax activation function. The softmax activation function here is used to detect
one of the 10 MNIST digits in the training/test dataset. Here is another method to
note:

 .setInputType(InputType.convolutionalFlat(28,28,1))

This method call does a few things, including the following:

• Adds preprocessors, which handle things like the transition between the convo‐
lutional/subsampling layers and the dense layer

• Does some additional configuration validation
• Where necessary, sets the nIn (number of input neurons, or input depth in the

case of CNNs) values for each layer based on the size of the previous layer
— It won’t override values manually set by InputTypes
— It can be used with other layer types, too (Recurrent Neural Networks, MLPs,

etc.), not just CNNs

In general, in terms of designing convolutional architectures, we should focus on
using multiple smaller convolutional layers as opposed to a single convolutional layer
with one large receptive field. This allows our network to pick up more nonlinear
dynamics in the data with more expressive features.

For the first convolutional layer, the input depth (nIn) must match the data, but the
number of channels (nOut) is a free parameter. The “number of units” generally refers
to nOut. Ideally, we want this input layer size to be divisible by two more than once so
that we have enough information to downsample over time and build features. An
example of an input size for a CNN to model CIFAR-10 (discussed in Chapter 2)
would be an input layer size of 32. Most often we’ll want to use the ReLU activation
function for our convolutional layers.

The input data channels are controlled by the .nIn() method, as demonstrated here:

 .layer(0, new ConvolutionLayer.Builder(5, 5)
 //nIn and nOut specify depth. nIn here is the nChannels and nOut
 //is the number of filters to be applied
 .nIn(nChannels)

296 | Chapter 7: Tuning Specific Deep Network Architectures

1 Krizhevsky et al. 2012. “ImageNet Classification with Deep Convolutional Neural Networks.”
2 Szegedy et al. 2015. “Going Deeper with Convolutions.”

You can configure this to the type of input, but it will typically be 1 for monochrome
and 3 for RGB. Of course, if the input were not image data and had a multidimen‐
sional representation, this number could be much larger.

Some Caveats About First Convolutional Layer Sizing

In general, the input layer unit count depends on the stride/filter
size.
An interesting example is AlexNet:1 224 × 224 × 3 input, with 11 ×
11 kernels (uncommonly large these days).
In practice, we can crop or scale our data to a size that works for
the network configuration we want to use. Better to crop/scale
down, though, if possible (not up).

Beyond the first convolutional layer, we’ll have a repeating pattern of more convolu‐
tional layers followed by pooling layers. In some architectures, such as VGGNet, we’ll
see multiple (e.g., two) convolutional layers consecutively before we see a pooling
layer.

In general, CNN configurations tend to begin with larger filter sizes before progres‐
sively decreasing in size.

No Magic Bullet on Convolutional Layer Sequences

As of this writing, there’s no one magic convolutional architecture
that will be best for all of your image modeling problems. We sug‐
gest beginning with a known successful architecture such as LeNet,
VGGNet, Inception,2 or AlexNet and getting it to work on your
intended problem. From there you can tweak the layer sequences
and the hyperparameters, using the known architectures as
“known good starting solutions” from which to begin.

Our output layer is going to follow the patterns set forth in Chapter 6.

Configuring Convolutional Layers
We want to set up the spatial arrangement of the convolutional layer and then choose
the number of filters.

Convolutional Neural Networks (CNNs) | 297

http://bit.ly/2tmodqn
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

How we set up the hyperparameters in a convolutional layer dictates how many neu‐
rons there are in the output volume and how they are arranged. Here are key hyper‐
parameters:

• Filter size
• Stride
• Padding

For example, if we were to build a convolutional layer with 5 × 5 filters, the code
might look similar to this:

ConvolutionLayer convLayer = new ConvolutionLayer.Builder()
 .kernelSize(5,5).stride(1,1).padding(2,2)
 .name("first_layer")
 .nOut(out)
 .biasInit(bias)
 .build();

In this sample we can see the filter size (.kernelSize) is 5 × 5 and we take the integer
parameters for both the stride (1,1) and padding (2,2) parameters. We use
the .name() method to give this convolutional layer the name "first_layer" and we
set the number of filters by using the .nOut(out) method call. The output of the layer
itself is more complex than just the number of units out. Later on, we’ll work through
the calculations for projecting the output volume size.

Setting the stride for filters
For stride, we allocate depth columns around the spatial dimensions (width, height).
As our stride increases, our receptive fields overlap less and the output volume has
smaller dimensions spatially. We see this parameter being set for the convolutional
layer in the previous example, in the line:

 .stride(1,1)

This means our filter will “slide” 1 input grid cell over and 1 input grid cell down each
time the filter is applied (for more on this, see Chapter 4). If our stride is 2, the filter
will jump or slide 2 pixels at a time.

Strides Above 2

Stride settings above 2 are uncommon and rare in practice, espe‐
cially with smaller filter sizes. Strides larger than the filter size
should be avoided entirely.

As the stride value goes up, the output volume spatially goes down. It’s been demon‐
strated that smaller strides (e.g., 1) in convolutional layers work better in practice.

298 | Chapter 7: Tuning Specific Deep Network Architectures

3 Krizhevsky, Sutskever, and Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Net‐
works.”

This lets the pooling layers do the downsampling work and allows the convolutional
layers to focus on just transforming the volume with respect to depth.

Using padding
In some components of certain architectures (like Inception) we want to preserve the
spatial size of the input volume (covered in further detail coming up). To do this, we
use zero-padding to control the spatial size of the output volumes. We often want to
pad the input volume with zeros such that the convolutional layer does not change
the spatial dimensions of the input. Zero-padding also preserves input information
along the borders.

Choosing the number of filters
Each filter can look for something different in the input training data. As data varia‐
tion and complexity rises, logically we’ll need more filters to capture the relevant fea‐
tures. Figure 7-1 shows learned filters from the first convolutional layer in a network.

Figure 7-1. Visualized 96 learned filters, 11 × 11 × 3 size3

We want to be judicious with choosing a filter count for a convolutional layer because
computing the activations of a single convolutional filter is more expensive than tra‐
ditional multilayer neural network layers. In DL4J, we configure the filter count with
the nOut(int) option in the configuration.

As we go further along in the progression of layers in a CNN, the activation map size
decreases. The layers closer to the input layer will tend to have fewer filters. As we
move toward the output layer in a CNN, we tend to see more filters.

Although there is no specific heuristic to set the number of filters per convolutional
layer, we should mention that some of the larger CNN architectures start around 64

Convolutional Neural Networks (CNNs) | 299

http://bit.ly/2tmodqn
http://bit.ly/2tmodqn
http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/

4 Simonyan and Zisserman. 2014. “Very Deep Convolutional Networks for Large-Scale Image Recognition.”
5 Ciresan introduced the concept of small filters in 2011, but the networks were not as deep as others of the

time. Goodfellow applied a similar approach in 2014 to street sign recognition. GoogleLeNet (Szegedy) also
used the approach to win ImageNet in 2014.

6 A good example is MNIST input images have a spatial dimension of [28 × 28] and generally have [5 × 5]-sized
filters on the first convolutional layer.

and end around 1,024 (at the high end) or so, increasing as we progress further from
the input. Table 7-1 presents filter counts for three commonly used CNN architec‐
tures.

Table 7-1. Filter count examples

CNN Convolutional layer filter count progression
LeNet 20, 50
AlexNet 96, 256, 384, 384, 256
VGGNet 64, 128, 256, 512, 512

Computation Cost Versus Data Preservation

We want to keep computation cost roughly the same across all of
the layers, so the product of the number of features and the num‐
ber of pixel positions for each layer needs to be roughly the same.
This means that as we build up features from the input, we tend to
lose input data through pooling layer downsampling. This allows
us to preserve information about the input but in a different form
(features) all the way to the end of the network.

Configuring filter size
Smaller filters in multiple stacked convolutional layers tend to perform better4 as
opposed to big filters in fewer convolutional layers.5

As the filter size grows is larger, the computational cost grows as well as we have to
look at larger regions of the input per filter. Convolutions with larger spatial filters
(e.g., 5 × 5 or 7 × 7) tend to be disproportionally expensive in terms of computation.
For example, a 5 × 5 convolution with n filters over a grid with m filters is 25/9 = 2.78
times more computationally expensive than a 3 x 3 convolution with the same num‐
ber of filters.

We want to select a feature size that is obviously smaller than the input volume spatial
dimensions yet big enough to capture relevant features. For our convolutional layers,
we want to use small filters (3 × 3 or 5 × 5) and a stride of 1.6 For comparison, Goo‐

300 | Chapter 7: Tuning Specific Deep Network Architectures

https://arxiv.org/abs/1409.1556
http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/
https://arxiv.org/abs/1409.4842

7 Also called “Inception,” responsible for setting the new state-of-the-art for classification and detection in the
ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014)

8 Simonyan and Zisserman. 2014. “Very Deep Convolutional Networks for Large-Scale Image Recognition.”
9 Filter/kernel sizes in networks such as AlexNet are a bit big by modern standards. As always, it might be nec‐

essary to test and keep in mind that we can set our image size after the fact to help things to work better (e.g.,
crop or scale to some size.

10 Szegedy et al. 2015. “Rethinking the Inception Architecture for Computer Vision.”

gLeNet7 is a relatively complex CNN and the filters vary between 1 × 1, 3 × 3, and 5 ×
5 in size.

Another popular network, VGGNet,8 has some interesting properties that have pro‐
ven successful. The convolution layer filter size is usually 3 × 3, which is the smallest
size that retains the concept of capturing pixels (e.g., left, right, up, down, and center).

Comparison of Filter Size Versus Consecutive Layers

Stacking three convolutional layers with filters of 3 × 3 and pooling
is similar to a single convolutional layer with a 7 × 7 filter.
Adding more convolutional layers and filters allows us to take
advantage of more regularization in the learning process. More lay‐
ers apply more nonlinear transformations and reduce the amount
of parameters applied.

Another approach to get going on layer sequences and filter shapes is to begin with
successful architectures like VGGNet or GoogLeNet and draw inspiration from pat‐
terns9 observed in those networks.

A Caution on Filter Size from the v3 Inception Paper

We note the following:
The above results suggest that convolutions with filters
larger 3 × 3 a might not be generally useful as they can
always be reduced into a sequence of 3 × 3 convolutional
layers.10

Convolution mode and calculating spatial size of output volume
Here’s the general formula we use to calculate the spatial size of the output volume as
a function of the input volume size:

Output volume size = (W – F + 2P)/S + 1

Table 7-2 defines the variables.

Convolutional Neural Networks (CNNs) | 301

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.00567v3
https://arxiv.org/abs/1409.4842
http://cs231n.github.io/convolutional-networks/

Table 7-2. Variables for spatial size of output volume

Variable Description
W Input volume size
F Receptive field size of convolutional layer neurons
S Stride setting
P Zero-padding setting

The result of this equation should be an integer; if it is not, the configuration is incor‐
rect. If the result is not an integer, we might be able to fix it with padding, a different
filter size, or by using the Truncate mode (described in a moment). We want to be
mindful that convolutional layers preserve the spatial size of their input while the
pooling layers reduce the spatial size of input through downsampling.

Keeping Track of Input Volumes

If we use a stride greater than 1 or we don’t zero-pad the input in
convolutional layers, we need to keep track of input volumes
through the convolutional network. We need to ensure that all the
strides and filters balance out across our network.
DL4J does have some input validation that can catch many invalid
configurations for this. However, to know how to fix issues (or to
know what’s valid in each layer), we still need to track the volumes
throughout. Also note that there are some configurations that any
amount of padding won’t fix.

In DL4J, the ConvolutionMode defines how convolution operations should be exe‐
cuted for the convolutional and subsampling layers, for a given input size and net‐
work configuration (specifically stride/padding/kernel sizes).

Currently, three modes are provided:

1. Strict
2. Truncate
3. Same

302 | Chapter 7: Tuning Specific Deep Network Architectures

http://bit.ly/2sxNP0o

With Strict mode, the output size for the convolutional and subsampling layers are
calculated as follows, in each dimension:

outputSize = (inputSize – kernelSize + 2 * padding) / stride + 1.

If outputSize is not an integer, an exception will be thrown during network initializa‐
tion or forward pass.

With Truncate mode, the output size for the convolutional and subsampling layers
are calculated in the same way as in Strict in each dimension. If outputSize is an inte‐
ger, Strict and Truncate are identical. However, if outputSize is not an integer, the out‐
put size will be rounded down to an integer value.

Consequences of Rounding Down

The major consequence of this rounding down is a border/edge
effect will be seen if/when rounding down is required. In effect,
some number of inputs along the given dimension (height or
width) will not be used as input and hence some input activations
can be lost/ignored. This can be problematic higher in the network
(where the cropped activations can represent a significant propor‐
tion of the original input) or with large kernel sizes and strides.

The Same mode operates differently than Strict/Truncate, in three key ways:

• Manual padding values in the convolution/subsampling layer configuration is
not used; padding values are instead calculated automatically based on the input
size, kernel size, and strides.

• The output sizes are calculated differently (more on this in a moment) compared
to Strict/Truncate. Most notably, when stride = 1 the output size is the same as
the input size.

• The calculated padding values can be different for top/bottom and left/right
(when they do differ: right and bottom might have 1 pixel/row/column more
than top/left padding).

Configuring Pooling Layers
Pooling functions replace the output of a layer at a specific spot with the summary
statistic of the nearby connected neuron outputs. This helps the model representation
be more invariant to small translations, in the input data. Pooling layers themselves
don’t have parameters to deal with because they compute a fixed function of the
input. Zero-padding is not commonly used with pooling layers.

Convolutional Neural Networks (CNNs) | 303

Small Variation Invariance Through Pooling

A model that has the ability to be invariant to small variations, or
invariant to local translations is a useful aspect when training on
image data.
The use of pooling has the conceptual effect of an infinitely strong
prior where the function learned by the convolutional layer must
be invariant to small variations. This gives us a much stronger con‐
volutional network in terms of statistical efficiency of the network.

We typically set the max pooling shape (e.g., spatial dimensions: width, height) of the
downsampling operation in pooling layers as [2 × 2] as illustrated in the following
code snippet:

.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())

We need to keep in mind that if we increase the pooling spatial dimensions too
quickly we run the risk of losing too much information.

Max-pooling tends to occur in two variations in pooling layers in practice:

• Receptive field size: 3, Stride: 2 (overlapping pooling)
• Receptive field size: 2, Stride: 2 (more common variation)

If we increase our pooling receptive field beyond these settings we
tend to lose too much information.

Max-pooling has become more popular recently than other variations such as average
pooling or L2-norm pooling. Max-pooling has shown to work better in practice than
these other variations.

Transfer Learning
It’s rare to see a CNN model trained from randomly initialized parameters due to the
amount of processing power/time needed for the task. In Chapter 4, we learned how
one driver of the popularity of deep learning has been the availability of quality large-
scale datasets such as ImageNet (1.2 million labeled training images). Although
benchmark training datasets such as ImageNet have become better, we seldom get a
large labeled training dataset to perform largescale image training with CNNs. One
way to augment this issue is to begin with a previously trained CNN model that had

304 | Chapter 7: Tuning Specific Deep Network Architectures

11 Yosinski et al. 2014. “How transferable are features in deep neural networks?”

good results and then train it further on a specific image dataset. This is referred to as
transfer learning.11

An alternative to training from scratch
CNNs have been shown to learn general visually generic features on the first few lay‐
ers and then gradually build up dataset-specific features on later layers. These early
layer features are similar to Gabor filters and color blobs and are the “building
blocks” of vision processing in general. Following are two use cases of note in transfer
learning:

• Fine-tuning an existing model
• Using an existing convolutional model as a feature extractor

Although both of these methods use a pretrained model typically on ImageNet, the
way the final tuning is done is the main difference. We give some details for each
below.

Fine-tuning an existing convolutional model
In this variant of transfer learning, we see a CNN model trained on a large data‐
set such as ImageNet, and then we replace the last “classifier layer” with some‐
thing specific to the fine-tuning dataset. Some variants will continue to perform
backpropagation on all of the layers, and others will update only the later layers.
This is because many of the earlier-layer features are general to all types of vision
processing and there is less need to update them. The later layers are focused on
combining these lower-level features in task-specific ways and are more relevant
to train on the domain-specific dataset.

Using an existing convolutional model as a feature extractor
In this version of transfer learning, we take the last fully connected layer—output
layer—and consider the rest of the CNN as a “feature extractor” for the smaller
dataset. This is also relevant because a pretrain dataset such as ImageNet would
have 1,000 different class outputs in the output layer and would possibly be not
as relevant for a domain-specific task.

Convolutional Neural Networks (CNNs) | 305

http://arxiv.org/abs/1411.1792

Training ImageNet from Scratch

Training a CNN can take up to two to three weeks to train across
multiple graphics processing units (GPUs) on ImageNet. It’s com‐
mon for practitioners to release their model for others to use as
pretraining starting points to continue training their own models.
The Caffe project has a model zoo from which we can download
many pretrained models, as well.

When to consider trying transfer learning
Consider trying transfer learning in the following (or combinations of) situations:

• Training dataset is small
• Training dataset shares visual features with the base dataset

In other cases, you might find success using transfer learning.

A Note About Learning Rates in Transfer Learning

For fine-tune activities in transfer learning, we recommend using a
lower learning rate for the smaller fine-tune dataset as the pre-
trained weights are already probably good.

Recurrent Neural Networks
Recurrent Neural Networks share some similarities with other architectures such as
CNNs, but they have their own set of challenges and hyperparameters. As with most
neural networks, there is no sure way to instantly find the best settings. We com‐
monly see hyperparameters that stall the learning process or even make it worse than
previous variations. We remind you that for all networks, it’s always going to be a
game of trial and error.

DL4J and Long Short-Term Memory Networks

DL4J currently supports the most popular blend of Recurrent Neu‐
ral Networks: the Long Short-Term Memory (LSTM) model. Other
variants of Recurrent Neural Networks are actively under develop‐
ment.
DL4J also supports the bidirectional LSTM.
The next most common variant of Recurrent Neural Networks are
Gated Recurrent Unit (GRU) and “vanilla” Recurrent Neural Net‐
works.

306 | Chapter 7: Tuning Specific Deep Network Architectures

https://github.com/BVLC/caffe/wiki/Model-Zoo

Network Input Data and Input Layers
Traditionally, input data to a canonical feed-forward neural network is either a single
vector (one-dimensional) or a matrix (two-dimensional, containing a mini-batch of
vectors for training). Recurrent Neural Networks have a third dimension to the input
data representing the time dimension of the input time-series data. In DL4J, we rep‐
resent this input with the following parameters (see also Figure 7-2):

• Number of examples
• Input size (number of columns)
• Time-series length

Constructing volumetric input data for Recurrent Neural Networks takes more effort
than traditional networks such as multilayer perceptrons. As we discussed previously
in the book (and as shown in Figure 7-2), there are three dimensions for input:

• Mini-batch size
• Number of columns in our vector per time-step
• Time-series length

Figure 7-2. Representing 3D input for Recurrent Neural Networks

To understand more about how to do this easily, see Appendix E and Appendix F.
We’ll also look at general patterns of time-series vectorization in Chapter 8.

Recurrent Neural Networks | 307

12 Graves. 2012. “Supervised Sequence Labelling with Recurrent Neural Networks” (PhD Thesis).

Standardization

It generally helps all neural networks to standardize the input data
(e.g., zero mean, unit variance). This helps transform the inputs
into a range more suitable for the standard activation functions.12

Standardization helps the relationship between the inputs and the
targets to be as simple and localized as possible. Keep this in mind
for only real-valued inputs. Don’t do this for one-hot (categorical)
inputs.

There are some basic variations in how we train and tune Recurrent Neural Net‐
works.

Output Layers and RnnOutputLayer
The output of a Recurrent Neural Network has three dimensions:

• Mini-batch size (number of examples)
• Output size (number of columns)
• Time-series length

Given that the matrix representation in DL4J is based on the INDArray class, we see
that the values match up to the indexing scheme (i, j, k), as listed in Table 7-3.

Table 7-3. Understanding variables in a Recurrent Neural Network input matrix

Variable Description
i Index of example in mini-batch
j Index of column per time-step
k Time-step index

In DL4J, we use the RnnOutputLayer for the final layer with many Recurrent Neural
Networks for the following tasks:

• Regression
• Classification

RnnOutputLayer handles functions such as these:

• Score calculation
• Error calculation (prediction versus actual) given a loss function

308 | Chapter 7: Tuning Specific Deep Network Architectures

http://www.cs.toronto.edu/~graves/phd.pdf

13 Ibid.
14 Sutskever. 2013. “Training Recurrent Neural Networks” (PhD Thesis).
15 Orthogonal weight initialization for Recurrent Neural Networks has shown promise, as well.

We can see RnnOutputLayer is functionally similar to the standard OutputLayer in
DL4J for canonical feed-forward networks, yet it can deal with three-dimensional
output. Configuration for the RnnOutputLayer follows the same design as other lay‐
ers. For classification, we set the last layer in a MultiLayerNetwork to a RnnOutput
Layer, as shown in Example 7-2.

Example 7-2. Configuration for the RnnOutputLayer

.layer(2, new RnnOutputLayer.Builder(LossFunction.MCXENT)
 .activation(Activation.SOFTMAX)
 .weightInit(WeightInit.XAVIER)
 .nIn(prevLayerSize)
 .nOut(nOut)
 .build())

To get a better idea of this layer in action, check out the Recurrent Neural Network
example in Chapter 5, in which we classified sensor readings.

Training the Network
Recurrent Neural Network training can be computationally expensive. In general set‐
tings, we see Stochastic Gradient Descent (SGD) as a good baseline optimization
algorithm for Recurrent Neural Networks. Research has shown Hessian-free optimi‐
zation to be helpful for training Recurrent Neural Networks, as well.13

Initializing weights
Initializing weights is important in training Recurrent Neural Networks. Good initial‐
ization of weights has been shown to create hidden units that can convey information
over long enough distances to model long-term dependency tasks.14

For most Recurrent Neural Network layers in DL4J, we recommend using the Xavier
initialization,15 as demonstrated in the following code snippet:

 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .learningRate(0.1)
 .rmsDecay(0.95)
 .seed(12345)
 .regularization(true)

Recurrent Neural Networks | 309

http://bit.ly/2tXjrMT
http://bit.ly/2eM47AQ

16 Zaremba, Sutskever, and Vinyals. 2014. “Recurrent Neural Network Regularization.”

 .l2(0.001)
 .weightInit(WeightInit.XAVIER)

Backpropagation through time
When our recurrent network is dealing with long sequences with many time-steps,
we find that truncated backpropagation through time (BPTT) works well. BPTT is an
extension of the standard backpropagation algorithm for recurrent neural networks
(as introduced in Chapter 4). Truncated BPTT reduces the computational complexity
of each parameter update in a Recurrent Neural Networks. In the code example that
follows, we see that using truncated BPTT with DL4J and recurrent neural networks
is easy:

.backpropType(BackpropType.TruncatedBPTT)
 .tBPTTForwardLength(100)
 .tBPTTBackwardLength(100)

This added setting to your network will cause the training to use truncated BPTT
with forward and backward passes of lengths set by the parameters for each as just
shown. Here are some other notes about usage in DL4J:

• DL4J will use full BPTT as the default unless you specify truncated BPTT.
• Typically, we want to set the length option between 50 and 200 time-steps

(application-dependent, of course)
— Forward and backward time-step lengths tend to be the same length
— Backward time-step length can be shorter but not longer

The truncated BPTT time-step lengths need to be shorter than or equal to the length
of the input time-series.

Regularization
Dropout is a common way to use regularization with Recurrent Neural Networks. In
Recurrent Neural Networks, dropout is applied to only a subset of connections in
LSTMs (nonrecurrent connections). This variant of dropout has been shown to help.
16 Dropout as implemented for Recurrent Neural Networks in DL4J is done on the
input connections/activations only, not the recurrent connections.

Standard Dropout and Recurrent Neural Networks

Standard dropout has been shown to not work well with Recurrent
Neural Networks as the recurrence amplifies noise, which hurts
learning.

310 | Chapter 7: Tuning Specific Deep Network Architectures

http://arxiv.org/pdf/1409.2329v4.pdf

17 Sutskever. 2013. “Training Recurrent Neural Networks” (PhD Thesis).
18 LSTMs help solve the vanishing gradient issue but do not inherently solve the exploding gradient issue.

Recurrent Neural Networks are more sensitive to learning rate and momentum set‐
tings than multilayer perceptron networks.17

Debugging Common Issues with LSTMs
Although it is fair to say that neural network tuning involves a lot of trial and error,
after a while we begin to see some patterns that can help us tune things faster. We’ve
seen too many people attempting to tune their networks by blindly changing things,
and it’s not the best path. Sometimes, gradients become occasionally very large (called
“exploding gradients,” and are visible on a mean magnitude graph for updates). One
side effect with exploding gradients is loss function values that increase for multiple
mini-batches. The real danger here is that with large gradient values we end up mak‐
ing large changes to the parameters and potentially damaging the learned features in
the model. To help with this we add gradient clipping or gradient renormalization.
The exploding gradients issue is a common drawback with vanilla Recurrent Neural
Networks.

Exploding and Vanishing Gradients
Recurrent Neural Networks are known to have issues with the “vanishing gradient
problem” in addition to “exploding gradients.” The vanishing gradient problem issue
occurs when the gradients become too small and make it difficult to model long-
range dependencies (10 time-steps or more) in the structure of the input dataset.

The most effective way to get around the vanishing gradient issue18 in recurrent neu‐
ral networks is to use the LSTM variant of Recurrent Neural Networks, which DL4J
supports. Other methods to deal with this issue include the following:

• Combining short and long paths in unfolded flow graphs (time-delay neural net‐
works)

• Leaky units and a hierarchy of different time units
• GRUs
• Better optimization methods
• Gradient clipping (for exploding gradients)
• Regularization to encourage information flow
• Using L1/L2 penalties

Recurrent Neural Networks | 311

http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf

Padding and Masking
Padding involves adding zeros (“pad”) to the end of any time-series that is shorter
than the longest time-series in the mini-batch. This allows the training data to be a
rectangular array (matrix) which is required for training while training on time series
of different lengths in the same mini-batch. Masking involves two additional arrays
that indicate for each value whether the input or output was originally present in the
input or was a padded value.

Padding and masking in DL4J allows us to support the follow variations on recurrent
model training:

• One-to-many
• Many-to-one
• Variable length time-series (in the same mini-batch)

Figure 7-3 presents examples of each of these.

Figure 7-3. Different variations of Recurrent Neural Network training

Padding and masking help Recurrent Neural Networks with inputs or outputs that do
not occur at every time-step.

The Usefulness of Padding and Masking

In the absence of masking and padding, we can only work with the
many-to-many training case. In this scenario, all input records are
the exact same length and have inputs and outputs at all time-steps.

Applying padding and masking to volumetric input
Training Recurrent Neural Networks in DL4J involves the following parameters for
the shape of the mini-batch:

• Mini-batch size
• Input size
• Time-series length

312 | Chapter 7: Tuning Specific Deep Network Architectures

The padding array involves the following parameters for both the input and output:

• Mini-batch size
• Time-series length

For each value in the two-dimensional array, we have either a 0 or 1 for whether the
given time-step in the sequence was originally absent or present, respectively, in the
input data before padding. The masking arrays for the input and output data are
stored separately.

If we use a masking array with all 1s, it has the same effect as no masking array at all.
In the case of many-to-one, we’d have a single masking array for the output only. In
DL4J these masking arrays are created during the data import stage (e.g., SequenceRe
cordReaderDatasetIterator) and are represented in the DataSet object. The Multi
LayerNetwork object in DL4J knows how to deal with the masking arrays if they exist
during training.

Evaluation and Scoring With Masking
We use mask arrays when we’re doing scoring and evaluation—that is, when we’re
evaluating accuracy of the model—with Recurrent Neural Networks. In the many-to-
one cases, we have only a single output for each example, and the evaluation needs to
take this into consideration.

Classification using the evaluation class

We use output mask arrays during evaluation by passing them to the Evaluation
object, as shown in Example 7-3.

Example 7-3. Evaluation setup

Evaluation.evalTimeSeries(INDArray labels, INDArray predicted, INDArray outputMask)

Table 7-4 provides explanations for each of the variables in Example 7-3.

Table 7-4. Explanation of variables

Variable Description Dimensions
labels Actual output of training data 3-dimensions
predicted Generated labels from network 3-dimensions
outputMask Mask array for output 2-dimensions

We notice that the input mask array is not required for evaluation, because only the
network outputs are relevant at evaluation time.

Recurrent Neural Networks | 313

Scoring new data with MultiLayerNetwork
We can also use mask arrays for score calculation of models. Score calculation is dif‐
ferent from the use we saw previously. We are calculating the value of the loss func‐
tion value, not metrics such as accuracy or F1. However, in both cases, we want only
to score/evaluate those time-steps that are actually present, not those that are simply
padded time-steps. We can score time-series data by using the MultiLayerNetwork
class, as shown in the following code example:

MultiLayerNetwork.score(DataSet)

Just as in the previous example of masking in DL4J, if the DataSet contains an output
masking array, it will automatically be applied to calculating the score (loss function)
for the network.

Variants of Recurrent Network Architectures
There are some cases for which the user might want to combine different types of
architecture layers to model different mechanics of data, such as video data. In some
cases, we might want to combine LSTM and CNN layers to model a sequence of
images (e.g., video frames). DL4J provides special preprocessor classes to help in
these architecture variants such as CnnToRnnPreProcessor and FeedForwardToRnn
Preprocessor.

You can add Recurrent Neural Network preprocessors manually,
but in many cases, they will be added automatically by the network.

Restricted Boltzmann Machines
Restricted Boltzmann Machines (RBMs) are a type of neural network used to learn
features from datasets in an unsupervised manner, by mapping input data to a hidden
state and then attempting to reconstruct the input from the hidden state. In this
respect, they are similar to other models for unsupervised training such as autoen‐
coders (denoising, compression, and variational variants) though the training proce‐
dure for RBMs (contrastive divergence) is quite different than for autoencoders.

Typically we’re focused on using RBMs for use cases such as the following:

• Unsupervised feature learning in DBNs
• Data reconstruction
• Recommendation engines

314 | Chapter 7: Tuning Specific Deep Network Architectures

MNIST Example

An example would be when we’re learning the MNIST dataset and
our input layer has 784 input neurons. We would choose a lower
number of neurons for the hidden layer. In this example, we’ll
select a hidden layer of 500 units (about two-thirds as much as the
visible input layer). For the second hidden layer, we’ll select a neu‐
ron count of 250 neurons.

Let’s now think about how we’d set up hidden units for arbitrary problems beyond
MNIST.

Hidden Units and Modeling Available Information
We don’t do this the same way as we do in discriminative machine learning. With dis‐
criminative learning, a training case imposes a constraint on the model parameters
equal to the number of bits that it takes to specify the label.

Information and Example Labels

Labels hold at most only a few bits of information, so this doesn’t
give us a tremendous amount to work with. In some cases, where
we’d use more parameters than training cases, we see severe over-
fitting in the model constructed (potentially, depending on regula‐
rization).

The number of bits in the input vector can be several orders of magnitude greater
than the number of bits used to represent the label. In this way, we can see that the
data input vector has quite a bit more information to learn from than the label.

Using the raw information contained implicitly in the input data, we can take advan‐
tage of this formation to more effectively extract features and/or allow for more effec‐
tive discriminative classification later in the pipeline (when used as part of DBNs).
What we want to look at is how much information is available to us to use. How
much information is in your training record affects how you select the number of
hidden units.

Quick Example

Number of training images: 10,000
Pixels per image: 1,000
Projected globally connected hidden units: 1,000

We can see that the number of hidden (globally connected) units in this example is
tied directly to how much information is in the input vector or image in this case. In

Restricted Boltzmann Machines | 315

RBM networks that are not globally connected or use weight-sharing schemes, we
can use more units. Now let’s look at a heuristic for choosing a specific number of
hidden units for RBMs.

Choosing the Number of Hidden Units

When we are trying to select the number of hidden units for RBMs,
our main concern is avoiding overfitting. Given this constraint, our
heuristic can be summed up by multiplying the visible units by 0.75
to get the number of hidden units. If our sparsity target is very
small, we might get away with using more hidden units. For the
cases in which the input dataset contains a large number of input
records that are very similar, we can use fewer parameters, as well.

Using Different Units
Binary (or logistic) units in RBMs are typically where we begin with RBMs and
DBNs. Depending on the use-case training setup for which the data might not be
well-modeled by these units, we have other options to use for RBM hidden and visi‐
ble units. For alternative situations in data modeling, we list more unit types:

• Multinomial visible units
• Gaussian visible units
• Binomial units
• ReLUs

Multinomial units are for topic modeling, building recommender systems, and build‐
ing a classifier with a RBM (where to build the classifier we’d throw an output layer
on top for classification after unsupervised pretraining). Compared to binary visible
units, multinomial visible units replace the logistic function with the softmax func‐
tion and use Bernoulli hidden units.

When dealing with images or speech, we find that binary visible units give us poor
feature representation. In this scenario, we want to use Gaussian units. We want to
keep using binary units for the hidden units, however, because using Gaussian units
for both will result in worse instability in training.

We use Gaussian units in image and speech applications because logistic units tend to
work poorly here. We need a smaller learning rate for these units compared to binary
units. In some cases, these units have shown to be unstable during learning. When
dealing with sparse data we want to use binomial units.

When we’re dealing with continuous data, we use ReLUs. We see a similar parameter
count as binary units as when using ReLU units, yet ReLU units are more expressive.
ReLU units typically use a smaller learning rate than binary units for better stability

316 | Chapter 7: Tuning Specific Deep Network Architectures

https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

19 Srivastava et al. 2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.”

during training. Table 7-5 provides a quick reference for looking up unit types
indexed by input data.

Table 7-5. RBM unit types

Data type Visible unit type Hidden unit type
Text Gaussian (Neural Word Embeddings), Binary (if Bag

of Words)
Rectified Linear (Neural Word Embeddings), Binary (if
Bag of Words)

Audio/time-
series

Gaussian (If continuous), Binary (if 0–1) Rectified Linear (If continuous), Binary (if 0–1)

Image/video Gaussian (if zero mean and unit variance), Binary (if
0–1)

Rectified Linear (if zero mean unit variance), Binary (if
0–1)

Using Regularization with RBMs
Regularization is an important topic in machine learning because we want to control
the size of the weights in our parameter vector. A great reason to use regularization
with RBMs is that sometimes, early in training, weights with large values and the val‐
ues of the associated hidden units are “stuck” on or off. Regularization helps the
training process “unstick” these units.

With RBMs, we want to set a sparsity target for the activities of the binary hidden
units. This is the desired probability of being active for the binary hidden unit. This
factor is typically much less than 1.0.

When training RBMs, a good way to set the L2 prior weight-cost coefficient weight-
decay is in the range of 0.01 to 0.00001. With RBMs, we don’t typically apply weight-
cost to the hidden and visible biases because they are fewer in number and there is
less of a chance of overfitting. In some cases, we’d like the biases to grow large so
applying a weight-cost factor would make less sense here. For RBMs’ weight-cost, a
great rule of thumb is to begin with a value of 0.0001. Small differences in the weight-
cost probably will not change how your training process performs. It also has been
shown19 where dropout has also been applied effectively to RBMs.

DBNs
DBNs involve a two-phase training process: pretrain and fine-tune. Pretraining
involves first learning higher-level features from the input data to better initialize our
feed-forward network with a good starting point for the fine-tune phase. A DBN uses
stacks of RBMs to learn features during the pretrain phase. In Chapter 4, we gave an
extended description of the interplay between DBNs and RBMs, refer back to that
passage for more detail.

DBNs | 317

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

We want to initialize the weights in a DBN typically with small random values from a
zero-mean Gaussian with a standard deviation of about 0.01. As the initial values
become larger, we might see faster initial learning but can have the side effect of a
worse final model. Hidden bias values of 0 are usually fine.

In training neural networks, and, more specifically, DBNs, we see learning rates in the
range of 0.001 to 0.1. One side effect of having the learning rate too large is that the
reconstruction error generally increases dramatically and the weights increase dra‐
matically. This effect leads to poor models in most cases.

Setting the Learning Rate Visually

With DBNs, a good way to set the learning rate is to look at the his‐
togram of the weight updates and a histogram of the weights. The
weight updates should be about 10-3 times the weight values.

Using Momentum
Momentum can cause the learning process to move the parameters in a direction that
is not the direction of steepest decent in some conditions. This allows the learning
process to explore certain neighboring regions of search space that might have oppos‐
ing gradients without feeling the full effect of the increment in gradient before turn‐
ing back. It allows us to have smoother changes in learning direction over time,
avoiding unstable oscillations.

We can tune Momentum for contrastive divergence used for training RBMs during
pretraining. We like to begin with a Momentum setting of 0.5 and increase it to
around 0.9 after the reconstruction error has settled down. If this creates too much of
a shock in reconstruction error, reduce the learning rate by factors of two until it sta‐
bilizes.

When setting up Momentum at the beginning of training, a great place to start is the
value 0.5, given that random initial parameter values can put us in odd starting places
in search space. Over time, a good implementation will increase the momentum
toward 0.9. As the reconstruction error rises or we near a terminating condition, the
Momentum will begin to fall toward 0.0.

318 | Chapter 7: Tuning Specific Deep Network Architectures

https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

20 Hinton et al. 2012. “Improving neural networks by preventing co-adaption of feature detectors.”

Using Regularization
In the previous section on regularization for RBMs, we’ve already covered the major
reasons for using regularization (and this extends to pretraining DBNs).

We can view unsupervised pretraining with RBMs as a form of regularization. Unsu‐
pervised pretraining amounts to a constraint on the region in parameter space where
our algorithm can scan. Evidence points to unsupervised pretraining as a data-
dependent regularizer when there is enough neurons or parameters. However, unsu‐
pervised pretraining has also been shown to hurt generalization in some cases. We see
an example of this when the training dataset size is relatively small (where small is
less than 100,000 rows of data).

Sparsity and DBNs

Sometimes, looking at features that are only rarely active is a good
way to improve model performance. We can set a sparsity target,
which is the probability of binary hidden units being active (e.g.,
the sparsity setting is much less than 1.0). Research has shown
good values for the sparsity target in RBMs to be between 0.01 and
0.1. The decay rate of the factor should be set between 0.9 and 0.99.

Dropout
When dropout is used for pretraining20 we want to use a small learning rate with no
weight constraints to avoid losing the feature detectors discovered by the pretraining
technique. Dropout is also effective at the fine-tune phase of DBNs.

MNIST and Dropout

In a published account of using dropout on the MNIST dataset, a
50 percent dropout setting in the hidden layers gave performance
improvement over using no dropout. Performing an additional 20
percent dropout on the input units gave further improvement. The
settings of 20 percent on the input units and 50 percent on the hid‐
den units was often found to be optimal for the dataset.

Determining Hidden Unit Count
The main question we face when considering the hidden unit count for DBNs is how
many bits it would take to describe each input training vector (to produce a good
model)?

DBNs | 319

http://arxiv.org/pdf/1207.0580v1.pdf

Under this context, the main issue we face is overfitting, which we’ve discussed previ‐
ously with regard to methods for control. To determine the number of hidden units
over progressive layers, take the previous number and use a number of parameters an
order of magnitude smaller.

320 | Chapter 7: Tuning Specific Deep Network Architectures

CHAPTER 8

Vectorization

New York City, Old St. Joe, Albuquerque, New Mexico
This old rig is humming and rolling and she’s doing fine
If somebody wants to know what’s become of this so and so
Tell em’ I’m somewhere looking for the end of that long white line

—Sturgill Simpson, Long White Line

Introduction to Vectorization in Machine Learning
This chapter is meant to serve as a set of guidelines for vectorizing different kinds of
data used in the machine learning landscape. You might be wondering why we’ve
taken a detour off into the land of vectorization in a book about deep learning. The
main reason is that most machine learning books focus purely on the algorithms
themselves and less so on the complete lifecycle of data mining. We want to experi‐
ment with data as fast as possible in our machine learning tools, and we end up
spending far too much time on topics like custom vectorization of text data.

In our professional experience working with enterprise customers we’ve seen situa‐
tions in which we’d talk about implementing text classification techniques only to
have the exercise derailed by needing to diverge into a long discussion about the
basics of converting text to vectors. Companies have a lot of simple data sources like
spreadsheets that can be exported into comma-separated values (CSV) format yet still
need to be transformed into vectors. We also find ourselves trying to explain the
myriad ways textual data can be vectorized. Depending on the tools involved and the
desired classification algorithm, the customer might not even have a good way to
attempt text vectorization without extensive programming extraneous to the actual
statistical modeling itself.

321

Raw Data and Automated Feature Learning

As discussed in Chapter 3, that a key aspect of deep learning is
moving from feature engineering toward automated feature learn‐
ing. Automated feature learning is a useful aspect of deep learning,
yet we still have to get the raw data into a form in which our tools
can operate. Techniques of raw data vectorization allow us to do
just that.

Over the years, it’s become apparent that vectorization techniques (along with the
data-handling process itself) is core to the process of data science and many times
grossly overlooked. When putting together this book, we felt a strong need to give
you a solid treatment of vectorization in a way that supported the deep learning mod‐
eling process and didn’t distract with unwieldy side programming exercises for creat‐
ing vectors. The other aspect is that as we move from the theory side of the book
toward the practical side, we want to set up that transition with a focus on handling
vectors in an approachable way, directly developing lots of great data to feed our deep
learning models. We want to get you involved in modeling data as quickly as possible,
and bridging this gap is a great way to kick that off.

Working with canonical machine learning datasets is a great example of how
unwieldy this can become. The vectorization phase of machine learning can last from
hours to days, depending on your comfort level with programming and vectorization.
This impedance factor tends to slow down many new users beginning work with stat‐
istical models.

Why Do We Need to Vectorize Data?
In the course of working in machine learning and data science, we need to analyze all
types of data. A key requirement is being able to take each data type and represent it
as a numerical vector (or in some cases, a multidimensional array of numbers). Neu‐
ral networks still need to represent the input data as vectors and matrices because
they cannot work directly on text, graph, and other nonvector/matrix representa‐
tions.

There are many different ways to handle the vectorization, and we can apply many
preprocessing steps giving us different grades of effectiveness on the output models.
Often, our modeling exercise is dependent on how well we vectorize our input data.
Input data can come in many forms, including:

• Columnar CSV data
• Text documents
• Image data
• Audio data

322 | Chapter 8: Vectorization

• Video data
• Sequential data

In the following input data, we see an example of columnar CSV data in the raw iris
dataset from the University of California Irvine repository:

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica

An example of a text document might be a passage from Go Dogs, Go!:
Go, Dogs. Go!
Go on skates
or go by bike.

Both cases involve raw data of different types, yet both need some level of vectoriza‐
tion to be of the form we need to do machine learning. We want our machine learn‐
ing algorithm’s input data to look more like the following serialized sparse vector
format:

1.0 1:0.7500000000000001 2:0.41666666666666663 3:0.702127659574468
 4:0.5652173913043479
2.0 1:0.6666666666666666 2:0.5 3:0.9148936170212765 4:0.6956521739130436
2.0 1:0.45833333333333326 2:0.3333333333333336 3:0.8085106382978723
 4:0.7391304347826088
0.0 1:0.1666666666666665 2:1.0 3:0.021276595744680823
2.0 1:1.0 2:0.5833333333333334 3:0.9787234042553192 4:0.8260869565217392
1.0 1:0.3333333333333333 3:0.574468085106383 4:0.47826086956521746
1.0 1:0.7083333333333336 2:0.7500000000000002 3:0.6808510638297872
 4:0.5652173913043479
1.0 1:0.916666666666667 2:0.6666666666666667 3:0.7659574468085107
 4:0.5652173913043479
0.0 1:0.08333333333333343 2:0.5833333333333334 3:0.021276595744680823
2.0 1:0.6666666666666666 2:0.8333333333333333 3:1.0 4:1.0
1.0 1:0.9583333333333335 2:0.7500000000000002 3:0.723404255319149
 4:0.5217391304347826
0.0 2:0.7500000000000002

We can break down the process of converting raw data to machine learning–ready
vectors into two phases:

Introduction to Vectorization in Machine Learning | 323

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris

1. Vectorization
2. Normalization

We cover each phase in the sections that follow. We’ll also look at the concepts of data
vectorization and normalization in three key areas of deep learning:

• Sequential data
• Image data
• Text data

We call out these data types specifically because of their relation to deep learning. We
have shown in this book how Recurrent Neural Networks are adept at dealing with
sequence data, so illustrating key sequential vectorization techniques is valuable.
Deep learning has also shown to be valuable in the domain of image analysis with
Convolutional Neural Networks (CNNs), so we also look at the subtopic of image
vectorization. We close with a review of text vectorization methods and a look at how
you can use Word2Vec in vectorization.

Deep Learning and the Changing Nature of Data Preparation

Deep learning has shown that we can do fewer of these specific fea‐
ture engineering preprocessing steps. We still need to get the data
into a vector form, but deep learning is adept at performing feature
selection and dimensionality reduction in the process of learning
structure in the dataset.

Many machine learning practitioners of the past decade have preferred to handcraft
the features in their input vector dataset using expert domain knowledge. Expert
domain knowledge is defined as a deep understanding of how the data was generated
or how the sources of the data interoperate with the real world to drive certain effects
in real life.

Later in the chapter, we’ll see how a dataset with a small number of attributes might
be a good candidate for handcrafting, but larger datasets such as text documents,
images, or audio files need an algorithmic approach. In other cases, we allow a gen‐
eral vectorization technique to automatically generate the vectors, largely due to the
complexity of the source data (large amounts of text) making the task difficult. Some
examples of algorithmic vectorization are kernel hashing, Term Frequency–Inverse
Document Frequency (TF-IDF), and Word2Vec.

Here are some major considerations when building models from raw data:

• What kind of source data are we dealing with?
• What type of model do we want to train with this data?
• What’s our approach to vectorizing the data?

324 | Chapter 8: Vectorization

— Are we going to hand-encode the features or use an algorithmic approach?
— Raw text tends to be more cumbersome to deal with, so how do we handle it?

Based on the source data type, we need to take into consideration different things
during vectorization. For example, columnar data (e.g., a database table) is relatively
well known in terms of ways to handle vectorizing each column type. However, what
would we do when trying to vectorize multivariate time-series data spread across
multiple files? It’s these types of questions that lie beneath the architectures of
machine learning pipelines in today’s applications, and in this chapter, we deal with
the realities of building these pipelines. Let’s begin with a review of how to deal with
columnar data in the context of vectorization.

Extract, Transform, and Load
Many business intelligence (BI) and reporting tools in today’s enterprise use a pre-
processing phase called Extract, Transform, and Load (ETL). In the world of Apache
Hadoop, this is common vernacular, as well. This is the phase in which we typically
merge multiple datasets together, filter out unwanted columns, apply any necessary
transforms, and then load the data into a place to be used by another application.
Much of the vectorization process is performed during the ETL phase of a pipeline,
and you need to take into account what actions you will need to perform to build out
your pipeline.

Strategies for Dealing with Columnar Raw Data Attributes
Columnar source data—for example, an exported table from a relational database
management system (RDBMS)—comes in a variety of shapes and sizes, but we con‐
sider each column in the table of data to be an “attribute” of the data. Each attribute of
the dataset can further be classified as a type of attribute. Because we’re working in
the world of the data scientist, we’ll use the definitions for columns or attributes of
data based on that work. Statistical textbooks typically define four types of attributes
in data:

• Nominal
• Ordinal
• Interval
• Ratio

Let’s take a quick look at each type.

Nominal
Nominal attributes are sometimes referred to as enumerated, categorical, and/or dis‐
crete (e.g., “sunny,” “overcast,” and “rainy”). The term categorical means that these

Introduction to Vectorization in Machine Learning | 325

attributes are set in a finite set of possibilities. They have values that are distinct sym‐
bols, and these values serve as labels. The term “nominal” comes from the latin term
for “name.” Nominal attributes or labels have no relation to one another, nor is any
order implied.

For nominal columns we recommend a one-hot representation of the column value.
This will create multiple column entries in the feature vector with the column relating
to the value from the source data containing the 1.0 value and the other columns con‐
taining a 0.0 value.

Table 8-1 shows example representations for two records for which the first record
has a value of “sunny,” and the second record has a value of “rainy.”

Table 8-1. Example of one-hot representation in a feature vector

[Other columns] Sunny Overcast Rainy [Other columns]
... 1.0 0.0 0.0 ...
... 0.0 0.0 1.0 ...

Ordinal
Ordinal values are like nominal values except they have order. Ordinal values have
rank, giving us a notion of ordering but no concept of distance between the values.
We can compare ordinal values between one another, but mathematical operations
don’t make sense in the context of these values.

Examples of ordinal values are “hot,” “mild,” and “cool” (which direction these are
ordered doesn’t matter, as long as the convention is consistent). Other examples of
ordinal values are “low,” “medium,” and “high.” These values end up being converted
to integer values (e.g., cool = 0, mild = 1, etc.) but represented by floating-point val‐
ues at the code level in vectorization.

The differences between ordinal and nominal are not always obvious, because there
are subtle differences between them. Some of the older data-mining systems tended
to cover only nominal and ordinal types. If the vector representation is for the output
vector, we’d want to use a one-hot representation. For input vectors, we might want to
convert the column value to a real-valued scale.

Interval
Interval values are ordered and measured in fixed and equal units. A great example of
an interval measurement is a specific date or year. We can compare an interval, but
adding or subtracting an interval doesn’t make sense. Interval values are already
numeric, so we don’t need to do a conversion, yet we might end up applying methods
of normalization.

326 | Chapter 8: Vectorization

Ratio
Ratio values are measured based on a zero-point and are treated as real numbers. In
this context, math operations make sense. With ratio data the scheme defines a zero-
point and then a distance from this fixed zero-point. Ratio values are already
numeric, so they don’t require a transformation. We might choose to apply a method
of normalization, however, which we cover in the next section.

Feature Engineering and Normalization Techniques
Vectorization has been around for a while, and practitioners have developed patterns
for building the canonical “flat” variety of vectors. Often we see these vectorization
patterns applied in machine learning pipelines for methods such as logistic regres‐
sion, random forrests, and so on.

In the classical variant of vectorization, we create a fixed-size n-length vector (were
n – 1 is our feature count, and the last slot is dedicated to the label value) and then set
the values of each indexed cell according to some heuristic that we devise to represent
our data. This is generally appropriate for a network such as multilayer perceptron
(for which we’re not using mini-batching). In many situations, in deep learning, how‐
ever, we’re building more complex n-dimensional matrix data structures for input to
our deep networks. As we progress through this chapter, we’ll see more advanced
methods for creating input tensors for Recurrent Neural Networks and four-
dimensional tensor input for CNNs. For the purposes of this section, we focus on
how we engineer individual feature values in these input tensors and then how to
apply methods of normalization to these values.

The process of vectorization is based on selecting attributes and finding a dimension
in a feature vector to which to assign the feature. This is done in different ways
depending on whether we’re working with CSV, text, image, or time-series data. We
still need to select which parts of the input data we want to work with and collect that
in the input vector. We can undertake the process of taking n attributes and turning
them into m features in our output vector in a number of ways, which is referred to as
feature engineering. Raw source data typically needs transformation before it’s ready
for modeling. Raw source data can take on a range of manifestations:

• Raw text such as a document in a text file
• A file containing a tweet string per line
• Binary time-series data in a custom file format
• Preprocessed datasets with a mixture of numeric and string attributes
• Image files
• Audio files

Depending on the condition and source of the raw data, attributes can be in numeric
or string form. For most cases, the values of attributes are numeric and continuous.

Introduction to Vectorization in Machine Learning | 327

These attributes measure numbers, either real or integer values. The term “continu‐
ous” is conflated in meaning in this setting.

Data Cleaning and ETL
Data cleaning is a pragmatic step here and takes a good chunk of time for most data
scientists. Data cleaning tends to occur during the ETL phase of machine learning
and is typically done in the ETL pipeline with scripts or Hadoop jobs. Depending on
the type of attribute and the specific semantics of the scenario, we’ll want to use place‐
holder values. Every column in the dataset having a value does not completely absolve
us of examining the data further. We can also encounter inaccurate values due to a
variety of reasons. Many times, the data was gathered over time and some column’s
values were not relevant and received a dummy value potentially being inaccurate.
Again, studying the statistics of the dataset and graphing attributes are good best
practices.

We can apply the techniques of feature engineering in the hand-coded vectorization
methods of vectorizing columnar data or when we’re working with more complex
data such as time-series or image data. These techniques include the following:

• Taking the values directly from the attribute unchanged
• Normalizing an attribute to create a feature
• Binarization of features
• Dimensionality reduction

We provide some details below on these techniques.

Feature copying
To create vectors from this raw input data, we need to select the proper “features” of
the data that we think are most relevant to the model. Feature selection has long been
held as a key to building a successful model. The number of features in our produced
vector typically will not match up to the number of attributes in the source data.
Many times the source data will be joined together with other datasets and then a
subset of attributes of the resultant denormalized view of the dataset will be used to
derive the final set of features in our vector.

The most common way to generate a feature is to simply copy an attribute that is
already numeric and in the correct range. This scenario is, alas, not very common.
More often, we need to do some basic transformation on the attribute.

328 | Chapter 8: Vectorization

Dealing with Missing Values
Many times with data, we encounter missing values in our raw input data that are fre‐
quently indicated by out-of-range data entries (possibly –1 in a numeric entry or a 0
in a numeric attribute that can never hold a zero-value). For nominal attributes, miss‐
ing values are commonly represented by blanks or dashes. Missing values can occur
for many reasons and understanding the mechanics of the source data can help us tri‐
age why values are missing. A good practice is to study the statistics and properties of
the dataset before we begin building vectors by looking for outliers. A simple method
for this is to graph the various attributes and look for things that don’t look right; for
example, year attributes that have a 0 value.

Here are some basic methods to deal with missing values:

• Filter out records with missing values (caveat: can introduce bias if values are not
missing at random!)

• Set to 0 if missing (caveat: can be OK sometimes; makes the data “noisy”)
• Set to most common value for the column (there are other variants of deciding

this replacement value)

Normalization
Normalization methods scale the input training data to be in a range—for example,
[0, 1], [–1, 1], and so on—after we’ve converted the raw data into a vector representa‐
tion. We care about normalization because it can affect the activations in a neural net‐
work. If the inputs to a network are too large, we see activations that are too large,
potentially adversely affecting training. Conversely, if our inputs are too small, our
activations might end up being too small, as well. Calculated gradients in the network
can be affected in a similar fashion.

Some Hyperparameters Assume Normalization on Data

We make other design decisions such as weight initialization
schemes (e.g., Xavier weight initialization) in the context assuming
that normalization will be applied to the input data.

In the domain of normalization we want to transform the data so it is more consis‐
tent. There are two basic tools we can combine in different ways to perform normal‐
ization:

• Centering
• Scaling

Introduction to Vectorization in Machine Learning | 329

http://ciml.info/dl/v0_99/ciml-v0_99-ch05.pdf

Each of these methods are focused on making the training process easier. With cen‐
tering, we are transforming the feature so that it is centered on the origin, or, in most
cases, the mean. Scaling is a method by which we rescale the feature such that it has a
variance of 1 across the entire dataset, or each feature has a maximum absolute value
of 1 across the training dataset.

Here are the specific methods of normalization that use the above core techniques:

• Standardization
• Min-max scaling
• Whitening
• Principal Component Analysis (PCA)

We see both centering and scaling applied in common normalization practice stand‐
ardization to transform the data to have a zero mean value and unit variance. Min-
max scaling is considered a variant of the basic scaling technique, and can help a
learning algorithm operate more efficiently. We’ll touch briefly on whitening and
principle component analysis later in this section.

Drawbacks to Normalization

Many datasets we see in practice have outliers. When we normalize
a dataset we scale the nonoutlier data to a small interval, and this is
something for which you should be vigilant.

Quick Review: Means and Variances
Often, we’ll use statistical measures in the transformation of our vectors. These
include using the sample mean (e.g., just “mean”) or the sample variance (or just “var‐
iance”) of a feature.

The mean of a feature (or column in dataset) is just the average of the values for the
specific feature. For N real-valued numbers x1, x2, . . . xN, we calculate the mean as
follows:

μ = 1
N Σnxn

The variance of a feature measures how much the values for a feature vary around
their mean:

σ2 = 1
N − 1 Σn xn − μ 2

330 | Chapter 8: Vectorization

1 In some literature, standardization is referred to as z-score normalization.

where μ is the sample mean, as just defined.

Standardization and zero mean, unit variance. When we “standardize”1 a feature column
value, we subtract a measure of location (minimum, maximum, median, etc.) and
then divide by a measure of scale (variance, standard deviation, range, etc.). We want
to rescale features such that they will have properties of a standard normal distribu‐
tion with the following:

μ = 0 (the mean equals 0)
σ = 1 (standard deviation equals 1)

For each feature, we want to transform the value to have zero mean and a standard
deviation from the mean of 1.0. To do this, first we need to calculate the mean and
standard deviation for each feature. The mean is then subtracted from each feature
and the result is divided by the standard deviation of the feature, as seen here:

z = x − μ
σ

This is also referred to as zero mean, unit variance. This equation will center the fea‐
ture value on 0 with a standard deviation of 1.0, producing values in the range of
[–1, 1].

Zero mean, unit variance is the most commonly used method for
standardization. We typically see it used with dense vectors in neu‐
ral networks.

Optimization methods such as Stochastic Gradient Descent (SGD), can greatly bene‐
fit from methods such as standardization. Many times when we see features on differ‐
ent scales, we also see some parameters being updated faster than others because the
input features are on different scales. Standardization also helps methods that com‐
pare similarities between features based on a distance metric.

As we transform data fields from attributes to features in our vector, we also need to
consider how sparse (i.e., lots of zeros in our vectors) the vector is. When we have
sparse data, we want to scale features (or “normalize” as previously mentioned) to fall
between (0, 1) to represent probabilities. In contrast, when we have dense vectors we
want to first perform a preprocessing step to zero the mean and unit variance before
we complete the step to scale resulting values (now in the range of [–1, 1]).

Introduction to Vectorization in Machine Learning | 331

The primary difference here between sparse and dense data preprocessing is that with
dense data, we first do zero unit/mean operations and then do scaling, whereas with
sparse, we just do scaling. Obviously, for the cases in which our algorithm needs the
data in the range of (0, 1), we’d want to scale it to that range (example: RBMs).

Standardize with Caution

Naively applying standardization to a sparse vector might not be a
good idea. Min-max (described in the next section) might be better
in some cases. With sparse, we usually want to keep 0 as 0 post‐
normalization, whereas standardization might not do that.

A Broader Representation with Standardization

The range of [–1, 1] gives a broader representation of our data than
[0, 1] in basic normalization due to there being more bits of infor‐
mation in the floating-point representation.

Min-max scaling. Another way to normalize data is to use min-max scaling, in which
we scale each feature to a fixed range (e.g., the range [0, 1] is common here). The
most basic min-max scaling is performed with the following equation:

Xnorm =
X − Xmin

Xmax − Xmin

The trade-off we’re making with scaling compared with standardization is that we
end up with smaller standard deviations. Min-max normalization is more sensitive to
outliers, because a single outlier (small or large) affects the min-max values and can
have a big effect on the normalization. This ends up being less of an issue with stand‐
ardization.

Min-max scaling tends to be popular in image processing for which pixel intensities
need to be normalized into a specific range (e.g., RGB values are [0, 255] and need to
be scaled to [0.0, 1.0] for input vectors).

Conflating Terms in Normalization

Some texts call min-max scaling simply “normalization” and con‐
sider “standardization” as another technique. In this book, we’re
calling them both methods of normalization and delineating them
specifically as min-max scaling and standardization, respectively.
This seems to be a more discrete and specific way to express the
methods.

332 | Chapter 8: Vectorization

2 Kessy, Lewin, and Strimmer. 2015. “Optimal whitening and decorrelation.”
3 Pearson. 1901. “On Lines and Planes of Closest Fit to Systems of Points in Space.”

Whitening and principal component analysis. A transform of note in the context of deep
learning is called statistical whitening2 (whitening, for short). This is the process by
which we transform data such that it has an identity covariance matrix. Whitening
also decorrelates the data, helping to find an optimal way to represent the data in an
efficient way. The whitening transform is named due to how it changes the input data
into a white-noise vector. A known issue with using whitening is that it can exagger‐
ate the noise in our data in certain situations.

Principal component analysis3 is a method to convert data in a dataset (which is pos‐
sibly correlated) into a dataset of linearly uncorrelated variables. This method uses an
orthogonal transformation to perform the transformation and produces a set of prin‐
cipal components.

Dimensionality Reduction
Dimensionality reduction comes up in machine learning literature quite often for sit‐
uations in which we’d like to find the attributes that matter most to the model in some
algorithmic fashion. An interesting dynamic with deep learning and more specifically
Deep Belief Networks (DBNs) is that the pretrain phase learns representations of the
data by training layers of RBMs. We also see autoencoders encoding raw data into
shorter vectors of numbers. This smaller representation then can be used in classifica‐
tion or similarity search algorithms as input.

Applying normalization in Recurrent Neural Networks and CNNs. When our model assumes
some structure in the input, our normalization should, as well. When we’re working
with Recurrent Neural Network variants—for example, Long Short-Term Memory
(LSTM)—we want to consider all time-steps when we calculate the mean, standard
deviation, minimum, or maximum values for a given input.

When we’re working with normalization in the context of CNNs, we want to share
mean, standard deviation, and other calculated values across all pixel locations in the
image, usually separately for each channel (RGB).

Normalization for regression models. Although we need to use normalization of data for
regression, we need to consider regression a special case. In normalization in a classi‐
fication model, we usually always normalize the features (input); however, for a
regression we also often need to normalize our labels (e.g., targets or output data val‐
ues).

Introduction to Vectorization in Machine Learning | 333

https://arxiv.org/abs/1512.00809
http://stat.smmu.edu.cn/history/pearson1901.pdf
https://en.wikipedia.org/wiki/Covariance_matrix
http://cs231n.github.io/neural-networks-2/

For regression modeling, the same basic principles apply in the process of normaliza‐
tion. We still want to use methods such as min-max scaling and standardization when
we normalize the inputs and outputs for the training process.

Why Do We Normalize the Outputs for Regression?
Consider, for example, the mean squared error (MSE) loss function: if we have values
in the range 0 to 1 million, we end up with large errors and much too large gradients.

However, after normalizing the labels (output values), we are no longer predicting the
original thing we care about, so we need to undo the normalization for the network
predictions. We can perform reverse normalization with min-max and standardiza‐
tion because they are one-to-one mappings.

If we rearrange the normalization equations to undo it:

(reverse standardization)
origScaleOutput = netOutput * sigma + mu
(reverse min-max scaling)
origScaleOutput = netOutput * (xMax-xMin) + xMin

Binarization
There are other situations when building features from attributes for which the mod‐
eling algorithm might require that the data is distributed according to a multivariate
Bernoulli distribution.

In this case, we could use feature binarization to threshold the numerical features to
derive Boolean values. This involves using a filter to produce a feature that includes a
1 or a 0 as its value.

Using DataVec for ETL and Vectorization
As we’ve established so far in this chapter, the topics of data ETL, vectorization, and
normalization are all important topics for the practitioner. We need to consider not
only what kind of machine learning pipeline to build, but also how to operationalize
that pipeline. Given that most joins and ETL operations are single passes over the
datasets, horizontal scalability also comes into play when we want our pipeline to
operate faster.

334 | Chapter 8: Vectorization

Data Doesn’t Need to Be Big to Need More Speed

Even if you don’t have terabytes of input data, this doesn’t mean
that you won’t need to consider a scalable solution for the ETL
phase of your machine learning pipeline. Many times management
or the customer asks, “How can we get this answer faster?” and
many times the answer is to scale the pipeline horizontally. Tools
such as Apache Hadoop, Apache Spark, DL4J, and DataVec are all
part of the answer to modern, scalable machine learning pipelines.

DataVec allows for local mode execution and also the ability to scale horizontally on
Apache Spark and Apache Hadoop. In the examples in Chapter 5, there are many in
which we used the ND4J API directly to manipulate data to produce the input Data
Set objects used by the DL4J library. One of the nice things about DataVec is that it is
able to take on certain types of standard data types and automatically produce vector‐
ized DataSet objects. DataVec also includes transforms to collect statistics on the vec‐
torized data and then normalize the data in the DataSet object.

As discussed previously in this chapter, the fundamental case for vectorization in
machine learning (and deep learning) is to be able to handle the columnar (CSV)
data type. To do this in local mode with DataVec, we’d simply write the following:

RecordReader reader = new CSVRecordReader(numLinesToSkip, delimiter);
InputSplit inputSplit = new FileInputSplit(file);
reader.initialize(inputSplit);

//Create the DataSetIterator. We are assuming classification here:

int minibatchSize = 10; //Number of examples in each minibatch

int labelIndex = 7; //Index of column that contains the label
int numClasses = 5; //Number of classes (label categories)
DataSetIterator iterator =
 new RecordReaderDataSetIterator(
 reader, minibatchSize, labelIndex, numClasses);

We saw this code initially in Chapter 5 when we built the multilayer perceptron
model with the CSV data input. DataVec allows us to specify different types of record
readers, couple them with DataSet iterators, and work with the data in a DL4J mod‐
eling pipeline. DataVec gives us the ability to quickly specify operations for the fol‐
lowing:

• Joins
• Filters
• Normalization
• Standardization

Using DataVec for ETL and Vectorization | 335

As we progress further through this chapter, we’ll discuss the other major data types
and lay out notes on how DataVec handles them.

To read more about DataVec, see Appendix F by guest author Alex
Black.

Vectorizing Image Data
Images are another rich source of information that we can mine for information. We
define an image as “an artifact that depicts or records visual perception; for example,
a two-dimensional picture.” An array of pixel values, as we see in Table 8-2 represent
an image stored on a computer. Each pixel has a value indicating how bright the pixel
should be and/or what color the pixel should be.

Table 8-2. Pixels in an image visualized as rows and columns

 Column-1 Column-2 … Column-m

Row-1 p11 p21 … p-m-1

Row-2 p12 p22 … p-m-2

… … … …

Row-n p-1-n p-2-n … p-m-n

The number of bits per pixel dictates how many colors we can show per pixel. A 1-bit
pixel can display only binary images (typically black and white pixels). Eight-bit pix‐
els are more common and can display 256 colors (or grayscale) per pixel. For gray‐
scale images, the integer representing the pixel indicates the brightness (closer to
white or 255, from black or 0) of the pixel. To represent color images, separate red,
green, and blue components must be specified for each pixel (assuming an RGB col‐
orspace), and so the pixel value is actually a tuple of three numbers. Common image
file formats are JPG, PNG, and GIF.

Image Formats

Each format can store the image data differently and perform vary‐
ing levels of compression on the raw data. Images are different
from text but can be more straightforward in how we vectorize
them.

336 | Chapter 8: Vectorization

Working with Video Data

Video data vectorization is a variation of both image vectorization
and time-series vectorization. With video data, we have a series of
timestamped images. Our video vectorization process involves
tracking image vectorization over time and can become more com‐
plicated in terms of what we consider an individual vector (e.g.,
single frame versus subset of image across multiple frames).

Image Data Representation in DL4J
In the context of deep learning, we’re most interested in image vectorization for
CNNs. In DL4J, we want to convert each image into a three-dimensional tensor rep‐
resentation in an INDArray object (for more on this topic, see the Appendix E) as seen
in Figure 8-1.

Figure 8-1. Three-dimensional input volumes in convolutional networks

When we create mini-batches of images for training, as we’ve seen in examples in this
book, we’re actually creating four-dimensional tensors that have the following dimen‐
sions:

1. Mini-batch size
2. Depth
3. Height
4. Width

Vectorizing Image Data | 337

Where the width and the height map directly to the input image characteristics and
the depth is the number of channels (e.g., RGB is typically 3) in the image data.

4D Mini-Batches of Images are the Standard in CNNs

The 4D format is the standard in DL4J for working with CNNs and
images.

In the event we want to vectorize data for a multilayer perceptron network, we need
to flatten it into two dimensions (e.g., minibatchSize, depth × height × width). To
understand this variant of image vectorization, let’s continue with our earlier visual
grid explanation. With an image, the first thing we need to do is extract the pixel
intensities from each location in the array of pixels. The basic idea is to take the con‐
cept of an M × N image and flatten this rectangle into a 1 × (m × n) array as seen in
Table 8-3.

Table 8-3. Flattened image data

 Column-1 Column-2 … Column-m-x-n

Row-1 pixel1 pixel2 … pixel-m-x-n

The image is composed of a sequence of floating-point values that indicates hue
intensity physically, but we tend to think of them as their logical form of the M × N
grid of pixel intensities. To feed this image into any linear algebra vector, we need to
arrange these pixel intensities into a vector of values more suitable for machine learn‐
ing algorithms.

We need to convert this rectangle into a 1 × (N × M) array per image record in our
matrix, as seen in Table 8-4. We perform this flattening routine by using CnnToFeed
ForwardPreprocessor, which is done automatically by using .setInputType(Input
Type.convolutional(height,width,depth)) in the configuration of the network.
The method .setInputType() will realize we’re trying to feed a 4D array into a dense
layer that requires 2D, and it will add the preprocessor to flatten it for us.

Table 8-4. Flattened mini-batches of images in 2D array

 Column-1 Column-2 … Column-m-x-n

Image1 pixel1 pixel2 … pixel-m-x-n

Image2 pixel1 pixel2 … pixel-m-x-n

Image3 pixel1 pixel2 … pixel-m-x-n

338 | Chapter 8: Vectorization

Image Data and Vector Normalization with DataVec
A major part of the vectorization in image modeling is getting the raw pixel data out
of the file format container and translated into the vector object that our learning
algorithms understand. We need to read the raw pixel data, cell by cell, do any needed
transforms or normalizations, and then add the value at the corresponding index in
the output vector. Many times we simply take the entire set of image pixels and trans‐
late them directly into a vector with some transforms per pixel. In more advanced
methods of image processing, sections of the image are parsed out and used as vec‐
tors by themselves.

DataVec’s ImageRecordReader is the record reader to use with image data and per‐
forms common image operations such as cropping. ImageRecordReader supports a
wide variety of image formats, including the following:

• JPG
• GIF
• PNG
• TIFF
• BMP

Efficient loading and image operations are provided by JavaCV and OpenCV. The
code snippet that follows shows DataVec’s ImageRecordReader being set up to build a
DataSetIterator, which allows DL4J to train directly on image data:

ImageRecordReader reader =
 new ImageRecordReader(
 outputHeight, outputWidth, inputNumChannels, labelMaker);
reader.initialize(inputSplit);

//Finally, create the DataSetIterator:

int minibatchSize = 10; //Number of examples in each minibatch
int labelIndex = 1; //Always value 1 for ImageRecordReader
int numClasses = 3; //Number of classes (label categories)

DataSetIterator iterator =
 new RecordReaderDataSetIterator(
 reader, minibatchSize, labelIndex, numClasses);

Functionality such as this makes DL4J a much easier platform to work with because
you can focus on the overall ETL and vectorization pipeline flow and less on the
minute details such as extracting pixel values from file formats. We cover the ImageRe
cordReader in further detail in Appendix F, along with methods for image data trans‐
forms, normalization, and standardization.

Vectorizing Image Data | 339

4 For a more detailed look at time-series in the wild and in practice, go to http://www.cloudera.com/blog/
2011/03/simple-moving-average-secondary-sort-and-mapreduce-part-1/.

Working with Sequential Data in Vectorization
Sequential data is similar to columnar data except there can be multiple values for a
given column in a row. An example of sequential data would be a temperature reader
at a specific location taken periodically over time. If we were to add a timestamp to
each of these temperature measurements, we could term this sequential data as “time-
series data.” Time-series data is defined as a sequence of data points measured typi‐
cally at successive time intervals. In the world of finance, we see time-series data4 in
the form of the daily-adjusted close price of a stock on the NYSE. Another example
would be sensor readings from phasor measurement unit (PMU) devices on the
smart grid that measure “phase angle” and voltage 30 times a second.

One of the most common applications is log processing. Systems such as web servers,
cell phones, and credit card readers all generate log entries every time an action is
performed in response to a request. These devices are a tremendous source of
sequential and time-series data. This data doesn’t always fit that well in a traditional
RDBMS system, so we often see it stored on storage area network (SAN) drives or
Apache HDFS. The much talked-about Internet of Things (IoT) largely consists of
these use cases in which we are ingesting and processing time-series data from sen‐
sors (webservers, PMUs, cell phones, etc.). Other sources of sequential data we might
not think of directly are genomic data and regular character sequences (e.g., senten‐
ces).

Many machine learning tools today have poor support for sequential data and the
practitioner ends up having to handcode complex ETL pipelines to handle this class
of data. We also have a lot of sequential values that can be very noisy and we need
normalization and standardization. In the rest of this section, we look at some practi‐
cal ways to deal with the ETL and vectorization requirements of sequential data with
DataVec.

Major Variations of Sequential Data Sources
Sequential data can come in many forms based on who or what device produced the
data, where the data is stored, and what format was used to store the data. Here are
three major ways we often see sequential data:

• Raw log lines
• Single CSV file of time-series data
• Multiple CSV Files of time-series data

340 | Chapter 8: Vectorization

http://www.cloudera.com/blog/2011/03/simple-moving-average-secondary-sort-and-mapreduce-part-1/
http://www.cloudera.com/blog/2011/03/simple-moving-average-secondary-sort-and-mapreduce-part-1/
https://openpdc.codeplex.com/

Inside of these source files, we might see different arrangements of data. We have
entities (e.g., a “user,” or other agent for which we’re tracking actions) and then we
have N number of values we’re collecting per sequence entry. So, we’ll have a sequence
of 1 or more columns for every entity. Some of these variations in how data is stored
on disk include the following:

All sequences in a single file
Each line is a CSV set of readings (e.g., multiple columns) from a single source.

Sequences spread across multiple files
Each file in this variant tends to represent readings from a single source.

In the single-file variant, sometimes we see sequential data arranged in a row-
oriented format in a CSV file where each line represents a single column for a given
source. The line also contains the source’s identifier.

When each source is generating multiple columns of time-series at each step, we’ll
often see the data arranged in CSV files, in which each line is a time-step. Each file
represents a single source of the multivariate time-series data. Each row will typically
have one or more columns to represent the multiple values per time-step for the
source.

We should also consider how many columns are measured at each step in the
sequence of time-series data. For example, when we’re measuring only voltage on a
power grid, we’re only measuring a single column of data per step in the sequence. If
for every step (or time-step) we’re measuring both voltage and temperature, we’d need
a file format with the ability to represent at least two columns per sequence step.

All of these factors (and more) come into play in the ETL process leading up to the
vectorization, normalization, and standardization of sequential data. Eventually we’ll
want to get all of this information into an object (e.g., a DataSet object) that our
modeling tools can understand. DL4J provides support for handling sequential data
ETL and through DataVec.

Vectorizing Sequential Data with DataVec
We need to be able to load the raw sequence file from a drive (local, or from another
location such as HDFS). This involves such tasks as:

• Reading the file format
• Processing any joins or transformations of the data
• Matching up the labels (if any) to the features for the relevant sources of

sequences
• Performing any normalization or standardization needed
• Finally producing a DataSet object with data aligned correctly

Working with Sequential Data in Vectorization | 341

Ideally, our input file format matches up to a record reader we already have in Data‐
Vec (or Spark, if we’re using that execution environment). Ultimately, we want to con‐
struct a mini-batched set of sequential data with one or many columns in a tensor
structure represented by an NDArray in ND4J. We want a 3D tensor structure, such
as that depicted on the right side of Figure 8-2.

Figure 8-2. Representing sequential data for Recurrent Neural Networks

We want to create a 3D tensor (e.g., 3D matrix) for which the following is true:

• Mini-batch size is the first dimension
• Feature columns are the second dimension
• Time-step values for each column are the third dimension

It can become tricky to perform all of the aforementioned ETL work and then align
the data values in the NDArray tensor by hand. From that perspective, we recom‐
mend that you use record readers and formats already in DataVec where possible.

Custom File Formats

If you do not have a record reader in DataVec for the particular
type of input data, you will have to write some custom code for ten‐
sor construction. This can be a nontrivial exercise depending on
the complexity of the data.

Let’s take a look at some older variants of time-series vectorization before we move on
to how we do a few patterns of sequence conversion into tensors with DataVec.

342 | Chapter 8: Vectorization

Converting time-series to a single vector
For most machine learning methods, we focus on representing each record as a vec‐
tor or row in a matrix. Each row represents a single record, and a group of rows rep‐
resents a mini-batch of these vectors to train on, as illustrated on the lefthand side of
Figure 8-2.

The major drawback is losing the time aspect of the input data. Most of the time,
before Recurrent Neural Networks, we didn’t care because most machine learning
techniques did not have a way to take the sequence of values (or the time domain)
into account anyway. Most of the time the practitioner was tasked with performing
exotic methods of vector creation through hand-engineering. Although in some cases
this is effective, as discussed in Chapter 5, this path can lead to significant technical
debt in terms of durability in the machine learning pipeline.

Symbolic Aggregate Approximation
There are a few ways to handle time-series data in the world of flat vector representa‐
tion. One method to deal with noisy time-series data is to run a low-pass filter over it
as a preprocessing step. Symbolic Aggregated approXimation (SAX) preprocessing is
a great way to reduce noise in time-series data. Dr. Eamonn Keogh’s team at the Uni‐
versity of California, Riverside, developed SAX. SAX is a symbolic representation of
times-series with some unique properties. SAX represents a time-series T of length n
in d-dimensional space. It is essentially a low-pass filter with a lower bounding of the
Euclidean distance. SAX performs a measure of dimensionality reduction on the raw
time-series data, which helps learning algorithms.

The successor to SAX is indexable Symbolic Aggregate approXimation (iSAX), which
adds some additional capabilities. iSAX modifies SAX to facilitate “extensible hash‐
ing” and a multiresolution representation and allows for both fast exact search and
ultrafast approximate search. The net effect is that iSAX’s representations are more
flexible in representing different distributions of values and it allows for an interest‐
ing index over the time-series that is handy in many applications like fast approxi‐
mate search.

Converting sequential data to a DataSet object in local mode
In the world of Recurrent Neural Networks (and LSTMs), we want to produce a 3D
tensor represented by a DataSet object. To illustrate this concept, let’s consider the
case in which we’re modeling data that has each entity’s sequence data separated into
a distinct file. There is also a corresponding file for the label for each entity, as well.
For example, we’d have the following:

Working with Sequential Data in Vectorization | 343

http://www.cs.ucr.edu/~eamonn/SAX.htm

• The file for the sequence data for entity 0:
— train/features/0.csv

• Label for sequence data entity 0:
— train/labels/0.csv

This data has only one column of data per measured step, so we consider it univari‐
ate. With DataVec, we can use the CSVSequenceRecordReader as our record reader,
and then the NumberedFileInputSplit class will handle the file and directory nam‐
ing schemes for us. We use the SequenceRecordReaderDataSetIterator class to pro‐
duce our DataSet objects, which will use the record reader and input split objects, as
shown in the following code example:

//Note that we have 450 training files for features: train/features/0.csv
//through train/features/449.csv

SequenceRecordReader trainFeatures = new CSVSequenceRecordReader();
trainFeatures.initialize(new NumberedFileInputSplit(featuresDirTrain
 .getAbsolutePath() + "/%d.csv", 0, 449));

SequenceRecordReader trainLabels = new CSVSequenceRecordReader();
trainLabels.initialize(new NumberedFileInputSplit(labelsDirTrain
 .getAbsolutePath() + "/%d.csv", 0, 449));

int miniBatchSize = 10;
int numLabelClasses = 6;

DataSetIterator trainData =
 new SequenceRecordReaderDataSetIterator(trainFeatures,
 trainLabels, miniBatchSize, numLabelClasses,
 false, SequenceRecordReaderDataSetIterator.AlignmentMode.ALIGN_END);

//Normalize the training data
DataNormalization normalizer = new NormalizerStandardize();
normalizer.fit(trainData); //Collect training data statistics
trainData.reset();

//Use previously collected statistics to normalize on-the-fly.
//Each DataSet returned by 'trainData' iterator will be normalized
trainData.setPreProcessor(normalizer);

Here we’ve put together the aforementioned objects to create a DataSetIterator,
which will give us mini-batches of DataSet objects. These mini-batches of DataSet
objects will contain the data from the source files (and label files) aligned correctly.
Toward the bottom of the code, we also can see how normalization and standardiza‐
tion might be applied to the data while in flight in the DataVec pipeline.

344 | Chapter 8: Vectorization

Here are other variants of the record reader in DataVec:

CSVNLinesSequenceRecordReader

This is another version of the previously mentioned CSV sequence reader. Each
sequence is exactly N lines long, all in one file, one after another.

RegexSequenceRecordReader

This works well for log data for which we need regular expressions to parse the
columns.

In terms of dealing with file formats, earlier we demonstrated the use of the Numbered
FileInputSplit, which understands how to read numbered files split out in directo‐
ries. Obviously, there are many other ways in which files can be laid out on a drive,
and we’d want to subclass the FileSplit class to further deal with those scenarios.

Another topic to consider here is building custom DataSets from sequential data for
which we don’t already have the needed built-in functionality in DataVec and then
running DataVec on Spark. We cover the custom construction of DataSet objects in
the next section. We cover vectorization of sequential data on Apache Spark in Chap‐
ter 9.

Building custom DataSets from sequential data
The easiest way to think about how to create the needed data structures for training
an LSTM in DL4J is to realize we need only the following:

• An input NDArray holding the training data
• A label NDArray holding the label data
• Two masking DataSets representing our masking information

We combine these four NDArray objects together to construct the needed DataSet
object DL4J expects:

DataSet d = new DataSet(input, labels, mask_in, mask_labels);

Really, the trick is in laying the data in each of the NDArrays in the correct spot
before we put them all together in a fashion similar to the preceding line. An example
of this might look like the code snippet here:

//Allocate space: { mini-batch size, number columns, number timesteps }
INDArray input =
 Nd4j.zeros(new int[]{ miniBatchSize, inputColumnCount, maxTimestepLength });
INDArray labels =
 Nd4j.zeros(new int[]{ miniBatchSize, outputColumnCount, maxTimestepLength });
INDArray mask = Nd4j.zeros(new int[]{ miniBatchSize, maxTimestepLength });

for (int miniBatchIndex = 0; miniBatchIndex < miniBatchSize; miniBatchIndex++) {

 for (int curTimestep = 0; curTimestep < endTimestep; curTimestep++){

Working with Sequential Data in Vectorization | 345

 // input -> set the column index for the character id-index ->
 //at the current timestep (c)
 input.putScalar(new int[]{ miniBatchIndex, columnIndex, curTimestep }, 1.0);

 // do more column input here

 // now setup the masks, setting a 1.0 for the timestep wherever there is data
 mask.putScalar(new int[]{ miniBatchIndex, curTimestep }, 1.0);

 // labels -> set the column index for the next character id-index ->
 //at the current timestep (c)
 labels.putScalar(new int[]{ miniBatchIndex, nextValue, timestep }, 1.0);

 }

}

INDArray mask2 = Nd4j.zeros(new int[]{ miniBatchSize, maxLength });
Nd4j.copy(mask, mask2);
return new DataSet(input,labels, mask, mask2);

Obviously, by the time we’d execute this code, we’d have performed all of the ETL and
vectorization needed for the raw data. At this point, we’re just aligning the data in the
tensor data structure. Here are the main things to note about this code:

• We need to use ND4J to construct our input matrices.
• The two-loop pattern is generally a coherent way to walk through the 3D data

structure and set up our data.
• We then mostly make calls to INDArray.setScalar() to set values.

The trick we’ll note here is how we lay out the label matrix data. If we’re doing charac‐
ter prediction, as in the Shakespeare example from Chapter 5, we’re putting the next
character value at the current time-step in the labels matrix. If we’re doing a sequen‐
tial data classification model (e.g., classifying an anomaly in log data, for example),
we might put the class at every single time-step in the labels matrix. How we lay out
the data is a bit of an art and there are multiple strategies for treating data that occurs
at uneven time-steps. The strategy for aligning time-steps is a decision we leave to
your discretion.

Using Masking in Tensors
In DL 4J, we use masks for both training data and labels.

We set the mask time-step value to 1.0 for every time-step containing training data in
the training data mask. We set the mask time-step value to 0.0 for all other time-steps.
We normally use the same mask for both the input data structure and the label data
structure.

346 | Chapter 8: Vectorization

5 In some languages stemming is “light” version of lemmatization.

Typically, we see this in code where we’re looping over the tensor data structure and
we set the mask entry for each time-step as we go along. This might look like the fol‐
lowing:

INDArray mask = Nd4j.zeros(new int[]{ miniBatchSize, maxLength });
...
for (...) {
 ...
 mask.putScalar(new int[]{ miniBatchIndex, timeStep }, 1.0);

Notice that we’re setting only a mini-batch index and then a time-step index in the
mask data structure. We don’t need to specify which columns have data, just that any
column in this specific time-step could have data.

Working with Text in Vectorization
Text can be unwieldy at first glance, given that we can have any number of words in a
document or passage and the number of words across a corpus will not be the same.
If each document doesn’t have a consistent “attribute” count, the simplest method of
feature engineering (simply copying the attribute value over) will not work. We need
methods to convert a variable number of attributes to a consistent number of fea‐
tures. As we’ll see momentarily, there are a number of ways to do this. In this section,
we review some of the older methods of text vectorization and then compare those to
more modern methods such as Word2Vec. Let’s begin by looking at the fundamentals
of free text and the Vector Space Model (VSM).

The VSM is a common way of vectorizing text documents. In this model, every possi‐
ble word is mapped to a specific integer. If we have a large enough array, every word
fits into a unique slot in the array and the value at that index is the number of the
times the word occurs. Most often our array size is less than our corpus vocabulary,
so we have to have a vectorization strategy to account for this.

To model text we go through several stages:

1. Sentence Segmentation: We can skip directly to tokenization depending on use
case.

2. Tokenization: We use this to find individual words.
3. Stemming: This finds the base or stem of words (optional).
4. Lemmatization:5 This collapses the different inflectional variants of a lemma

(optional).
5. Removing stop-words (optional).

Working with Text in Vectorization | 347

http://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html
http://stanford.io/2uSn0Vq

6 You can find one of the earliest references of the bag-of-words model in Zellig Harris’s 1954 article on “Distri‐
butional Structure.” (Orderless document representation: frequencies of words from a dictionary by Salton &
McGill also appears in 1983.)

6. Vectorization: We take the output of the process and make an array of floating
point values.

With the VSM, we assume that words are dimensions and by extension are orthogo‐
nal to one another. This is used in a similar fashion to how a point’s x and y values
would be considered independent. But for text this is actually not true, because words
can have co-occurrence mechanics. An example of this would be the name of a prod‐
uct or a team such as the “Tennessee Volunteers.” The probability of “Tennessee” and
“Volunteers” occurring together is higher so these words are not truly independent.
For vectorization, we can use multiple strategies. In the following sections, we list a
few of the most common methods in the text vectorization space in order of simplic‐
ity, from most simple to more advanced.

Bag of Words
Bag of words is a list of words and their word counts. It is the simplest vector model
but can end up using a lot of columns due to the number of words involved. Typically
we want to normalize the counts of the words per document to help our learning
algorithm, which give us probabilities for word occurrences in the document in the
vector representing the document. The bag-of-words model gives us a simplified rep‐
resentation and is often used in Natural Language Processing (NLP) and information
retrieval (IR).

A group of words or a document is represented as a bag, or multiset, of its words.
Grammar and word ordering is ignored, but we still track how many times the word
occurs in the document. The bag-of-words vectorization technique has been used
most frequently in the document classification and IR domains.6

In Table 8-5, our vector has an index for every distinct word in the document. If the
word “apple” corresponds to the 0 index, every time the word “apple” occurs in the
document, we increment the value at this index. This ends up becoming a word-
counting exercise in which we define a distinct set of words and then count how
many times they occur. When we have this distinct word count, we can build our fea‐
ture vector based on how the words’ index maps into the vector. In this vector form,
we maintain the number of times a word occurs, but we lose the word-ordering infor‐
mation. We also can consider this representation to be equivalent to the histogram
representation.

348 | Chapter 8: Vectorization

7 Another vectorization variation on the bag-of-words model is the hashing trick in which we use a hashing
function to map each word to an index in a fixed-sized vector.

Table 8-5. Illustrating the vector space model visually

 T1 T2 … Tt

D1 w11 w21 … wt1

D2 w12 w22 … wt2

… … … …

Dn w1n w2n … wtn

The bag-of-words model is commonly called a term frequency vector. We can use this
term frequency in more elaborate vectorization schemes such as TF-IDF. TF-IDF
multiplies the frequency of the word within a document by the rarity with which it
appears in the corpus overall. In other variations of the bag-of-words model, we use
only 0 or 1 as the vector entry value to indicate that the word occurred or did not
occur. The bag-of-words model requires multiple passes of the dataset, which can be
expensive, especially with larger datasets.

A drawback of the bag-of-words method is that it cannot capture phrases and multi-
word expressions. Bag of words, without specific preprocessing, also does not
account for potential misspellings or word variations that we might want to combine
into a single word. N-grams and other preprocessing techniques alleviate both of
these concerns.7

TF-IDF
TF-IDF is a great way to fix some inherent issues with the bag-of-words model.
Words do not occur with the same frequency across all documents or in the same
document. We use TF-IDF to measure the relative weight of how frequently the word
occurs versus how distinctive that word is as a marker.

TF-IDF gives us a numerical statistic to indicate how important a word is to a docu‐
ment with respect to a collection of documents. We often consider TF-IDF as a
weighting factor in IR and text mining. TF-IDF values increase proportionally to the
number of occurrences of a word in a document, but the values are dragged down at
the same time by the frequency of the term across the entire corpus. This helps TF-
IDF account for words that might appear important in the document but are actually
common across the entire collection of documents.

TF-IDF has proven useful because it allows us to use the information about how
often a word occurs in a document while considering the frequency of the word in
the corpus to control for the facet that some words will be more common than oth‐
ers. The TF-IDF weight is composed of term components, term frequency (TF), and

Working with Text in Vectorization | 349

http://stanford.io/2sxu2ym

the inverse document frequency (IDF), in which the former (TF) is divided by the
latter (IDF). To produce our TF-IDF number, we begin by calculating the “term fre‐
quency” portion of the measurement.

Weighting Terms
Search engines often use TF-IDF as a mechanism to score and rank a document’s
relevance, given a user query. It’s also effective as a stop-words filter for text summari‐
zation and classification. With TF-IDF, stop-words will end up with a small weight,
and the terms that occur infrequently relative to the entire corpus are assigned larger
weights.

These more important words generally have high TF and larger IDF values, so the
product of the two factors is a larger value. In this classic version of TF-IDF, we see
that stop-words are assigned a small weight, and the terms that are rare are assigned a
much larger weight. This allows us to “see” the words of relatively high value, such as
the topic of a document. Important words will have both large TFs and large IDFs,
which produces a relatively high TF-IDF score for them.

Besides search engines, TF-IDF also is very useful in the fields of text summarization
and classification. This vectorization process is more accurate than the basic bag-of-
words model but computationally more complex because we need to look at how
often the word occurs in both the document and then the whole corpus. This involves
more than one pass over the dataset and some preprocessing passes.

TF
TF is defined in its simplest form as the number of times a word appears in a group of
documents. Much like bag of words gives us an indication that a word occurred in the
corpus, TF gives us information on how often the word occurred. For more complex
forms of term frequency, we like to normalize our counts with respect to the length of
documents. Most documents will not have the same length; to account for this, we
divide the term frequency by the document length (total count of all terms in the
document) as a way to normalize the counts, giving us a more accurate measure.

t = term
d = document

t f t, d = count t
count alltermsind

350 | Chapter 8: Vectorization

8 The IDF was original introduced in 1972 by Karen Sparck Jones as “term specificity.”

IDF
The next step for calculating TF-IDF is to measure how much information a word
provides by calculating the word’s IDF. We’d like to measure how common or rare
this word is and then include that information in our vector with this part of the for‐
mula. The intuition is that we want terms that occur in few documents to be assigned
a higher value in the vector than terms that occur in many documents across the cor‐
pus.8

To determine the “document frequency,” first we calculate the fraction of documents
containing the word by dividing the total number of documents in the corpus by the
number of documents containing the word. This gives us information regarding how
rare the word is from the vantage point of looking at the entire group of documents
we’re considering. To complete the IDF, we then take the logarithm of this derived
fraction.

The IDF value in this form is still not ideal, because it masks the effect of TF on the
final term weight. To reduce this problem, a usual practice is to use the logarithm of
the IDF value instead (Table 8-6 lists the variable definitions):

id f t = log N
d f t

Table 8-6. Components of IDF

IDF variable Description
df t Document frequency; number of documents in the corpus that contains a term t

N Total number of documents in the input corpus

Computing the full TF-IDF score
Thus, the TF-IDF weight for a word becomes the following:

t f id f t, d = t f t, d × id f t

A high weight for a TF-IDF calculation is driven by words that have relatively high
TF and relatively low document frequency with respect to the entire document cor‐
pus. Common terms tend to be filtered out because they will have low TFs and high
document frequencies. If we look closely at the IDF part of the weight, we see that its
value is greater than or equal to 0.

Working with Text in Vectorization | 351

http://stanford.io/2uSrD1P

9 Apache Lucene has a quality implementation of TF-IDF that is used in many places in the JVM landscape, as
well.

This is due to the value that is input to the logarithm function always being greater
than or equal to 1. We can see that as a term occurs more in various documents, the
ratio inside the logarithm approaches 1. This gives us an IDF value closer to 0 and by
extension a TF-IDF value closer to 0. TF-IDF has shown to be more effective than
plain bag of words in practice, but through preprocessing phases, we can gain even
more effectiveness though a technique called n-grams.

DL4J includes an implementation9 of TF-IDF as part of its text-processing tools. A
quick example of how we’d use the DL4J implementation of TF-IDF is shown here.

File rootDir = new ClassPathResource("tripledir").getFile();
LabelAwareSentenceIterator iter = new LabelAwareFileSentenceIterator(rootDir);
TokenizerFactory tokenizerFactory = new DefaultTokenizerFactory();

TfidfVectorizer vectorizer = new TfidfVectorizer.Builder()
 .setMinWordFrequency(1)
 .setStopWords(new ArrayList<String>())
 .setTokenizerFactory(tokenizerFactory)
 .setIterator(iter)
 .build();

vectorizer.fit();

Removing Stop-Words

A common preprocessing step in TF-IDF is removing stop-words.
Stop-words dominate raw text in terms of quantity, which can
greatly affect the value of the TF-IDF weights. In TF-IDF, we
remove the stop-words to achieve a more accurate measure
between two document vectors. Examples of stop-words include
the following:

• a
• an
• who
• the
• what

Removing these words improves our TF-IDF measure considerably
as initial distance values between two documents is dominated by
the weights of these stop-words.

352 | Chapter 8: Vectorization

http://bit.ly/2tphvjk
http://bit.ly/2tphvjk

N-Grams
An n-gram is a contiguous sequence of n items from a given sequence of text or
speech. N-gram vectorization techniques can give the vectorization process an idea of
how often groups of words occur together in the corpus. A basic TF-IDF implemen‐
tation will not pick up the information contained in neighboring words during its
vectorization process, and can miss dependent information in identifies such as “Wall
Street” or “Coca Cola.”

We use n-grams for tasks in which we have a sequence of elements such as words, and
we want to identify or predict the next word. We see that certain words are more
probable in certain contexts than others, and we can take advantage of this informa‐
tion. N-grams give us a way to model the context of how a word is used by including
some of its neighboring words. We see n-grams used in NLP and speech recognition.
In speech recognition, we see words modeled as a series of n-words. In the applica‐
tion of language identification, we see sequences of characters (or graphemes, “letters
of the alphabet”) as n-grams when we’re trying to discover the language in which a
text is composed. When we parse a document or body of text, we model words such
that each n-gram is composed as n words in a sequence.

You should take care with n-grams because when n is high enough, it becomes com‐
putationally expensive to run the algorithm. The vocabulary growth is overwhelming
even when n = 5, so you should use n-grams with caution and use a lower n value.

Kernel Hashing
Another method you can turn to in text vectorization is called kernel hashing. It turns
out that feature creation in vectorization is not that easy, and we can always benefit
from making things simpler. Making multiple passes through the data as in TF-IDF is
difficult when we deal with a lot of data with respect to having to touch a lot of hard‐
ware while trying to attain good throughput. You use kernel hashing when you want
to vectorize the data in a single pass, making it a “just in time” vectorizer. The advan‐
tage to using kernel hashing is that you don’t need the precursor pass like you do with
TF-IDF, but you run the risk of having collisions between words. You can use it when
you want to vectorize text right before we feed it to our learning algorithm.

Comparing Word2Vec and VSM Comparison
As we discussed in Chapter 5, Word2Vec detects similarities between words mathe‐
matically by learning the context in surrounding words. Word2Vec creates vectors
that are distributed numerical representations of word features, such as the context of
individual words. Specifically, Word2Vec produces a list of word embeddings (vec‐
tors) in which a single vector represents each word.

Working with Text in Vectorization | 353

10 Nay. 2016. “Gov2Vec: Learning Distributed Representations of Institutions and Their Legal Text.”
11 Barkan and Koenigstein. 2016. “Item2Vec: Neural Item Embedding for Collaborative Filtering.”
12 Grover and Leskovec. 2016. “node2vec: Scalable Feature Learning for Networks.”
13 Ibid.
14 Perozzi, Al-Rfou, and Skiena. 2014. “DeepWalk: Online Learning of Social Representations.”

With Word2Vec, we are able to capture semantics of word use by understanding the
word’s position across many sentences and relating that position to meaning. This
allows Word2Vec vectors to capture latent information in the input data based on the
neural network’s internal representation of the word.

Word2Vec Vector Arithmetic

The word meaning and relationships in the produced word embed‐
dings are encoded spatially and have useful characteristics such as
vector arithmetic.

Vector space models (e.g., TF-IDF), in contrast, are built using only co-occurrence
statistics from the input document list. This allows for interesting properties, such as
being able to calculate the similarity between two documents (or words), yet is limi‐
ted in representing semantic or syntactic relationships between words or documents
(by using only co-occurrence information in the corpus).

Word2Vec’s vector representations have allowed for novel approaches to raw text
understanding,10 recommendation,11 and graph modeling,12 as previously mentioned
in this book. For code samples on how to construct Word2Vec (and paragraph vec‐
tors), refer to Chapter 5.

Working with Graphs
Vectorizing graph structures is a difficult problem in engineering data science pipe‐
lines. Although we won’t exhaustively cover the topic of graph vectorization here,
we’ll discuss the Node2Vec variant (see also Chapter 5).

With Node2Vec13 we can generate a vector for each vertex (and, by extension, each
edge) in a graph. We can use these vectors just like word vectors (mentioned in the
previous section) for a variety of tasks, such as node classification and inferring
whether an edge (connection) should exist.

Node2Vec is a generalization of another graph method called DeepWalk.14 DeepWalk
works by performing truncated random walks on the graph to build up local infor‐
mation about the graph structure. This allows DeepWalk to learn latent representa‐
tions in the graph by treating the trips through the graph as the equivalent of

354 | Chapter 8: Vectorization

http://aclweb.org/anthology/W16-5607
https://arxiv.org/abs/1603.04259
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1403.6652

15 Niepert, Ahmed, and Kutzkov. 2016. “Learning Convolutional Neural Networks for Graphs.”
16 We also see the “adjacency list” data structure used in a similar fashion for graph vectorization. “Section 22.1:

Representations of graphs,” Introduction to Algorithms (Second ed.), MIT Press and McGraw-Hill: pp. 527–
531.

sentences. Finally, we would like to note the work15 with graph CNNs as something
you should be aware of, but these are not currently supported in the DL4J framework.

Adjacency Matrices
Vectorizing graphs as an adjacency matrix is a common method16 we see in machine
learning for this task. In this method, we use a square matrix to represent a finite
graph structure where the rows and columns of the matrix each have a list of all of the
nodes in the graph. The adjacency matrix is a (0,1)-matrix with its diagonal filled with
zeros (a node cannot have an edge connected to itself in this type of representation).

In this book, we direct you more toward methods that are able to operate directly on
the graph structure as opposed to custom variants of building adjacency matrices.

Working with Graphs | 355

https://arxiv.org/abs/1605.05273
https://tkipf.github.io/graph-convolutional-networks/

1 Currently, DataBrick’s cloud Spark offering is not supported, but that might change in the future.

CHAPTER 9

Using Deep Learning and DL4J on Spark

Ten years on the road, making one night stand
Speeding my young life away
Tell me one more time just so I’ll understand
Are you sure Hank done it this way?
Did old Hank really do it this way?

—Waylon Jennings, “Are You Sure Hank Done It This Way”

Introduction to Using DL4J with Spark and Hadoop
Two key datacenter technologies that have emerged in the past decade are Apache
Hadoop and Apache Spark. Hadoop in particular has become the epicenter of data
warehouse growth and evolution. Spark has succeeded MapReduce to become the
mainline execution framework on Hadoop for running parallel iterative algorithms.

DL4J supports scale-out of network training on Spark. We can use Spark execution
for DL4J to significantly reduce the time required to train our networks. This sce‐
nario also gives us the option to mitigate increased training time as input size grows.

To the Cloud!

Platforms such as Amazon Web Services (AWS), Google Cloud,
and Microsoft Azure makes it possible allow people to set up a
Spark cluster on demand, for just a few dollars. DL4J is able to run
on most public cloud infrastructure,1 giving practitioners flexibility
in how and where they run their deep learning workflows.

357

Spark is a general parallel-processing engine that can execute on its own, on an
Apache Mesos cluster, or on a Hadoop cluster via the Hadoop YARN (Yet Another
Resource Negotiator) framework. It can work with data in the Hadoop Distributed
File System (HDFS) by using input formats included with Hadoop. Spark uses some
techniques around caching frequently used data in memory with Resilient Dis‐
tributed Datasets (RDDs, covered in a moment). Spark also allows the programmer
to abstract away parallel processing and focus more on the algorithm at hand. In this
book, we focus on the batch processing aspects of Spark as applied to parallel iterative
algorithms such as Stochastic Gradient Descent (SGD) in DL4J.

In the following list, we present the key components of a Spark job:

Application
The Spark job JAR we compile represents our Spark application. It can be a single
job, multiple jobs chained together, or an interactive Spark session.

Spark driver
This runs the Spark context and converts the application into a directed graph of
tasks. These tasks are scheduled to run on the cluster. There is only a single
driver per Spark application.

Spark application master
When we run Spark on Hadoop via YARN, the Spark application master negoti‐
ates with YARN for resources on the cluster. There is a single application master
per Spark application.

Spark executor
An executor runs multiple tasks on a single Java Virtual Machine (JVM) instance
on the local host on which the executor is running. The Spark driver instructs the
long-lived executors about what tasks they need to run. A single host can have
multiple Spark executors locally on it. A cluster can end up having 100s, or even
1000s, of executors spread across many machines running different Spark appli‐
cations concurrently.

Spark task
Represents a single unit of work for an executor to perform on part of a dis‐
tributed dataset (also called an RDD).

RDD
A fault-tolerant collection of elements that can be processed in parallel.

358 | Chapter 9: Using Deep Learning and DL4J on Spark

http://spark.apache.org/
http://mesos.apache.org/

2 Dean and Ghemawat. 2008. “MapReduce: Simplified Data Processing on Large Clusters.”
3 See http://cnet.co/2uytyct and http://bit.ly/2uSutEa.

RDD
RDDs are a core concept in Apache Spark. These datasets are a fault-tolerant collec‐
tion of elements that can be processed in parallel. The operations on RDDs are com‐
piled from higher-level language code to make it easier for the programmer to focus
on the algorithm and business problem and put less thought into managing the
distributed-systems, aspect of the execution.

Following are two common ways in which we can create an RDD in a Spark program:

• Parallelize an existing collection in our Spark application
• Referencing a dataset in an external storage system

The external storage systems include HDFS, HBase, Cassandra, or any other system
that is compatible with a Hadoop InputFormat. In practice, this is most often HDFS.

Apache Hadoop is a set of parallel processing tools (e.g., MapReduce) and a dis‐
tributed file system (e.g., HDFS) written in Java. It is based on the published design of
Google’s MapReduce2 and Google File System (GFS). Hadoop was originally con‐
structed to parallelize inverted index construction for the Apache Lucene search
engine as part of the Apache Nutch project. The Hadoop project was started by Doug
Cutting and Mike Cafarella and ultimately kicked off the democratization of search
engine infrastructure, later revolutionizing how data warehouses are built. In January
2008, Hadoop was split out from the Nutch project into its own top-level Apache
project.

Yahoo! further incubated the Hadoop project by adopting the technology internally
and putting much-needed engineering resources into the project. In April 2008,
Hadoop claimed the world record for sorting a terabyte of data (on a 910 node
Hadoop cluster) in only 209 seconds. By 2009 many companies, such as last.fm, Face‐
book, the New York Times, and even the Tennessee Valley Authority3 saw Hadoop as a
practical way to use commodity hardware to parallelize processing on large amounts
of data. Today, multiple Hadoop distribution vendors have taken Hadoop to the For‐
tune 500 and beyond. Apache Hadoop has become the modern data warehouse infra‐
structure and is a de facto standard as an enterprise execution environment.

Introduction to Using DL4J with Spark and Hadoop | 359

https://static.googleusercontent.com/media/research.google.com//en/archive/mapreduce-osdi04.pdf
http://cnet.co/2uytyct
http://bit.ly/2uSutEa
https://hbase.apache.org/
http://cassandra.apache.org/
https://lucene.apache.org/
https://nutch.apache.org/
https://en.wikipedia.org/wiki/Doug_Cutting
https://en.wikipedia.org/wiki/Doug_Cutting
http://sortbenchmark.org/YahooHadoop.pdf
http://bit.ly/2tpfzHk
http://bit.ly/2tpfzHk

DL4J, Spark, and Hadoop

DL4J was designed from day one to be a first-class citizen in the
Hadoop environment. DL4J is built to operate on standalone
Spark, Spark on Mesos, or with Spark running via YARN on a
Hadoop cluster. The practitioners who experiment with DL4J
might be using only DL4J on a Spark-only cluster, but large enter‐
prises tend to operate Spark in the context of Spark on Mesos or a
supported Hadoop cluster under YARN.

Operating Spark from the Command Line
You typically run Spark jobs from the command line and include a number of param‐
eters. In the subsection that follows, we explain the basics of running a Spark job
from the command line and how to deal with the different options.

spark-submit

The spark-submit bash script is how we submit jobs to the cluster. We can see the
spark-submit command and its required command-line options to run the job on a
Hadoop cluster (CDH, HDP) with spark (via YARN) below.

spark-submit --class [class name] --master yarn [jar name]
 [job options]

Following are descriptions of each of the attributes in the preceding code snippet:

class name

This is the fully qualified class name.

jar name

This is the path and JAR filename. This is also known as an “uber jar”; it includes
everything we need to run the job.

job options

These are the various options the Spark job takes.

Here’s an example:

spark-submit --class io.skymind.spark.SparkJob --master yarn
 /tmp/Skymind-SNAPSHOT.jar /user/skymind/data/iris/iris.txt

In this job, we’re running the class io.skymind.spark.SparkJob in the JAR Skymind-
SNAPSHOT.jar. The job has one parameter detailing the location of the input data.

Sometimes, you might want to change certain job configuration properties from the
command line at execution time. We can do this either by putting extra flags on the
command line or by specifying them in a special configuration file, as demonstrated
here:

360 | Chapter 9: Using Deep Learning and DL4J on Spark

http://bit.ly/2uyAaaV
http://bit.ly/2tpf4gC

spark.master spark://mysparkmaster.skymind.com:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs:///user/spark/eventlog
Set spark executor memory
spark.executor.memory 2g
spark.logConf true

It’s pragmatic to place configuration key values into a text file, such as in the preced‐
ing example, to make job execution faster and more manageable. We generally put
this text file in the local directory with the job jar and reference it when we run the
job from the command line.

Working with Hadoop security and Kerberos
Kerberos is a common enterprise-grade authentication system. Kerberos gives us pro‐
tection from attacks such as intercepted authentication. It also helps stop the threat of
user impersonation by not sending credentials across the network in clear text. (If
you aren’t interested in reading about security, go to “Configuring and Tuning Spark
Execution” on page 362.)

Major Hadoop distributions such as CDH and HDP support Kerberos authentication.

Certified to Run on Hadoop Distributions

Skymind (commercial support for DL4J) ensures that new DL4J
releases are certified on new releases of both CDH and HDP.

Kerberos credentials are optionally stored in a Lightweight Directory Access Protocol
(LDAP) or active directory.

To run Spark on YARN on a Kerberized cluster we need to do two things:

1. Manually upload the Spark assembly jar to HDFS
2. Initialize Kerberos on the command line

Uploading the Spark assembly. We want to first manually upload the Spark assembly
jar to the HDFS directory:

/user/spark/share/lib

The Spark assembly jar is located on the local filesystem, typically at:

/usr/lib/spark/assembly/lib

Introduction to Using DL4J with Spark and Hadoop | 361

or, on CDH:

/opt/cloudera/parcels/CDH/lib/spark/assembly/lib

When running a Spark job on HDP, the library is uploaded into HDFS, so the user
running the job needs permission to write to HDFS.

Kerberos and Spark Note

On Kerberized clusters, if we try to run a Spark job without man‐
ually uploading the jar to HDFS, the job will fail. The upload jar
command (running as part of the job) will fail silently because
Spark has limited Kerberos support.

Initializing Kerberos. To initialize Kerberos, first type the following:

kinit [user-name]

You are prompted to enter a password. After we have Kerberos initialized we can
confirm that we have our Kerberos ticket:

klist

This will show something similar to the following output and confirm that our Ker‐
beros ticket is active and valid, as demonstrated here:

[skymind@sandbox ~]$ klist

Ticket cache: FILE:/tmp/krb5cc_1025

Default principal: skymind@HORTONWORKS.COM

Valid starting Expires Service principal

07/05/16 20:39:08 07/06/16 20:39:08 krbtgt/HORTONWORKS.COM@HORTONWORKS.COM

 renew until 07/05/16 20:39:08

Configuring and Tuning Spark Execution
Spark can run on different types of distributed platforms or locally on a single
machine. For the purposes of this chapter, we’ll focus on Spark as executed on a
YARN-based Hadoop cluster and on a Mesos-based cluster. These systems should be
familiar to the enterprise user of either Cloudera’s CDH or Hortonworks’ HDP distri‐
butions as well as users of the Apache Mesos cluster management system.

Spark can execute in different ways based on whether the execution is distributed and
where the Spark Driver process for the job is executing while the job runs. Under‐

362 | Chapter 9: Using Deep Learning and DL4J on Spark

http://bit.ly/2tZVQzw

standing some basic concepts around how this works will help you to move from a
simple job locally to executing a long-running job on a cluster that can be disconnec‐
ted from and left to run overnight.

Each Spark application has a driver process that can run in the foreground (client
mode) or the background (cluster mode). Closing a foreground client, for instance,
stops the job because we’re discontinuing the local process that is controlling the job
on the cluster. However, we can quit a background client and allow the Spark job to
continue to run because the job controller is running on another host. This active
driver is used by Spark to manage the job flow and schedule tasks for Spark.

In client mode, the Spark Driver process is running on the local machine on which it
was executed. In cluster mode, the Spark Driver process is run on a remote machine
in the cluster itself.

Running Spark on Mesos
You might prefer to operate Spark in distributed mode without a Hadoop distribution
with the supported Apache Mesos cluster manager. Mesos is a way for a user to
abstract CPU, memory, storage, and other compute resources away from the physical
machines themselves. It allows us to treat the cluster of machines as a single logical
pool of resources, enabling fault-tolerant, multitenant systems to be run more effi‐
ciently.

The Mesos master replaces the Spark master as the cluster manager when we’re using
Mesos to manage our cluster. In this mode, Mesos will determine what machine han‐
dles which task when a driver creates a Spark job and creates tasks to be scheduled.
There will be many short-lived tasks on the Mesos cluster and Mesos is able to direct
these tasks in such a way that it allows for multitenancy with other frameworks and
tasks on the cluster.

There are two main modes by which you can use Spark on Mesos:

• Client mode
• Cluster mode

In client mode, the Spark Mesos framework is launched directly on a client machine
and waits for the user to enter commands or run a program. The user will see the
driver output directly on the console of their screen.

To run a job using Spark on Mesos in client mode, you need to do the following:

1. Set up certain Mesos-related environment variables in spark-env.sh
2. Pass in the correct Mesos cluster URL to the SparkContext

In cluster mode, the Spark Driver is launched on a host in the cluster itself, and the
user will be able to see the results of the job from the Mesos Web UI. In cluster mode,

Configuring and Tuning Spark Execution | 363

http://mesos.apache.org/
https://spark.apache.org/docs/latest/running-on-mesos.html#client-mode
https://spark.apache.org/docs/latest/running-on-mesos.html#cluster-mode

we’ll need to start the MesosClusterDispatcher in our cluster via the sbin/start-
mesos-dispatch.sh script along with the correct URL for the Mesos master URL. We
can use the same spark-submit.sh script as before, but we’ll need to include the master
URL for the MesosClusterDispatcher, as shown in the following example:

./bin/spark-submit \
 --class io.skymind.spark.mesos.MyTestMesosJob \
 --master mesos://210.181.122.139:7077 \
 --deploy-mode cluster \
 --supervise \
 --executor-memory 20G \
 --total-executor-cores 100 \
 /tmp/mySparkJob.jar \
 1000

To learn more about using Mesos with Spark, check out the
page for “Running on Mesos” on the Apache website for Spark.
This page has a complete listing of key configuration options to
note for configuring Mesos jobs.

There is also the scenario in which you might want to run Spark and Mesos alongside
an existing Hadoop cluster as separate services on the same machines. In this sce‐
nario, the Spark jobs on Mesos would be able to access the data in HDFS by using a
fully qualified URL for addresses within the HDFS.

Running Spark on YARN
YARN is the Hadoop API exposed to general-purpose applications to allow programs
to run as first-class citizens alongside MapReduce. The current Spark on YARN
implementation supports two modes for executing Spark jobs:

• yarn-client
• yarn-cluster

YARN applications encompass the concepts of ApplicationMasters and NodeManag
ers.

364 | Chapter 9: Using Deep Learning and DL4J on Spark

https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html

4 Not to be confused with the concept of a Linux container; this is a different concept.
5 See http://bit.ly/2tQmuuh and then launching remote Spark jobs from NiFi.

YARN, ApplicationMasters, and NodeManagers
ApplicationMasters track the resources and execution of a specific job in a Hadoop
cluster. NodeManagers allocate YARN containers where job tasks execute. The intent
of this section is not to confuse you with more distributed system jargon but to pro‐
vide some context about what all goes on inside a production-cluster Hadoop cluster.

In the case of Spark, we see Spark executors running inside YARN containers and the
Spark job being coordinated by the Spark ApplicationMaster. We just want you to be
aware of these processes to better understand how, where, and when they run their
Spark jobs.

Each Spark executor runs as a YARN container.4 Spark hosts multiple tasks in the
same container allowing for orders of magnitude quicker task startup time.

Let’s look at each mode more closely:

yarn-client
In this mode, the Spark Driver is executing on the machine from which the job
was submitted. Many times, this will be the developer’s local laptop connected to
the cluster through the network.

The Spark Driver communicates with the Spark ApplicationMaster in the
Hadoop cluster and issues commands to be executed as tasks on the Spark Exec‐
utors running within YARN containers.

yarn-cluster
The Spark Driver process runs remotely on an ApplicationMaster in a YARN-
based Hadoop cluster (HDP,5 CDH). The YARN Application Master, from which
YARN expects input to coordinate the job, also runs the Spark Driver process. A
Spark job run in this manner allows the user to shut off his client or terminal ses‐
sion and still have the job complete.

Comparing Spark execution modes
Table 9-1 gives a quick summary of the effects of running Spark in different modes
under YARN. This table was originally created by Sandy Ryza for Cloudera’s Engi‐
neering Blog.

Configuring and Tuning Spark Execution | 365

http://bit.ly/2tQmuuh
http://bit.ly/2tPJTME
http://bit.ly/2uS6CV4
http://bit.ly/2tZYx4r
http://bit.ly/2tZYx4r

6 Mesos supports most of these, except for the Kerberos support.

Table 9-1. Understanding the different Spark execution modes under YARN

 YARN cluster YARN client Spark standalone
Driver runs in: ApplicationMaster Client Client
Who requests resources? ApplicationMaster ApplicationMaster Client
Who starts executor the
processes?

YARN NodeManager YARN NodeManager Spark worker

Persistent services YARN ResourceManager an
NodeManagers

YARN ResourceManager an
NodeManagers

Spark Master and
workers

Supports Spark Shell? No Yes Yes

When to Use Which YARN Spark Execution Mode

When we’re interactively debugging our Spark jobs on YARN, we
likely want to use the yarn-client mode. When we have a long run‐
ning or scheduled production Spark job, we’ll likely use the yarn-
cluster mode.

Why Run Spark on YARN or Mesos?
The YARN framework in Hadoop allows applications beyond MapReduce to take
advantage of the execution environment in Hadoop. Running Spark on YARN allows
us to:

• Dynamically share and centrally configure the same pool of cluster resources
between different concurrent applications and frameworks

• Take advantage of the yarn scheduler capabilities for better concurrency between
applications

• Dynamically allocate and control how many executors are being used at any
given time on the cluster for a single Spark application

• Kerberos support6

Being able to dynamically share the cluster between multiple applications is an
important property of an enterprise production system. This means that we can run
Impala queries, MapReduce jobs, and Spark applications all at the same time on the
same cluster and have some reasonable way to govern how many resources each
application consumes. Being able to use the YARN or Mesos scheduler allows us to
concurrently run ad hoc queries on the cluster while also running a scheduled pro‐
duction job and ensuring that the production job is allocated enough resources to
complete the required Service-Level Agreement (SLA). This is because YARN—as
well as Mesos—understands how to manage multiple frameworks concurrently in a
way that governs resources in a predictable and manageable fashion.

366 | Chapter 9: Using Deep Learning and DL4J on Spark

In a multitenant environment with lots of types of workloads being run on the same
cluster, YARN and Mesos are DevOps’ best friend.

General Spark Tuning Guide
At a high level, we have two major tuning knobs to work with when adjusting a Spark
job: CPU and memory. We can set the number of executors, the number of cores each
executor uses, and then the amount of memory each executor has to work with for
processing.

Mesos and GPUs

Under Mesos we also have the option to manage graphics process‐
ing units (GPUs), whereas currently with YARN, we do not.

Setting the number of executors
We can set the number of executors for our application with a command-line flag or
configuration file property. The command-line flag is set by using the following:

--num-executor

The configuration file property is set by using this property key:

spark.executor.instances

We do this in the spark-defaults.conf file, an extra spark configuration file, or with a
SparkConf object from the API.

Spark executors and CPU cores
Every executor in a Spark application has the same number of cores available to it.
We set it by using the command line or in a configuration file property. The
command-line flag is set as follows:

--executor-cores

The configuration file property is set with the property key:

spark.executor.cores

We do this in the spark-defaults.conf file, an extra spark configuration file, or with a
SparkConf object from the API.

Configuring and Tuning Spark Execution | 367

Executor Cores and Concurrent Executor Tasks

When we set a number of cores available to an executor in batch
processing mode for Spark, we are effectively setting the number of
tasks to be executed at the same time.

Spark executors and memory
In a similar fashion to controlling cores in executors, we can control the heap size for
each executor by using the following:

--executor-memory

Along with this, you list the size in either megabytes (m) or gigabytes (g) of ram allo‐
cated per executor. We also can set this property from a configuration file with the
property, as demonstrated here:

spark.executor.memory

Inside of spark.executor.memory we have two ways to further control memory
usage in Spark:

• spark.shuffle.memoryFraction

• spark.storage.memoryFraction

These two settings control how the executor divides its memory between transform‐
ing data and persisting data. Let’s take a closer look at each of them:

spark.shuffle.memoryFraction

Controls how much Java heap memory is used for aggregation and cogroups dur‐
ing the shuffle process in Spark. Defaults to 0.2 and we recommend staying with
this setting at least early on.

spark.storage.memoryFraction

The parameter to control how Spark manages the total size of the cached RDD.
The default value is 0.6, which controls the fraction of Java heap memory to use
for Spark’s memory cache. This ensures that the executor doesn’t exceed RDD
heap space volume multiplied by this value.

The Spark executor also can have overhead, which we manage with the setting, using
the following:

spark.yarn.executor.memoryOverhead

Controls the amount of off-heap memory to be allocated for each executor. This
memory is used for virtual machine (VM) overhead, interned strings, and other
native overhead.

The default value is (executorMemory * 0.10) with a minimum value of 384 MB.

368 | Chapter 9: Using Deep Learning and DL4J on Spark

7 It’s also worth noting that YARN trumps Spark in allocation because the Spark process runs within a con‐
strained YARN container.

Spark and YARN container resource allocation
When working with Spark on YARN, you must consider the resources that YARN has
available.7 The major YARN properties to consider are as follows:

• yarn.nodemanager.resource.memory-mb

• yarn.nodemanager.resource.cpu-vcores

yarn.nodemanager.resource.memory-mb

This setting controls the maximum amount of memory used by the containers on
each host in the Spark cluster.

yarn.nodemanager.resource.cpu-vcores

This setting controls the maximum amount of cores used by the containers on
each host in the Spark cluster. If we ask for 10 executor cores for our Spark job,
this becomes a request in YARN for 10 virtual cores.

Understanding executor memory requests in YARN

The parameter spark.executor.memory controls the executor heap size, but the JVM
can also use some memory off heap. To calculate the full YARN memory request, we
need to add spark.executor.memory and spark.yarn.executor.memoryOverhaul
together to get the full YARN memory request. Figure 9-1 presents this visually.

Figure 9-1. Hierarchy of memory configurations of Spark on YARN

Configuring and Tuning Spark Execution | 369

To get the full memory request for a Spark executor, we take the value of
spark.yarn.executor.memoryOverhead and spark.executor.memory and add them
together.

Be Mindful of How Much Memory Is Requested

If the sum of spark.yarn.executor.memoryOverhead and
spark.executor.memory is greater than the value of the
yarn.nodemanager.resource.memory-mb setting in YARN, the job
will not start, because it will not be allocated the required container
resources from the YARN system.

The default value for spark.shuffle.memoryFraction is 0.2 and the default value for
spark.shuffle.safetyFraction is 0.8. Here’s how we calculate the amount of mem‐
ory available to each executor task:

(spark.executor.memory * spark.shuffle.memoryFraction
 * spark.shuffle.safetyFraction) / spark.executor.cores

Hopefully we’ve provided an adequate overview of dealing with Spark and YARN
tuning so you can get started. You should be aware that there are many more settings
to tune in Spark and YARN that are beyond the scope of this book.

Further Reading

Check out Sandy Ryza’s blog entries on Cloudera’s Engineering
Blog for more Spark tuning tricks.

Understanding Spark, the JVM, and garbage collection
The topic of JVM tuning under Spark is large and complex. For the purposes of this
book, we’ll summarize a few key topics and let you review the topic further as needed
on your own.

Dealing with slowing garbage collection efficiency or pauses. The practitioner should
check and make certain the Spark application is using the allocated memory space
effectively. If the RDD is taking up a lot of memory, the executor will have less space
to work with and you’ll see performance degradation.

If you see garbage collection happening too often, Spark needs to use its memory
more efficiently. We can alleviate some of the issues by explicitly cleaning up cached
RDDs after they are no longer needed.

Selecting a garbage collector for the JVM and Spark. It’s generally recommended that you
use the G1 Garbage Collector for Spark executors.

370 | Chapter 9: Using Deep Learning and DL4J on Spark

http://bit.ly/2tZYx4r
http://bit.ly/2tydk3c
http://bit.ly/2uyMU11

8 Breuel. 2015. “The Effects of Hyperparameters on SGD Training of Neural Networks.”

Tuning DL4J Jobs on Spark
Now that we’ve covered the basic mechanics of tuning a Spark job, we can look at
how tuning a DL4J job works on Spark. Just like with general Spark tuning, we can
control three major factors in our DL4J jobs:

• Number of workers (executors)
• Amount of memory that’s available for each worker to use
• Number of cores that are available for each worker to use

Let’s see how each of these factors affect training a deep learning model.

Tuning the number of executors
As we add more executors (workers) to a Spark job, we can partition the data out
more and allow each worker to process fewer records. This will decrease total train‐
ing time.

Diminishing Returns and Executors

Adding more executors (beyond a certain point) will result in a
diminishing return on investment, in terms of accuracy obtainable
per unit time for training. Effectively, after you’ve subdivided the
workers’ data split down to the mini-batch size and you have the
same number of workers as data splits, you can go no lower.
Adding more workers would be useless because the workers would
have no data to process.

Tuning the amount of memory for executors
A single mini-batch of training records is sent to ND4J as a single matrix or block of
data to be processed in a vectorized fashion. This allows the hardware to be more effi‐
ciently used. Controlling mini-batch size is important because it affects not only
learning, but also how much memory the executor will need.8

The higher the number of records we have for our executor mini-batch factor, the
more memory we’ll need allocated to the executor. If we have limited memory for the
executor to use, we’ll have to be mindful of not setting the mini-batch too high.

Configuring and Tuning Spark Execution | 371

https://arxiv.org/abs/1508.02788

Rules of Thumb for Memory Usage

For float data (most common): 4 bytes per value, plus some over‐
head. Here are a couple of examples:
MNIST data (small): 28 x 28 = 784 → ~3 kB (plus labels – 10 val‐
ues) per example
Time-series with 256 inputs, 1,000 time-steps → 1 MB per example
for features (plus labels)

Understanding Parallel Performance
Parallel training of iterative algorithms has some minor effects on convergence. Users
of DL4J’s distributed deep learning can choose the mini-batch size, and the software
will optimally distribute the workload across workers in Spark. This is an optimal
input split similar to Hadoop’s. The system will maximize the number of processing
units available to it, automatically scaling horizontally. Running DL4J on runtimes
such as YARN directly, or Spark on Hadoop, will run a worker on a split of that data‐
set based around Hadoop’s InputSplit (or HDFS data block) system, which will also
give us a good balance of disk I/O per worker.

In practice, we see parameter averaging act as a regularizer for the parameter vector
values. Typically, we recommend beginning by increasing the number of training
epochs by 10 percent to account for the extra regularization. Although the number of
epochs goes up slightly, we see the time to perform each training epoch reduced by a
factor of the number of Spark executors working on the training.

Some settings (like infrequent averaging periods) will require more epochs. Averaging
every mini-batch (not recommended for performance reasons) should be very similar
to local training (with a mini-batch size equivalent to the total number of examples
for all executors, for one iteration).

Setting Up a Maven Project Object Model for Spark and
DL4J
Setting up a Maven Project Object Model (POM) file is a key part of building a DL4J
project, Hadoop job, or Spark job. Apache Maven allows you to package all of the
needed files and dependencies into a single JAR artifact. In this section, we look at
some best practices when building DL4J POM files. Following are the major depen‐
dencies for a DL4J Spark application:

372 | Chapter 9: Using Deep Learning and DL4J on Spark

https://maven.apache.org/plugins/maven-assembly-plugin/

9 For more on how semantic versioning works with Hadoop, go to the Apache Hadoop website.

• DL4J
• ND4J
• DataVec
• DL4J-Spark

In the following sections, we look at how to get these going in a Maven pom.xml file.
Depending on the version or Spark you’re running, you’ll need to configure the
pom.xml file differently. To support basic interactions with Hadoop, we add the fol‐
lowing Maven dependency:

<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>${hadoop.version}</version>
 <scope>${spark.scope}</scope>
</dependency>

The hadoop.version variable is going to be set in the properties area of the pom.xml
file depending on the Hadoop distribution. To see more on the values this Maven
variable can take on check out the Hadoop vendor’s websites for Maven artifacts
(CDH, HDP).9

To use DL4J on Spark, you’ll need to include the deeplearning4j-spark depend‐
ency:

<dependency>
 <groupId>org.deeplearning4j</groupId>
 <artifactId>dl4j-spark_${scala.binary.version}</artifactId>
 <version>${dl4j.version}</version>
</dependency>

scala.binary.version

In the preceding code snippet, note that _${scala.binary.ver
sion} is a Maven property. It must be _2.10 or _2.11 and should
match the version of Spark you are using.

The Maven variable spark.version is going to be dependent on the Hadoop distri‐
bution or Spark distribution we’re running on, and the scala.binary.version vari‐
able is dependent on what version of Spark we’re using. Table 9-2 provides a
summary of these variables.

Setting Up a Maven Project Object Model for Spark and DL4J | 373

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/Compatibility.html
http://bit.ly/2uvDPGu
http://bit.ly/2sOME0L

Table 9-2. Key Maven pom.xml entries

Maven variable Description
hadoop.version Describes the distribution or version of Hadoop we’re using (e.g., CDH, HDP, etc.)
scala.binary.version Dependent on what version of Spark we’re using
spark.version Dependent on the Hadoop distribution or Spark distribution

Platform Dependency

If you’re building on one platform but deploying on another, use
nd4j-native-platform dependency instead. Setting this property
includes native binaries for all platforms.
For example, if you are building your project in Maven on a Mac‐
book Pro and you intend to run the job on a Spark cluster running
RedHat on the nodes, you will need to set this property to target
RedHat.

A pom.xml File Dependency Template
In this section, we show how to set up the dependency area of the pom.xml file. We’ll
first develop the template for the dependencies. We’ll then show how the variables are
configured depending on the specific Hadoop distribution. Example 9-1 provides the
code for this setup.

Example 9-1. DL4J project pom.xml file

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-native-platform</artifactId>
 <version>${nd4j.version}</version>
 </dependency>

 <dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-api</artifactId>
 <version>${nd4j.version}</version>
 </dependency>

 <dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>${scala.version}</version>
 </dependency>
 </dependencies>
 </dependencyManagement>

374 | Chapter 9: Using Deep Learning and DL4J on Spark

 <dependencies>

 <!-- Spark and Scala Dependencies -->
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-mllib_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>${spark.scope}</scope>
 </dependency>

 <dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>${scala.version}</version>
 <scope>${spark.scope}</scope>
 </dependency>

 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_${scala.binary.version}</artifactId>
 <version>${spark.version}</version>
 <scope>${spark.scope}</scope>
 </dependency>

 <!-- Deeplearning4j Dependencies -->
 <dependency>
 <groupId>org.deeplearning4j</groupId>
 <artifactId>deeplearning4j-core</artifactId>
 <version>${dl4j.version}</version>
 </dependency>

 <dependency>
 <groupId>org.deeplearning4j</groupId>
 <artifactId>dl4j-spark_${scala.binary.version}</artifactId>
 <version>${dl4j.version}</version>
 </dependency>

 <dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-kryo_${scala.binary.version}</artifactId>
 <version>${nd4j.version}</version>
 </dependency>

 <dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-native-platform</artifactId>
 <version>${nd4j.version}</version>
 </dependency>

 <!-- DataVec Dependencies -->
 <dependency>
 <groupId>org.datavec</groupId>

Setting Up a Maven Project Object Model for Spark and DL4J | 375

 <artifactId>datavec-api</artifactId>
 <version>${datavec.version}</version>
 </dependency>

 <dependency>
 <groupId>org.datavec</groupId>
 <artifactId>datavec-spark_${scala.binary.version}</artifactId>
 <version>${datavec.version}</version>
 </dependency>

 <dependency>
 <groupId>org.apache.avro</groupId>
 <artifactId>avro</artifactId>
 <version>1.7.1</version>
 <type>jar</type>
 <scope>compile</scope>
 </dependency>

 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>${hadoop.version}</version>
 <scope>${spark.scope}</scope>
 </dependency>

 <!-- hadoop-mapreduce-client-app -->

 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-app</artifactId>
 <version>${hadoop.version}</version>
 <scope>${spark.scope}</scope>
 </dependency>

 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifactId>
 <version>${hadoop.version}</version>
 <scope>${spark.scope}</scope>
 </dependency>

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 </dependency>

 <dependency>
 <groupId>joda-time</groupId>
 <artifactId>joda-time</artifactId>
 <version>2.7</version>
 </dependency>

376 | Chapter 9: Using Deep Learning and DL4J on Spark

 <dependency>
 <groupId>org.apache.mrunit</groupId>
 <artifactId>mrunit</artifactId>
 <version>1.1.0</version>
 <classifier>hadoop2</classifier>
 </dependency>

 <!-- JCommander for parsing args -->
 <dependency>
 <groupId>com.beust</groupId>
 <artifactId>jcommander</artifactId>
 <version>${jcommander.version}</version>
 </dependency>

 </dependencies>

Controlling JAR Size
One of the biggest culprits in creating overly large job JARs is including dependencies
that are already available on the execution platform. By excluding these JARs, we can
sometimes reduce jar size by 50 to 80 percent, making compiling, moving, and exe‐
cuting jobs easier. We can control which dependencies are included in our jar by
using the <scope> tag, as shown in this example:

<scope>provided</scope>

Here’s an example of a dependency with the scope set in this manner:

<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifactId>
 <version>${hadoop.version}</version>
 <scope>provided</scope>
</dependency>

Serialization

Spark still uses Java serialization by default, which is generally con‐
sidered a bad idea. In Example 9-1, we mitigate this by including
the Kryo dependency above, which you can see here:

<dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-kryo_${scala.binary.version}</artifactId>
 <version>${nd4j.version}</version>
</dependency>

We talk more about this dependency later in the chapter when we
discuss common issues around ND4J and Spark.

Setting Up a Maven Project Object Model for Spark and DL4J | 377

Now, we’ll look at how to set up the specific Hadoop distribution variants.

Setting Up a POM File for CDH 5.X
This section gives the key component version numbers and the needed components
to build a Spark CDH 5.x job. Example 9-2 presents the properties for the job.

Example 9-2. pom.xml for building CDH5.x job

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <slf4j.version>1.7.5</slf4j.version>
 <jackson.version>2.5.1</jackson.version>

 <hadoop.version>2.6.0-cdh5.5.2</hadoop.version>

 <!-- DL4J Versioning -->
 <nd4j.version>0.7.2</nd4j.version>
 <dl4j.version>0.7.2</dl4j.version>
 <datavec.version>0.7.2</datavec.version>

 <scala.binary.version>2.10</scala.binary.version>
 <scala.version>2.10.4</scala.version>
 <spark.version>1.3.1</spark.version>

</properties>

The version numbers for nd4j.version, dl4j.version, and
datave.version all need to match in the Maven pom.xml file for
any DL4J-based project.

Now we’ll switch gears and see what this looks like for Horton’s distribution of
Hadoop.

Setting Up a POM File for HDP 2.4
This section shows how to configure a pom.xml file for a HDP 2.4 Spark job. (We
assume that you can take care of creating the pom.xml boilerplate.) These settings will
fill out the key dependencies and versions of components for the job.

Example 9-3 shows the properties section of the Maven pom.xml template for an
HDP Spark job. These variables will match up to the dependencies in the following
section.

378 | Chapter 9: Using Deep Learning and DL4J on Spark

Example 9-3. pom.xml file for HDP 2.4 project

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <slf4j.version>1.7.5</slf4j.version>
 <jackson.version>2.4.4</jackson.version>
 <jcommander.version>1.27</jcommander.version>

 <!-- HDP 2.4 Version modify for older/newer HDP releases -->
 <hdp.version>2.4.0.0-169</hdp.version>
 <hadoop.version>2.7.1</hadoop.version>

 <spark.version>1.6.0</spark.version>
 <spark.scala.version>2.10</spark.scala.version>

 <!-- DL4J Versioning -->
 <nd4j.version>0.7.2</nd4j.version>
 <dl4j.version>0.7.2</dl4j.version>
 <datavec.version>0.7.2</datavec.version>

 <scala.binary.version>2.10</scala.binary.version>
 <scala.version>2.10.4</scala.version>

 </properties>

It’s worth noting that the properties in Example 9-3 are used by the build system to
build the Maven artifact JAR. Beyond usage in Maven, these variables are not used in
the DL4J project code itself.

Troubleshooting Spark and Hadoop
In this section, we list a few of the common issues that you’ll encounter periodically
when using Spark on Hadoop.

Sometimes, if the executor requests more RAM per container than is available, the
Spark Driver will issue the following report:

WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your
cluster ui to ensure that workers are registered and have sufficient memory

Many times, we can alleviate this by lowering the amount of RAM or cores requested
by the job.

Troubleshooting Spark and Hadoop | 379

10 This isn’t so much an ND4J issue as it is a Spark issue, but it’s worth noting here from a practical standpoint.

Where to Look to Debug Spark
Table 9-3 lists some of the key ports for viewing and debugging Spark activity.

Table 9-3. Key ports for Spark debugging

Web service Port number
YARN Job History Server UI 19888
YARN Resource Manager UI 8088
Spark Job History Web UI 18080

Common Issues with ND4J
In the subsections that follow, we list a few common issues encountered when using
ND4J on Spark, along with their resolutions.

ND4J and Kyro serialization
Kryo is a serialization library commonly used with Apache Spark. It proposes to
increase performance by reducing the amount of time taken to serialize objects.

SerDe

The term “SerDe” is systems engineering shorthand for serializa‐
tion and deserialization of data. Serialization on Spark involves
data and functions. Spark cares only about setting up serialization
and relies by default on Java serialization, which is convenient but
inefficient.
Hadoop introduced its own SerDe mechanisms (Writables) and
uses input and output formats to parse writables from/to file for‐
mats. Spark needs these in/out formats to operate on data in HDFS.

However, Kryo has difficulties working with the off-heap data structures in ND4J.10

To use Kryo serialization with ND4J on Apache Spark, we need to do some additional
configuration for Spark. If Kryo is not correctly configured, it’s possible to get Null
PointerExceptions on some of the INDArray fields, due to incorrect serialization.

To use Kryo, add the appropriate nd4j-kryo dependency and configure the Spark
configuration to use the ND4J Kryo registrator, as follows:

380 | Chapter 9: Using Deep Learning and DL4J on Spark

 SparkConf conf = new SparkConf();
 conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
 conf.set("spark.kryo.registrator", "org.nd4j.Nd4jRegistrator");

When using DL4J’s SparkDl4jMultiLayer or SparkComputation
Graph classes, a warning will be logged if the Kryo configuration is
incorrect.

jnind4j and java.library.path
Here’s a common error:

Exception in thread "main" java.lang.UnsatisfiedLinkError: no jnind4j in
 java.library.path

DL4J Parallel Execution on Spark
DL4J supports training neural networks on a Spark cluster as a way to accelerate net‐
work training.

Similar to DL4J’s MultiLayerNetwork and ComputationGraph classes, DL4J defines
two classes for training neural networks on Spark:

SparkDl4jMultiLayer

A wrapper around MultiLayerNetwork

SparkComputationGraph

A wrapper around ComputationGraph

Because these two classes are wrappers around the standard single-machine classes,
the network configuration process (e.g., creating a MultiLayerConfiguration or Com
putationGraphConfiguration) is identical in both standard and distributed training.
Distributed on Spark differs from local training in two respects, however: how data is
loaded and how training is set up (requiring some additional cluster-specific configu‐
ration).

The typical workflow for training a network on a Spark cluster (using Spark submit)
is as follows:

1. Create your network training class. Typically, this will involve code for the fol‐
lowing:
• Specifying your network configuration (MultiLayerConfiguration or Compu
tationGraphConfiguration), as you would for single-machine training.

• Creating a TrainingMaster instance: this specifies how distributed training
will be conducted in practice (more on this later).

DL4J Parallel Execution on Spark | 381

• Creating the SparkDl4jMultiLayer or SparkComputationGraph instance using
the network configuration and TrainingMaster objects.

• Load your training data. There are a number of different methods for loading
data, with different trade-offs; further details will be provided in future docu‐
mentation.

• Calling the appropriate fit method on the SparkDl4jMultiLayer or SparkCom
putationGraph instance.

• Saving or using the trained network (the trained MultiLayerNetwork or Compu
tationGraph instance).

2. Package your jar file ready for Spark submit.
• If you are using maven, running mvn package -DskipTests is one approach.

3. Call Spark submit with the appropriate launch configuration for your cluster.

Spark Training on a Single Machine

For single-machine training, Spark local can be used with DL4J,
though this is not recommended (due to the synchronization and
serialization overhead of Spark). Instead, consider the following:

• For single CPU/GPU systems, use standard MultiLayerNet
work or ComputationGraph training.

• For multiple CPU/GPU systems, use ParallelWrapper. This is
functionally equivalent to running Spark in local mode,
though it has lower overhead (and hence provides better train‐
ing performance).

The current version of DL4J uses a process of parameter averaging in order to train a
network. Future versions might additionally include other distributed network train‐
ing approaches.

The process of training a network using parameter averaging is conceptually quite
simple:

1. The master (Spark driver) begins with an initial network configuration and
parameters.

2. Data is split into a number of subsets, based on the configuration of the Training
Master.

3. Iterate over the data splits. For each split of the training data:
• Distribute the configuration parameters (and if applicable, network updater

state for Momentum/RMSProp/AdaGrad) from the master to each worker.
• Fit each worker on its portion of the split.

382 | Chapter 9: Using Deep Learning and DL4J on Spark

http://bit.ly/2v4XgcT

• Average the parameters (and if applicable, updater state) and return the aver‐
aged results to the master.

4. Training is complete, with the master having a copy of the trained network.

Let’s now see how these concepts would look in code.

A Minimal Spark Training Example
The following code shows the basic concepts we’ll work with later in the chapter to
build out our full Spark examples.

JavaSparkContent sc = ...;
 JavaRDD<DataSet> trainingData = ...;
 MultiLayerConfiguration networkConfig = ...;

 //Create the TrainingMaster instance
 int examplesPerDataSetObject = 1;
 TrainingMaster trainingMaster =
 new ParameterAveragingTrainingMaster
 .Builder(examplesPerDataSetObject)
 .(other configuration options)
 .build();

 //Create the SparkDl4jMultiLayer instance
 SparkDl4jMultiLayer sparkNetwork =
 new SparkDl4jMultiLayer(sc, networkConfig, trainingMaster);

 //Fit the network using the training data:
 sparkNetwork.fit(trainingData);

A TrainingMaster in DL4J is an abstraction (interface) that allows for multiple
different training implementations to be used with SparkDl4jMultiLayer and
SparkComputationGraph. Currently, DL4J has one implementation: the ParameterA
veragingTrainingMaster. This implements the parameter averaging process shown
in the preceding code. To create one, use the builder pattern:

TrainingMaster tm = new ParameterAveragingTrainingMaster
 .Builder(int dataSetObjectSize)
 ... (your configuration here)
 .build();

The ParameterAveragingTrainingMaster defines a number of configuration options
that control how training is executed. Let’s explore these options:

dataSetObjectSize

(Required option.) This is specified in the builder constructor. This value speci‐
fies how many examples are in each DataSet object. Here’s a couple of things to
keep in mind:

DL4J Parallel Execution on Spark | 383

• If you are training with preprocessed DataSet objects, this will be the size of
those preprocessed DataSets.

• If you are training directly from Strings (e.g., CSV data to a RDD<DataSet>
through a number of steps), this will usually be 1.

batchSizePerWorker

This controls the mini-batch size for each worker. This is analagous to the mini-
batch size used when training on a single machine. Put another way: it is the
number of examples used for each parameter update in each worker.

averageFrequency

This controls how frequently the parameters are averaged and redistributed, in
terms of the number of mini-batches of size batchSizePerWorker. Here are three
things to keep in mind:

• Low averaging periods (e.g., averagingFrequency=1) can be inefficient (too
much network communication and initialization overhead, relative to com‐
putation).

• Large averaging periods (e.g., averagingFrequency=200) can result in poor
performance (parameters in each worker instance can diverge significantly).

• Averaging periods in the range of 5 to 10 mini-batches is usually a safe
default choice.

workerPrefetchNumBatches

Spark workers are capable of asynchorously prefetching a number of mini-
batches (DataSet objects) to avoid waiting for the data to be loaded. Setting this
value to 0 disables prefetching. A value of 2 is often a sensible default. Much
larger values are unlikely to help in many circumstances (but will use more
memory).

saveUpdater

In DL4J, training methods such as Momentum, RMSProp, and AdaGrad are
known as “updaters.” Most of these updaters have internal history or state. If
saveUpdater is set to true, the updater state (at each worker) will be averaged and
returned to the master along with the parameters; the current updater state also
will be distributed from the master to the workers. This adds extra time and net‐
work traffic, but can improve training results. If saveUpdater is set to false, the
updater state (at each worker) is discarded, and the updater is reset/reinitialized
in each worker.

repartition

This setting specifies when data should be repartitioned. The ParameterAvera
gingTrainingMaster does a mapPartitions operation; consequently, the num‐
ber of partitions (and the values in each partition) matters a lot for proper cluster

384 | Chapter 9: Using Deep Learning and DL4J on Spark

utilization. However, repartitioning is not a free operation, because some data
must necessarily be copied across the network. The following options are avail‐
able:

• Always: (Default option.) That is, repartition data to ensure the correct num‐
ber of partitions.

• Never: Never repartition the data, no matter how imbalanced the partitions
might be.

• NumPartitionsWorkersDiffers: Repartition only if the number of partitions
and the number of workers (total number of cores) differs. However, note
that even if the number of partitions is equal to the total number of cores,
this does not guarantee that the correct number of DataSet objects is present
in each partition: some partitions may be much larger or smaller than others.

repartitionStrategy
This is the startegy by which repartitioning should be done. Here are your
options:

• SparkDefault: This is the stardard repartitioning strategy used by Spark.
Essentially, each object in the initial RDD is mapped to one of N RDDs inde‐
pendently at random. Consequently, the partitions might not be optimally
balanced; this can be especially problematic with smaller RDDs, such as
those used for preprocessed DataSet objects and frequent averaging periods
(simply due to random sampling variation).

• Balanced: This is a custom repartitioning strategy defined by DL4J. It
attempts to ensure that each partition is more balanced (in terms of number
of objects) compared to the SparkDefault option. However, in practice this
requires an additional count operation to execute; in some cases (most nota‐
bly in small networks, or those with a small amount of computation per
mini-batch), the benefit might not outweigh additional overhead of execut‐
ing the better repartitioning.

DL4J API Best Practices for Spark
Following are some things you should do to get the most out of your Spark+Hadoop
cluster:

• Build a slimmed down jar
• Use a well-tuned cluster
• Optimize the ETL/vectorization pipeline
• Ensure that the JVM is tuned

DL4J API Best Practices for Spark | 385

11 It’s been a long road to get to this point in the book. We suggest that you take a break and listen to the classic
RJD2 album Deadringer. Just imagine it as the soundtrack for the last half of this chapter.

Ideally, we want to build the smallest job possible. A core tenant in scale-out process‐
ing is to “move the compute to the data,” and we want to move the smallest jar possi‐
ble around the cluster.

Use Spark on a well-tuned cluster with a good distributed filesystem.

What Is a “Good Distributed Filesystem”?
There are several options in the land of distributed filesystems. You should consider
looking for a distributed filesystem that is well known to work with the suite of dis‐
tributed components they are likely to use.

We contend that a data scientist’s job is neither to set up nor maintain distributed sys‐
tems’ infrastructure. A machine learning project that becomes distracted with infra‐
structure complexities is a deadringer11 for a project that will likely fail. From that
perspective, we recommend that you go for a distributed filesystem that includes the
following properties:

• Known to be reliable
• Supports Kerberos integration
• Well-tested
• Scalable
• Works with the bulk of the other components in your data science stack

Many times, especially in the context of Spark and Hadoop, this choice will end up
being HDFS.

Serious enterprise users will want to have a well-maintained Hadoop cluster with
Spark most likely running on a modern Hadoop distribution. We recommend CDH5
or HDP 2.4.

Take ETL and vectorization out of the main training loops. Large jobs on clusters can
be expensive, so we’d like to make them as efficient as possible. Ideally, we want to
save and load serialized DataSet objects, instead of transforming RDDs over and over
again.

Finally, a well-tuned JVM goes a long way. Make everyone’s life easier and make sure
the JVM is tuned such that we’re not having long garbage collection pauses.

386 | Chapter 9: Using Deep Learning and DL4J on Spark

https://en.wikipedia.org/wiki/Deadringer_(album)

Multilayer Perceptron Spark Example
In this example, we’ll revisit the MNIST dataset to classify digits, but this time we’ll
use a multilayer perceptron and we’ll train the network on Spark.

The major thing that has changed in this chapter’s examples compared those in Chap‐
ter 5 is how we’re approaching parallel training on Spark; most everything else for the
examples in this chapter is similar.

Another aspect to consider is that we’re now working with data in HDFS, and our
ETL and vectorization (generally) pipelines need to be built in a fashion such that
they can scale horizontally. We can either use Spark functions to do this (as you’ll see
momentarily) or we can use ETL libraries such as DataVec. In this example, however,
we’re using some custom built-in code to handle the MNIST format specifically, so it’s
less of a concern. We note this as something you should consider for other projects
involving CSV and text-based data that might need extensive preprocessing.

Be Careful with Single-Process ETL Code

As we deal with larger datasets, we need to be mindful of how we
build ETL pipelines. Spark allows us to mix single-process Java
code in with Spark functions, and, if we aren’t careful, we’ll leave
code in that will not scale horizontally with our input dataset size.
DataVec provides ETL design patterns in the examples of the Git‐
Hub repository to show how we can build effective parallel ETL
pipelines in Spark for DL4J workflows.

Example 9-4 lists the code for the Saturn example (adjusted to execute on Spark).

Example 9-4. Saturn dataset for Spark multilayer perceptron network

public class MnistMLPExample {
 private static final Logger log = LoggerFactory.getLogger(MnistMLPExample.class);

 @Parameter(names = "-useSparkLocal", description =
 "Use spark local (helper for testing/running without spark submit)",
 arity = 1)
 private boolean useSparkLocal = true;

 @Parameter(names = "-batchSizePerWorker", description =
 "Number of examples to fit each worker with")
 private int batchSizePerWorker = 16;

 @Parameter(names = "-numEpochs", description = "Number of epochs for training")
 private int numEpochs = 15;

 public static void main(String[] args) throws Exception {

Multilayer Perceptron Spark Example | 387

http://bit.ly/2sV9r6m

 new MnistMLPExample().entryPoint(args);
 }

 protected void entryPoint(String[] args) throws Exception {
 //Handle command line arguments
 JCommander jcmdr = new JCommander(this);
 try {
 jcmdr.parse(args);
 } catch (ParameterException e) {
 //User provides invalid input -> print the usage info
 jcmdr.usage();
 try { Thread.sleep(500); } catch (Exception e2) { }
 throw e;
 }

 SparkConf sparkConf = new SparkConf();
 if (useSparkLocal) {
 sparkConf.setMaster("local[*]");
 }
 sparkConf.setAppName("DL4J Spark MLP Example");
 JavaSparkContext sc = new JavaSparkContext(sparkConf);

 //Load the data into memory then parallelize
 //This isn't a good approach in general - but is simple to use for this
 //example
 DataSetIterator iterTrain =
 new MnistDataSetIterator(batchSizePerWorker, true, 12345);
 DataSetIterator iterTest =
 new MnistDataSetIterator(batchSizePerWorker, true, 12345);
 List<DataSet> trainDataList = new ArrayList<>();
 List<DataSet> testDataList = new ArrayList<>();
 while (iterTrain.hasNext()) {
 trainDataList.add(iterTrain.next());
 }
 while (iterTest.hasNext()) {
 testDataList.add(iterTest.next());
 }

 JavaRDD<DataSet> trainData = sc.parallelize(trainDataList);
 JavaRDD<DataSet> testData = sc.parallelize(testDataList);

 //----------------------------------
 //Create network configuration and conduct network training
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(12345)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .activation(Activation.LEAKYRELU)
 .weightInit(WeightInit.XAVIER)
 .learningRate(0.02)
 .updater(Updater.NESTEROVS).momentum(0.9)

388 | Chapter 9: Using Deep Learning and DL4J on Spark

 .regularization(true).l2(1e-4)
 .list()
 .layer(0, new DenseLayer.Builder().nIn(28 * 28).nOut(500).build())
 .layer(1, new DenseLayer.Builder().nIn(500).nOut(100).build())
 .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction
 .NEGATIVELOGLIKELIHOOD)
 .activation(Activation.SOFTMAX).nIn(100).nOut(10).build())
 .pretrain(false).backprop(true)
 .build();

 //Configuration for Spark training: see http://deeplearning4j.org/spark for
 //explanation of these configuration options
 TrainingMaster tm = new ParameterAveragingTrainingMaster
 .Builder(batchSizePerWorker) //Each DataSet object: contains
 //(by default) 32 examples
 .averagingFrequency(5)
 .workerPrefetchNumBatches(2) //Async prefetching: 2 examples
 //per worker
 .batchSizePerWorker(batchSizePerWorker)
 .build();

 //Create the Spark network
 SparkDl4jMultiLayer sparkNet = new SparkDl4jMultiLayer(sc, conf, tm);

 //Execute training:
 for (int i = 0; i < numEpochs; i++) {
 sparkNet.fit(trainData);
 log.info("Completed Epoch {}", i);
 }

 //Perform evaluation (distributed)
 Evaluation evaluation = sparkNet.evaluate(testData);
 log.info("***** Evaluation *****");
 log.info(evaluation.stats());

 //Delete the temp training files, now that we are done with them
 tm.deleteTempFiles(sc);

 log.info("***** Example Complete *****");
 }
}

In the following sections, we break out key sections of the code to highlight core dif‐
ferences in the Spark version of the examples.

To build our Spark job project, we need to change into the main directory for the
project and run the following Maven command:

mvn package

Multilayer Perceptron Spark Example | 389

This builds the needed Spark job jar in the ./target subdirectory. We’ll copy this jar
over to a gateway host for our Spark cluster to run our job and use the Spark execu‐
tion notes from the command line outlined earlier in this chapter.

Setting Up MLP Network Architecture for Spark
In Example 9-4 we can see our network architecture is similar to some of the net‐
works in Chapter 5. In the following example, we highlight network architecture con‐
figuration code.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(12345)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .activation(Activation.LEAKYRELU)
 .weightInit(WeightInit.XAVIER)
 .learningRate(0.02)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .regularization(true).l2(1e-4)
 .list()
 .layer(0, new DenseLayer.Builder().nIn(28 * 28).nOut(500).build())
 .layer(1, new DenseLayer.Builder().nIn(500).nOut(100).build())
 .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction
 .NEGATIVELOGLIKELIHOOD)
 .activation(Activation.SOFTMAX).nIn(100).nOut(10).build())
 .pretrain(false).backprop(true)
 .build();

For this example, we’re still using SGD to optimize our parameters for the network.
The multilayer perceptron example in Chapter 5 had only a single hidden layer, how‐
ever, and this example has an additional hidden layer. We also see a switch to the
leaky Rectified Linear Unit (ReLU) variant of the ReLU activation function, which
was used in the multilayer perceptron example in Chapter 5. Beyond that, much of
the rest of the network and output layer are the same as the other example. This is a
great illustration of how seemingly simple adjustments to a network can enable us to
model completely different data. The trick is to figure out what these simple adjust‐
ments are through hyperparameter search.

Same Network Architecture for Local and Spark

It’s a nice feature of DL4J to be able to develop a network on a sub‐
set of the data on a local machine and then port the same architec‐
ture to Spark and model the full dataset.

Distributed Training and Model Evaluation
Following are two key differences we want to highlight in this code (compared to the
single-process examples in Chapter 5):

390 | Chapter 9: Using Deep Learning and DL4J on Spark

• Introduction of the ParameterAveragingTrainingMaster method into this
example

• The different training wrapper: SparkDl4jMultiLayer

Those two differences are really the only major changes from the example in Chap‐
ter 5. Those changes do not cover many lines of code so we can see how making the
jump from a local machine learning workflow to a machine learning workflow on
Spark is not that difficult. In the example that follows, we see the code snippet from
Example 9-4 that introduces the TrainingMaster, as explained earlier in this chapter.
In this next snippet, we use this to control how we perform parameter averaging in
Spark:

 //Configuration for Spark training: see http://deeplearning4j.org/spark
 //for explanation of these configuration options
 TrainingMaster tm = new ParameterAveragingTrainingMaster
 .Builder(batchSizePerWorker) //Each DataSet
 //object: contains
 //(by default)
 //32 examples
 .averagingFrequency(5)
 .workerPrefetchNumBatches(2) //Async prefetching: 2
 //examples per worker
 .batchSizePerWorker(batchSizePerWorker)
 .build();

The other major change in distributed training code on Spark involves using a differ‐
ent MultiLayerNetwork wrapper called SparkDl4jMultiLayer, as shown here:

 //Create the Spark network
 SparkDl4jMultiLayer sparkNet = new SparkDl4jMultiLayer(sc, conf, tm);

 //Execute training:
 for (int i = 0; i < numEpochs; i++) {
 sparkNet.fit(trainData);
 log.info("Completed Epoch {}", i);
 }

This wrapper works in concert with the TrainingMaster to perform all the required
distributed training our model needs and largely abstracts us from the details. The
SparkDl4jMultiLayer class is the way we can control executors in nearly the same
fashion as we performed model training on a local machine.

As we can see in the previous snippet, the SparkDl4jMultiLayer class takes three
parameters:

1. Spark context
2. DL4J network configuration
3. ParameterAveragingTrainingMaster object

Multilayer Perceptron Spark Example | 391

In the local machine version of this example, we see the MultiLayerNetwork class
being used for the purpose of modeling the data. The nice thing about this wrapper
class is that it looks almost just like the MultiLayerNetwork class, and we can use it in
a for loop to control the number of epochs in the same way.

Finally, we see the network’s F1 score being calculated and printed to the logging
system:

 //Perform evaluation (distributed)
 Evaluation evaluation = sparkNet.evaluate(testData);
 log.info("***** Evaluation *****");
 log.info(evaluation.stats());

This example is a great model for how the basics of Spark training work with DL4J in
a clean, easy fashion. There’s not a lot for you to do beyond setting up the few lines of
extra Spark code and the TrainingMaster to get their deep learning model training
on a production, secure Spark cluster.

Building and Executing a DL4J Spark Job
To begin, change the current directory to the base directory of the example. Next,
we’ll use Maven to build the job jar by invoking the following command:

maven package

This will produce a full job jar in the ./target/ subdirectory.

After we’ve copied the job jar to our intended machine to execute on Spark, we type
this command:

spark-submit --class org.deeplearning4j.examples.feedforard.MnistMLPExample
 --num-executors 3 --properties-file ./spark_extra.props
 ./dl4j-examples-1.0-SNAPSHOT.jar

This will output a lot of training information to the console as the model reports back
how the training is progressing. The command-line parameters of note here are those
that are giving Spark runtime arguments via the --properties-file flag. This allows
us to take common command-line arguments and save them to a file so that we don’t
need to type them out every time. The other property of note, --num-executors, is
setting the number of workers (executors) in Spark; here we are setting it to 3.

Generating Shakespeare Text with Spark and Long Short-
Term Memory
Let’s revisit the Long Short-Term Memory (LSTM) example from Chapter 5 and see
how we can modify the code and construct the same model on Spark. In the explana‐
tions that follow we don’t go through the code for data loading, because we want to

392 | Chapter 9: Using Deep Learning and DL4J on Spark

http://bit.ly/2sxFxFV

focus on how the network architecture as well as the training process is slightly differ‐
ent under Spark. Example 9-5 shows the core training method.

Example 9-5. Core training method for LSTM Shakespeare example in Java

protected void entryPoint(String[] args) throws Exception {
 //Handle command line arguments
 JCommander jcmdr = new JCommander(this);
 try {
 jcmdr.parse(args);
 } catch (ParameterException e) {
 //User provides invalid input -> print the usage info
 jcmdr.usage();
 try {
 Thread.sleep(500);
 } catch (Exception e2) {
 }
 throw e;
 }

 Random rng = new Random(12345);
 int lstmLayerSize = 200; //Number of units in each GravesLSTM
 //layer
 int tbpttLength = 50; //Length for truncated
 //backpropagation through time. i.e.,
 //do parameter updates ever 50
 //characters
 int nSamplesToGenerate = 4; //Number of samples to generate
 //after each training epoch
 int nCharactersToSample = 300; //Length of each sample to generate
 String generationInitialization = null; //Optional character
 //initialization; a random
 //character is used if null
 // Above is Used to 'prime' the LSTM with a character sequence to
 // continue/complete. Initialization characters must all be in
 // CharacterIterator.getMinimalCharacterSet() by default

 //Set up network configuration:
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .learningRate(0.1)
 .rmsDecay(0.95)
 .seed(12345)
 .regularization(true)
 .l2(0.001)
 .weightInit(WeightInit.XAVIER)
 .updater(Updater.RMSPROP)
 .list()
 .layer(0, new GravesLSTM.Builder().nIn(CHAR_TO_INT.size())
 .nOut(lstmLayerSize).activation(Activation.TANH).build())

Generating Shakespeare Text with Spark and Long Short-Term Memory | 393

 .layer(1, new GravesLSTM.Builder().nIn(lstmLayerSize).nOut(lstmLayerSize)
 .activation(Activation.TANH).build())
 .layer(2, new RnnOutputLayer.Builder(LossFunction.MCXENT)
 .activation(Activation.SOFTMAX) //MCXENT + softmax for classification
 .nIn(lstmLayerSize).nOut(nOut).build())
 .backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength)
 .tBPTTBackwardLength(tbpttLength)
 .pretrain(false).backprop(true)
 .build();

 //---
 //Set up the Spark-specific configuration
 /* How frequently should we average parameters (in number of minibatches)?
 Averaging too frequently can be slow (synchronization + serialization costs)
 whereas too infrequently can result learning difficulties (i.e., network may
 not converge) */
 int averagingFrequency = 3;

 //Set up Spark configuration and context
 SparkConf sparkConf = new SparkConf();
 if (useSparkLocal) {
 sparkConf.setMaster("local[*]");
 }
 sparkConf.setAppName("LSTM Character Example");
 JavaSparkContext sc = new JavaSparkContext(sparkConf);

 JavaRDD<DataSet> trainingData = getTrainingData(sc);

 //Set up the TrainingMaster. The TrainingMaster controls how learning is actually
 //executed on Spark
 //Here, we are using standard parameter averaging
 //For details on these configuration options, see:
 //https://deeplearning4j.org/spark#configuring
 int examplesPerDataSetObject = 1;
 ParameterAveragingTrainingMaster tm = new ParameterAveragingTrainingMaster
 .Builder(examplesPerDataSetObject)
 .workerPrefetchNumBatches(2) //Asynchronously prefetch up to 2 batches
 .averagingFrequency(averagingFrequency)
 .batchSizePerWorker(batchSizePerWorker)
 .build();
 SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, conf, tm);
 sparkNetwork.setListeners(Collections.<IterationListener>singletonList(new
 ScoreIterationListener(1)));

 //Do training, and then generate and print samples from network
 for (int i = 0; i < numEpochs; i++) {
 //Perform one epoch of training. At the end of each epoch, we are returned a
 //copy of the trained network
 MultiLayerNetwork net = sparkNetwork.fit(trainingData);

394 | Chapter 9: Using Deep Learning and DL4J on Spark

 //Sample some characters from the network (done locally)
 log.info("Sampling characters from network given initialization \"" +
 (generationInitialization == null ? "" : generationInitialization) +
 "\"");
 String[] samples = sampleCharactersFromNetwork(generationInitialization,
 net, rng, INT_TO_CHAR,
 nCharactersToSample, nSamplesToGenerate);
 for (int j = 0; j < samples.length; j++) {
 log.info("----- Sample " + j + " -----");
 log.info(samples[j]);
 }
 }

 //Delete the temp training files, now that we are done with them
 tm.deleteTempFiles(sc);

 log.info("\n\nExample complete");
}

As we did earlier, we’ll let you explore the rest of the code on your own, and we are
not going to list the data-loading code here for the sake of brevity.

Here are the two key differences we want to highlight in this code:

• Introduction of the ParameterAveragingTrainingMaster into this example
• The different training wrapper: SparkDl4jMultiLayer

Those two differences are really the only major changes from the example in Chap‐
ter 5, and we saw the same changes earlier in the multilayer perceptron Spark exam‐
ple. Those changes do not cover many lines of code, so we can see how making the
jump from a local machine learning workflow to a machine learning workflow on
Spark is not that difficult. To reinforce that idea, let’s look specifically at how we
define the LSTM network here in this example.

Setting Up the LSTM Network Architecture
The interesting thing about the highlighted code snippet that follows (from the pre‐
ceding section) is that it is identical to the single-process code example version in
Chapter 5:

 //Set up network configuration:
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .iterations(1)
 .learningRate(0.1)
 .rmsDecay(0.95)
 .seed(12345)
 .regularization(true)
 .l2(0.001)

Generating Shakespeare Text with Spark and Long Short-Term Memory | 395

 .weightInit(WeightInit.XAVIER)
 .updater(Updater.RMSPROP)
 .list()
 .layer(0, new GravesLSTM.Builder().nIn(CHAR_TO_INT.size())
 .nOut(lstmLayerSize).activation(Activation.TANH).build())
 .layer(1, new GravesLSTM.Builder().nIn(lstmLayerSize).nOut(lstmLayerSize)
 .activation(Activation.TANH).build())
 .layer(2, new RnnOutputLayer.Builder(LossFunction.MCXENT)
 .activation(Activation.SOFTMAX) //MCXENT + softmax for
 //classification
 .nIn(lstmLayerSize).nOut(nOut).build())
 .backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength)
 .tBPTTBackwardLength(tbpttLength)
 .pretrain(false).backprop(true)
 .build();

The reason why we feel it was important to note this is because from an operational
standpoint this is a huge advantage. We are able to take network configurations that
we’ve developed locally and run them easily on a Hadoop or Mesos cluster with
Spark.

Again, in this example, we have two hidden layers (GravesLSTM), both with the TanH
activation function. We’re also using the same custom LSTM output layer (RnnOutput
Layer) with the MCXENT loss function coupled with the SOFTMAX activation function.
Recall from Chapter 6 that we use the softmax activation function any time we want
to predict one of many classes, and here we’re predicting the next character (one of
many). Let’s now take a look at how this code differs slightly from the Chapter 5
version.

Training, Tracking Progress, and Understanding Results
Earlier in this chapter, we outlined the basic concepts involved in moving a Spark
example over to Spark when we highlighted the (generalized) code snippet:

 //Create the TrainingMaster instance
 int examplesPerDataSetObject = 1;
 TrainingMaster trainingMaster = new ParameterAveragingTrainingMaster
 .Builder(examplesPerDataSetObject)
 .(other configuration options)
 .build();

 //Create the SparkDl4jMultiLayer instance
 SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, networkConfig,
 trainingMaster);

In the next code snippet, we can see how this actually looks in a new modified LSTM
example using a specific TrainingMaster subclass called ParameterAverageTraining
Master and also wrapping our network configuration in the SparkDl4jMultiLayer
object instance to handle the nuances of operating on a Spark cluster.

396 | Chapter 9: Using Deep Learning and DL4J on Spark

In a previous section in this chapter, we covered most of the available options for
using the TrainingMaster variants and the Spark wrapper, so we’ll not rehash those
details here.

 //Set up the TrainingMaster. The TrainingMaster controls how learning is
 //actually executed on Spark
 //Here, we are using standard parameter averaging
 //For details on these configuration options, see:
 //https://deeplearning4j.org/spark#configuring
 int examplesPerDataSetObject = 1;
 ParameterAveragingTrainingMaster tm = new ParameterAveragingTrainingMaster
 .Builder(examplesPerDataSetObject)
 .workerPrefetchNumBatches(2) //Asynchronously prefetch up to 2 batches
 .averagingFrequency(averagingFrequency)
 .batchSizePerWorker(batchSizePerWorker)
 .build();
 SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, conf, tm);
 sparkNetwork.setListeners(Collections.<IterationListener>singletonList(new
 ScoreIterationListener(1)));

 //Do training, and then generate and print samples from network
 for (int i = 0; i < numEpochs; i++) {
 //Perform one epoch of training. At the end of each epoch, we are
 //returned a copy of the trained network
 MultiLayerNetwork net = sparkNetwork.fit(trainingData);

 //Sample some characters from the network (done locally)
 log.info("Sampling characters from network given initialization \"" +
 (generationInitialization == null ? "" : generationInitialization) +
 "\"");
 String[] samples = sampleCharactersFromNetwork(generationInitialization,
 net, rng, INT_TO_CHAR,
 nCharactersToSample, nSamplesToGenerate);
 for (int j = 0; j < samples.length; j++) {
 log.info("----- Sample " + j + " -----");
 log.info(samples[j]);
 }
 }

Beyond the small number of lines of code to get the example moved over to Spark, we
have a similar loop to train the model that uses the same method (.fit()) to train the
model. The interop with filesystems (e.g., local or HDFS), Spark model communica‐
tion, and other related functions are all handled under the hood.

Modeling MNIST with a Convolutional Neural Network on
Spark
For this example we’ll return to the Convolutional Neural Network (CNN) example
from Chapter 5 and update it to run on Spark. Example 9-6 shows the code for build‐

Modeling MNIST with a Convolutional Neural Network on Spark | 397

ing a CNN model with Spark. This example is similar to the MNIST modeling exam‐
ple earlier in this chapter, but this time we’re changing the network architecture over
to a network more appropriate for image data: the CNN architecture.

Example 9-6. Spark MNIST with a CNN

public class MnistExample {
 private static final Logger log = LoggerFactory.getLogger(MnistExample.class);

 public static void main(String[] args) throws Exception {

 //Create spark context, and load data into memory
 SparkConf sparkConf = new SparkConf();
 sparkConf.setMaster("local[*]");
 sparkConf.setAppName("MNIST");
 JavaSparkContext sc = new JavaSparkContext(sparkConf);

 int examplesPerDataSetObject = 32;
 DataSetIterator mnistTrain = new MnistDataSetIterator(32, true, 12345);
 DataSetIterator mnistTest = new MnistDataSetIterator(32, false, 12345);
 List<DataSet> trainData = new ArrayList<>();
 List<DataSet> testData = new ArrayList<>();
 while(mnistTrain.hasNext()) trainData.add(mnistTrain.next());
 Collections.shuffle(trainData,new Random(12345));
 while(mnistTest.hasNext()) testData.add(mnistTest.next());

 //Get training data. Note that using parallelize isn't recommended for real
 //problems
 JavaRDD<DataSet> train = sc.parallelize(trainData);
 JavaRDD<DataSet> test = sc.parallelize(testData);

 //Set up network configuration (as per standard DL4J networks)
 int nChannels = 1;
 int outputNum = 10;
 int iterations = 1;
 int seed = 123;

 log.info("Build model....");
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)
 .iterations(iterations) // Training iterations as above
 .regularization(true).l2(0.0005)
 .learningRate(.01)//.biasLearningRate(0.02)
 .weightInit(WeightInit.XAVIER)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new ConvolutionLayer.Builder(5, 5)
 //nIn and nOut specify depth. nIn here is the nChannels and nOut is
 //the number of filters to be applied

398 | Chapter 9: Using Deep Learning and DL4J on Spark

 .nIn(nChannels)
 .stride(1, 1)
 .nOut(20)
 .activation(Activation.IDENTITY)
 .build())
 .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(2, new ConvolutionLayer.Builder(5, 5)
 //Note that nIn need not be specified in later layers
 .stride(1, 1)
 .nOut(50)
 .activation(Activation.IDENTITY)
 .build())
 .layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(4, new DenseLayer.Builder().activation(Activation.RELU)
 .nOut(500).build())
 .layer(5, new OutputLayer.Builder(LossFunctions.LossFunction
 .NEGATIVELOGLIKELIHOOD)
 .nOut(outputNum)
 .activation(Activation.SOFTMAX)
 .build())
 .setInputType(InputType.convolutionalFlat(28,28,1)) //See note below
 .backprop(true).pretrain(false).build();

 MultiLayerNetwork net = new MultiLayerNetwork(conf);
 net.init();

 //Create Spark multi layer network from configuration
 ParameterAveragingTrainingMaster tm =
 new ParameterAveragingTrainingMaster.Builder(examplesPerDataSetObject)
 .workerPrefetchNumBatches(0)
 .saveUpdater(true)
 .averagingFrequency(5) //Do 5 minibatch
 //fit operations
 //per worker,
 //then average
 //and
 //redistribute
 //parameters
 .batchSizePerWorker(examplesPerDataSetObject) //Number of
 //examples that
 //each worker
 //uses per fit
 //operation
 .build();

Modeling MNIST with a Convolutional Neural Network on Spark | 399

12 To run the example locally, run the example as is. The example is set up to use Spark local by default. Note:
Spark local should be used only for development/testing. For data parallel training on a single machine (for
example, multi-GPU systems), use ParallelWrapper (which is faster than using Spark for training on a single
machine).

 SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, net, tm);

 //Train network
 log.info("--- Starting network training ---");
 int nEpochs = 5;
 for(int i=0; i<nEpochs; i++){
 sparkNetwork.fit(train);
 System.out.println("----- Epoch " + i + " complete -----");

 //Evaluate using Spark:
 Evaluation evaluation = sparkNetwork.evaluate(test);
 System.out.println(evaluation.stats());
 }

 log.info("****************Example finished********************");
 }
}

In the sections that follow, we discuss specific parts of the code in more detail.

Configuring the Spark Job and Loading MNIST Data
To use the Spark execution framework in Java, we need to create a SparkConf object
and a JavaSparkContext object instance. This is where we set up the job to run in
local mode or on a Spark cluster.12

When we work with Spark, our data generally needs to be stored in an RDD struc‐
ture. The code snippet that follows demonstrates how to take the raw MNIST data
from the iterator we previously used in Chapter 5 and convert the data to JavaRDD
instances.

 DataSetIterator mnistTrain = new MnistDataSetIterator(32, true, 12345);
 DataSetIterator mnistTest = new MnistDataSetIterator(32, false, 12345);
 List<DataSet> trainData = new ArrayList<>();
 List<DataSet> testData = new ArrayList<>();
 while(mnistTrain.hasNext()) trainData.add(mnistTrain.next());
 Collections.shuffle(trainData,new Random(12345));
 while(mnistTest.hasNext()) testData.add(mnistTest.next());

 //Get training data. Note that using parallelize isn't recommended for
 //real problems

400 | Chapter 9: Using Deep Learning and DL4J on Spark

 JavaRDD<DataSet> train = sc.parallelize(trainData);
 JavaRDD<DataSet> test = sc.parallelize(testData);

We’re collecting all of the MNIST data into memory and then using the Spark context
object to create JavaRDDs.

Setting Up the LeNet CNN Architecture and Training
Similar to the LeNet CNN in Chapter 5, we can see the same architecture being con‐
figured in the preceding code. For simplicity, we’ve highlighted this section of code
here.

 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed)
 .iterations(iterations) // Training iterations as above
 .regularization(true).l2(0.0005)
 .learningRate(.01)//.biasLearningRate(0.02)
 .weightInit(WeightInit.XAVIER)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .updater(Updater.NESTEROVS).momentum(0.9)
 .list()
 .layer(0, new ConvolutionLayer.Builder(5, 5)
 //nIn and nOut specify depth. nIn here is the nChannels and nOut
 //is the number of filters to be applied
 .nIn(nChannels)
 .stride(1, 1)
 .nOut(20)
 .activation(Activation.IDENTITY)
 .build())
 .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(2, new ConvolutionLayer.Builder(5, 5)
 //Note that nIn need not be specified in later layers
 .stride(1, 1)
 .nOut(50)
 .activation(Activation.IDENTITY)
 .build())
 .layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
 .kernelSize(2,2)
 .stride(2,2)
 .build())
 .layer(4, new DenseLayer.Builder().activation(Activation.RELU)
 .nOut(500).build())
 .layer(5, new OutputLayer.Builder(LossFunctions.LossFunction
 .NEGATIVELOGLIKELIHOOD)
 .nOut(outputNum)
 .activation(Activation.SOFTMAX)
 .build())
 .setInputType(InputType.convolutionalFlat(28,28,1)) //See note below
 .backprop(true).pretrain(false).build();

Modeling MNIST with a Convolutional Neural Network on Spark | 401

We’re using the same MultiLayerConfiguration we did with the non-Spark example
from Chapter 5, and the layers are the same, as well. The major difference is how we
control the parallelization of the training loop on Spark, as we’ll see in the next sec‐
tion.

Training a DL4J model on Spark is similar to how we did it on a single machine, yet
there are some differences. In the code that follows, let’s take a look at how the train‐
ing section of our example code is different from the example in Chapter 5:

 //Create Spark multi layer network from configuration
 ParameterAveragingTrainingMaster tm =
 new ParameterAveragingTrainingMaster.Builder(examplesPerDataSetObject)
 .workerPrefetchNumBatches(0)
 .saveUpdater(true)
 .averagingFrequency(5) //Do 5
 //minibatch fit
 //operations per
 //worker, then
 //average and
 //redistribute
 //parameters
 .batchSizePerWorker(examplesPerDataSetObject) //Number of
 //examples that
 //each worker
 //uses per fit
 //operation
 .build();

 SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, net, tm);

 //Train network
 log.info("--- Starting network training ---");
 int nEpochs = 5;
 for(int i=0; i<nEpochs; i++){
 sparkNetwork.fit(train);
 System.out.println("----- Epoch " + i + " complete -----");

 //Evaluate using Spark:
 Evaluation evaluation = sparkNetwork.evaluate(test);
 System.out.println(evaluation.stats());
 }

The major differences here are (as we’ve seen in the previous two examples):

• Use of the ParameterAveragingTrainingMaster class
• Use of the SparkDl4jMultiLayer class

Other than those two changes, the code is not terribly different.

402 | Chapter 9: Using Deep Learning and DL4J on Spark

Spark Code Versus Local Code

A useful aspect to DL4J is how creating a model on your local
machine and creating a model on Spark is not significantly differ‐
ent. The major differences, as demonstrated throughout this chap‐
ter, don’t amount to many lines of code.

Modeling MNIST with a Convolutional Neural Network on Spark | 403

1 McCorduck. 2004. Machines Who Think (2nd ed.).

APPENDIX A

What Is Artificial Intelligence?

Cooper: Hey TARS, what’s your honesty parameter?
TARS: 90 percent.
Cooper: 90 percent?
TARS: Absolute honesty isn’t always the most diplomatic nor the safest form of communica‐
tion with emotional beings.
Cooper: Okay, 90 percent it is.

—Scene from the movie Interstellar

Artificial Intelligence (AI) is a discipline as old as the study of philosophy itself. It has
evolved over time, yet we still struggle to find its place in society, let alone the existen‐
tial implications for the human race itself. One of the most salient written lines about
the beginnings of AI was by author Pamela McCorduck when she wrote that AI
began with “an ancient wish to forge the gods.”1

While McCorduck had high-minded prose for the topic, much of marketing today
plays on such aspirational themes yet is actually promoting far simpler functions in
terms of business results. Deep learning comes up in the context of discussion of AI
regularly, and it becomes difficult to have a directed conversation on the topic.

We added this appendix because the practitioner commonly needs to have a groun‐
ded conversation with customers, executives, and managers about what deep learning
can do for them and how it fits into the AI landscape. The themes in this appendix
are a mixture of a history of the discipline of AI (for context) and discussions we have
had with customers and industry peers. We seek to provide you, the practitioner, with
the tools to reset the narrative around deep learning, communicate realistic expecta‐

405

tions with stakeholders in projects, and to put them on ground that will better sup‐
port their deep learning efforts going forward. Simply put, the narrative around AI
has become overhyped and eventually the market will correct.

This appendix is also meant to be fun and thought provoking in a way that stokes the
imagination of the researcher or practitioner such that we can still dream but with
our feet on the ground. We’ll work through some basic definitions, provides a short
history of the topic of AI, and then look forward to where this all could go. Hopefully
we’ll help folks avoid the pitfalls of previous cycles of AI interest and better support
their deep learning projects to be more successful through responsibly setting goals
and expectations.

The Story So Far
The main topic of this book, deep learning, is constantly attached to the term “Artifi‐
cial Intelligence” in media and marketing. Definitions are fluid at best and make it
difficult to have a discussion on the topic with other practitioners or stakeholders.
Marketing departments run with the theme of the current hype cycle. Here are some
themes from the not-too-distant past:

• Smart grid
• The cloud
• Big data

When we work in domains like these or in deep learning, as practitioners we need to
delineate what is real from what is marketing hype. That begins with understanding
the history of a subject and having solid definitions from which to build. Let’s begin
by reviewing what we consider to be deep learning, and then we’ll dive into the topic
of defining AI.

Defining Deep Learning
In Chapters 1 and 3, we laid out a working definition for deep learning that is
described as neural networks with the following properties:

• More neurons than previous neural networks
• More complex ways of connecting layers
• “Cambrian-like” explosion of computing power to train
• Automatic feature learning

These networks perform the same modeling functions as other machine learning
models (regression, classification) but have also been shown to be good at tasks such
as the following:

406 | Appendix A: What Is Artificial Intelligence?

• Generative modeling (e.g., generating art and text)
• Speech-recognition technology
• Image-recognition technology

Another key driving feature of deep learning is that it is able to automatically learn
features (as opposed to hand-engineering features) from data in a domain-agnostic
fashion. These capabilities of deep learning are driving many of the new technology
applications and have stimulated the imagination of many folks beyond technology
circles. By itself, however, deep learning does not have higher-level functions such as
“automatically understanding the most interesting question to ask a dataset,” let alone
any type of sentient operation.

Defining Artificial Intelligence
The history of AI is fraught with myths, stories, and overzealous marketing depart‐
ments trying to tap into the latest technology narrative. To define AI, we need some
context around the history of the study of intelligence, modern arguments, and how
the discipline has evolved over time.

Using that line as our embarkation point, let’s explore how the discipline got its start
and then evolved as an industry over the past 60 years.

The study of intelligence
The study of intelligence was formally initiated in 1956 at Dartmouth yet is at least
2,000 years old. The field is based on understanding intelligent entities and studying
topics such as these:

• Seeing
• Learning
• Remembering
• Reasoning

These topics are components of what we’d consider intelligent function to the
capacity we have to understand intelligence (and this is a relative perspective). We
can find the study of intelligence throughout history if we look for it. The list that
follows presents a few of the building blocks of intelligent study over time:

Philosophy (400 BC)
Philosophers began to suggest the mind as a mechanical machine that encodes
knowledge in some form inside the brain.

Mathematics
Mathematicians developed the core ideas of working with statements of logic
along with the groundwork for reasoning about algorithms.

What Is Artificial Intelligence? | 407

Psychology
This field of study is built on the ideas that animals and humans have a brain that
can process information.

Computer science
Practitioners came up with hardware, data structures, and algorithms to support
reverse engineering basic components of the brain.

The study and application of AI techniques we see today are based on these funda‐
mentals. We typically see the study of AI broken into a focus on either behaving or
thinking in simulated intelligent systems. We see these applied in areas such as
machine learning applications, basic knowledge systems, and game playing (e.g.,
Chess and Go).

However, there are limitations to our implementations of intelligent study. There are
still no good models of higher-order brain functions such as consciousness. Science
has also yet to determine where in the brain consciousness resides. This leads some to
question if consciousness is even a real function of the brain, but we’ll leave that to
the philosophers and computer scientists to debate.

For Further Study

One of the best books written on the subject of AI (if not the best)
is Stuart Russell and Peter Norvig’s Artificial Intelligence: A Modern
Approach. We can’t recommend this book enough for you to get a
more complete idea of the depth and history of AI.

Cognitive dissonance and modern definitions
When we’re dealing with a topic such as AI that ties into so many core definitions
society depends on, we naturally find dissonance around setting ground truth to
work from. Beau Cronin writes:

Like the Internet of Things, Web 2.0, and big data, AI is discussed and debated in many
different contexts by people with all sorts of motives and backgrounds: academics,
business types, journalists, and technologists. As with these other nebulous technolo‐
gies, it’s no wonder the meaning of AI can be hard to pin down; everyone sees what
they want to see.

Part of the problem with viewpoints and defining intelligence is that we weave liber‐
ally into defining consciousness and then by extension more philosophical (e.g.,
“what is consciousness”) and religious topics (e.g., “what is a soul?”). We’re touching
on some complex territory at this point and any discussion about the definition of the
soul is fraught with complications. Our best maps today for the definition of intelli‐
gence are covered in regions of “Here Be Dragons.” Given that we don’t understand
natural intelligence, it is even more difficult to define the artificial variant.

408 | Appendix A: What Is Artificial Intelligence?

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://oreil.ly/2sODKk2

Dr. Jason Baldridge wrote on the topic of AI and machine learning and talked about
how there are conflicting meanings in play around the topic:

Regardless of any nuanced technical definition of AI, I’m pretty sure that when the
public hears “artificial intelligence,” they think of conscious nonbiological entities that
interact with humans much as we interact with each other.
They don’t think of an expert system that can analyze a complex domain-specific prob‐
lem and provide interesting courses of action, or machine learning algorithms that find
fascinating patterns in heaps of data.
Despite this, the general public seems to find it all to easy to mentally close the gap
between these two very different levels of technological and scientific accomplishment
on the spectrum of AI-related work.

Dr. Baldridge goes on to define the difference between deep learning and a full artifi‐
cial model of the biological brain:

Despite all this progress, and for better or for worse, these are still far from sentient
machines. Deep learning is inspired by the functioning of human neurons, but as far as
I’m aware, artificial neural networks as yet have nothing like the architecture of meat-
based intelligence

So, we struggle with these definitions because they are complicated and touch on
many topics from many viewpoints. Let’s take a step toward a better definition by seg‐
menting the topic and breaking these segments down into simpler topics.

Francois Chollet recently made the following salient comment on Twitter:
[A]rtificial intelligence is a poorly defined thing, to which many people attribute wildly
unrealistic abilities. It’s a recipe for trouble.

And then a further tweet:
Part of the problem is that some companies and journalists are hyping it up, blurring
the line between sci-fi and reality. Because it sells.

Chollet goes on to say that we should “define” what we’re talking about:
When you talk about “AI”, *define* what you are talking about. Make explicit what it
can do, and what it can’t do. Avoid brain analogies.

This is sound advice and the industry needs to do a far better job of locking down
these definitions.

What AI is not. Folks who claim machine learning to be AI do the entire computer sci‐
ence industry a disservice. Machine learning is classification and regression and in no
way matches up to ephemeral aspirations of an all-knowing, self-aware system that
can help the reader with their marketing problem. As Francois Chollet mentioned
earlier, it’s just best (for now) to avoid brain analogies.

Many times AI is marketed as an application with all of the answers. It will not, at
least not anytime soon.

What Is Artificial Intelligence? | 409

http://bit.ly/2tUwIt5
http://bit.ly/2tUsJNl
http://bit.ly/2uz6vhF
http://bit.ly/2u05jXA

Moving the goal posts. Psychologists habitually have had disdain for the metaphor of
the human brain as a computer. In a 2016 article, Robert Epstein states:

No matter how hard they try, brain scientists and cognitive psychologists will never
find a copy of Beethoven’s 5th Symphony in the brain—or copies of words, pictures,
grammatical rules or any other kinds of environmental stimuli.

Unfortunately Dr. Epstein has not seen the renders in Chapter 4 of Convolutional
Neural Network (CNN) filter renders. His central argument in the article is stated as:

Your brain does not process information, retrieve knowledge, or store memories. In
short: your brain is not a computer.

This isn’t a new sentiment and has been echoed, by and large, by the disciplines out‐
side computer science for the past 60 years. As stated in Russell and Norvig’s book on
AI:

The intellectual establishment, by and large, preferred to believe that a “machine can
never do X.”

They go on to demonstrate examples in which AI researchers have systematically
responded by demonstrating one X after another. Thus, the study of AI and defini‐
tions for the discipline have long suffered from the industry “moving the goal posts”
with respect to what they really mean by “Artificial Intelligence.”

Segmenting the definitions of AI. It’s useful to break down the different viewpoints of
how folks talk about AI today and list them. A good writeup by Beau Cronin uses the
following four major segmented definitions of AI:

• AI as interlocutor
— HAL, Siri, Cortana, Watson
— Conversational intelligence
— Limited reasoning

• AI as android
— Machine in the form of a humanoid
— AI as mechanically embodied
— Examples would be The Terminator or C3PO
— Similar to the interlocutor but in a humanoid body

• AI as the reasoner
— Early AI pioneers were drawn to more refined and high-minded tasks—play‐

ing chess, solving logical proofs, and planning complex tasks
— Still struggle with tasks simple for children

• AI as the big data learner
— More recent definition
— Seeing many people talk about building “AI models”

Let’s now look at these segmented definitions with a critical eye.

410 | Appendix A: What Is Artificial Intelligence?

http://bit.ly/2tABWqX
http://oreil.ly/2sODKk2

Critical commentary on segments. AI as the interlocutor and AI as the big data learner
are both recent definitions due to the incorporation of many machine learning tech‐
niques into engineered commercial products. AI as the interlocutor can perform
basic functions based on voice recognition. It’s the combination of voice-to-text
machine learning (or deep learning) and Natural Language Processing (NLP) tech‐
nology to determine what the user wants to accomplish. AI as the interlocutor has
limited reasoning capabilities because it typically relies on a separate system to send
the voice-to-text and NLP-processed results as input. This separate system is many
times as basic as a classic rule-base system or “expert system.”

Even though users might be initially entertained with conversation by the system and
even fooled by its “intelligence,” they quickly realize the limitations of the interac‐
tions. Ultimately, AI as the interlocutor is a well-engineered combination of machine
learning techniques that over time became just good enough to progressively be
wired further into useful consumer products.

AI as the android is an interesting embodiment of the concept yet is ultimately
dependent on a network of machine learning subsystems just as the interlocutor is.
AI as the reasoner is a classical implementation of AI yet has plateaued in recent years
with respect to levels of industry product integration interest. It continues to be a core
component in intelligent systems that wire together multiple components to produce
value, as in the interlocutor example.

“AI as the big data learner” is a troublesome use of the term that has gained popular‐
ity in the past few years (2010–2015). Many times, a marketing department will
rebrand a product’s use of a basic machine learning technique over customer data as
“Artificial Intelligence.” Worse, other times the product is doing basic business intelli‐
gence functions and is also lumped into this category. The practice of machine learn‐
ing (or deep learning) alone should not be considered a type of AI. It is, however, a
useful subsystem of an intelligent system.

Showing Restraint When Marketing Deep Learning

You should show restraint in labeling a machine learning model—
deep learning model or not—as “Artificial Intelligence.” Overselling
capabilities early might attract funding but will hamper your
project in the longer term.

A fifth aspirational definition of AI. Another way to frame the question of “What is Arti‐
ficial Intelligence?” is to ask another question. If we look at this question from the
viewpoint of “what would definitively end the debate of ‘What is AI'?”

What Is Artificial Intelligence? | 411

If we were presented with a transcendent, conscious, self-aware intelligence that
understood our world (and data) far better than any human, we’d probably call it
“true Artificial Intelligence.” Or, an alien.

Unfortunately chasing the mirage of AI is what brings on the unrealistic expectations
that always crash down on the industry no matter how much tangible progress was
made.

The AI winters
The AI industry has experienced multiple periods of up and down interest and fund‐
ing. These down periods of interest have been the result of the sector being unrealisti‐
cally overhyped followed by a cycle of predictably underwhelming results. This down
period is referred to as an “AI winter” and involves cuts in academic research funding,
reduced venture capital interest, and stigma in the marketing realm around anything
connected to the term “artificial intelligence.”

The result of these cycles is that the good technical advances (e.g., voice recognition
or optical character recognition) is rebranded and is integrated into other products.

AI Winter I: (1974–1980). The lead-up to the first AI winter saw machine translation
fail to live up to the hype. Connectionism (neural networks) interest waned in the
1970s, and speech understanding research overpromised and underdelivered.

In 1973, DARPA cut academic research in the AI domain. The Lighthill report in the
United Kingdom harshly criticized the field and research funding was further cur‐
tailed.

AI Winter II: Late 1980s. In the late 1980s and early 1990s, there was overpromotion of
technologies such as expert systems and LISP machines, both of which failed to live
up to expectations. The Strategic Computing Initiative canceled new spending at the
end of this cycle. The fifth-generation computer also failed to meet its goals.

The common patterns of AI Winters
The common patterns of these winters see the industry being overhyped by a series of
promising successes. After conditions percolate enough we see the hype reach a nadir
and the money for academic and industrial research pour into the AI domain. A few
real projects based on solid technology reach at least part of their goals and solve real
problems. Most of the marketed promises go unfullfilled, however, and the Trough of
Disillusionment looms.

Winter kills the weak.

412 | Appendix A: What Is Artificial Intelligence?

https://en.wikipedia.org/wiki/AI_winter

2 Hinton, Osindero, and Teh. 2006. “A fast learning algorithm for deep belief nets.”

A few interesting applications slowly emerge from the trough, are rebranded (“voice
recognition”), and are integrated into other projects as features, generally under the
“latent intelligence” class of improvements. We’ve seen this with the following:

• Informatics
• Machine learning
• Knowledge-based systems
• Business rules management
• Cognitive systems
• Intelligent systems
• Computational intelligence

The name change might be partly because they consider their field to be fundamen‐
tally different from AI. It is also true that the new names help to procure funding by
avoiding the stigma of the false promises attached to the name “Artificial Intelli‐
gence.”

Here’s an interesting note from an AI meeting in the 1980s:
At the meeting, Roger Schank and Marvin Minsky—two leading AI researchers who
had survived the “winter” of the 1970s—warned the business community that enthusi‐
asm for AI had spiraled out of control in the ’80s and that disappointment would cer‐
tainly follow. Three years later, the billion-dollar AI industry began to collapse.

What Is Driving Interest Today in AI Today?
Three major contributors are driving interest in AI today:

1. The big jump in computer-vision technology in the late 2000s
2. The big data wave of the early 2010s
3. Advancements in applications of deep learning by top technology firms

In 2006, Geoff Hinton and his team at the University of Toronto published a key
paper on Deep Belief Networks (DBNs).2 This provided the industry with a spark of
creativity on what could possibly improve the state of the art. We’ve seen a tsunami of
deep learning publications at top journals over the succeeding decade. These publica‐
tions began improving top scores for accuracy in many areas beyond just computer
vision, and deep learning took over the applied machine learning landscape in short
order.

Large web firms such as Google, Facebook, and Amazon all watch top journals for the
best ideas. These firms saw the developments by Yann LeCun, Hinton, and others and
began implementing these ideas in their own pipelines. These new applications (e.g.,

What Is Artificial Intelligence? | 413

https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

better face detection, or Alexa at Amazon) were widely recognized in the technology
media.

In the mid-2000s much of the storage and ETL technology developed on the West
Coast by the large web firms began to be open source as projects such as Hadoop and
MongoDB.

Just as these web firms (Google, Yahoo!, etc.) had ramped up their storage and ETL
systems, they were then building out new machine learning and deep learning techni‐
ques to better take advantage these new and larger datasets.

Traditional Fortune 500 enterprise companies were bringing online large distributed
systems in the early 2010s to hold their growing transactional datasets. These enter‐
prise companies tend to follow what the West Coast web firms do by about 5 to 10
years. This has given rise to an interest in deep learning in the Fortune 500 and in
systems that allow the traditional enterprise to better exploit their investments in big
data.

If we combine the aforementioned three factors and then mix in the very public suc‐
cesses of projects such as Watson (winning Jeopardy), AlphaGo (winning Go), and
Google’s self-driving cars, we create an environment in which enthusiasm outstrips
the reality of the road ahead.

It’s high tide in coverage and enthusiasm around AI. Unfortunately, in these types of
cycles, we also see the tide go back out eventually. There are real applications using
complex datasets for deep learning. Here are just some of these applications:

• Healthcare (e.g., predicting patient length of stay)
• Retail (e.g., analyzing the shopping experience)
• Telecom/Financial Services (e.g., analyzing transactions for fraudulent patterns)

We’ve touched on some of the aforementioned use cases (and more) in this book.
When you, as practitioner, promote deep learning and AI we recommend finding real
use cases such as these and standing on “solid ground.” We mention solid ground
here metaphorically because eventually the tide will go out and we hope our fellow
practitioners will have something to stand on when it does.

Winter Is Coming
Deep learning in and of itself has been grounded in reality over the course of this
book. It is a framework for performing industry-leading neural network modeling on
complex data types. Deep learning, by itself, would not fulfill our aforementioned
fifth aspirational definition of AI, so we don’t have much to worry about on that
front.

414 | Appendix A: What Is Artificial Intelligence?

3 Jeopardy does seem to be a “solved problem,” however.

We are seeing systems marketed in 2016 as “Artificial Intelligence for X,” which are
plainly using basic machine learning. AlphaGo was a tremendous advancement in
game playing, but as we saw with DeepBlue and Chess, game-playing advances do not
always translate easily to business use cases.3

Marketing departments are setting up similar scenarios as occurred in the previous
two AI winters, unfortunately. The coals of the real advances in the domain, as in pre‐
vious winters, will keep the true enthusiasts and hardcore researchers warm during
the cold of the coming third AI winter.

What Is Artificial Intelligence? | 415

APPENDIX B

RL4J and Reinforcement Learning

Ruben Fiszel

Preliminaries
We begin this appendix with an introduction to reinforcement learning, followed by a
detailed explanation of Deep Q-Networks (DQNs) for pixel inputs, and then we con‐
clude by showing you an RL4J example. Let’s begin with a look at the core concepts of
reinforcement learning.

Reinforcement learning is an exciting area of machine learning. It is, basically, the
learning of an efficient strategy in a given environment. Informally, this is very simi‐
lar to Pavlovian conditioning: you assign a reward for a given behavior, and, over time,
the agents learn to reproduce that behavior in order to receive more rewards.

Markov Decision Process
Formally, an environment is defined as a Markov Decision Process (MDP). Behind this
scary name is nothing other than the combination of (5-tuple):

• A set of states SS (e.g., in chess, a state is the board configuration)
• A set of possible action AA (in chess, every possible move in every configuration

possible; e.g., e4–e5).
• The conditional distribution P(s′|s,a)P(s′|,a) of the next state, given a current

state and an action. (In a deterministic environment like chess, there is only one
state s′ with probability 1, and all the others with probability 0. Nevertheless, in a
stochastic (involving randomness, like a a coin toss) environment, the distribu‐
tion is not as simple.)

• The reward function of transitionning from state s to s′: R(s,s′) (e.g., in chess, +1
for a final move that leads to a victory, –1 for a final move that leads to a defeat, 0
otherwise).

417

http://rubenfiszel.github.io/

• The discount factor: γγ. This is the preference for present rewards compared to
future rewards (a concept very common in finance).

Using the Set of Action As

It is usually more convenient to use the set of Action As, which is
the set of available moves from a given state, than the complete set
A.
As: elements a in A such that P(s′|s,a) > 0.

The Markov property (see Figure B-1) is memoryless. After you reach a state, the past
history (the states visited before) should not affect the next transitions and rewards;
only the present state matters.

Figure B-1. Schema of an MDP

Terminology
Before we proceed any further, let’s take a moment define some common words and
terms:

Final/terminal states
The states that have no available actions are final/terminal states.

Episode
An episode is a complete play from one of the initial states to a final state:

s0, a0, r0, s1, a1, r1, ..., sn

418 | Appendix B: RL4J and Reinforcement Learning

https://en.wikipedia.org/wiki/Discounted_utility

Cumulative reward
The cumulative reward is the discounted sum of reward accumulated throughout
an episode:

R = ∑t = 0
n γtrt + 1

Policy
A policy is the agent’s strategy to choose an action at each state. It is denoted by π.

Optimal policy
The optimal policy is the theoretical policy that maximizes the expectation of
cumulative reward. From the definition of expectation and the law of large num‐
bers, this policy has the highest average cumulative rewards given sufficient epi‐
sodes. This policy might be intractable.

The objective of reinforcement learning is to train an agent such that the agent learns a
policy as close as possible to the optimal policy.

Different Settings
« Qui peut le plus peut le moins » (He who can do the greater things, can do the lesser things)

Model-Free
The conditional distribution and the reward function constitute the model of the
environment. In a game of backgammon, we know the model (each possible transi‐
tion is decided by the known dice distribution, and we can predict each reward from
transition without realizing them [because we can calculate the new value of the
board]). The algorithm TD-gammon uses that fact to learn the V function (see “Q-
Learning” on page 421).

Some reinforcement learning algorithms can work without being given the model.
Nevertheless, to learn the best strategy, they additionally need to learn the model dur‐
ing the training. This is called model-free reinforcement learning. Model-free algo‐
rithms are very important because a large majority of real-world complex problems
fall in that category. Furthermore, model-free is simply an additional constraint. It is
simply more powerful because it is a superset of model-based reinforcement learning.

Observation Setting
Instead of being given access to the state, you might be given access to only a partial
observation of the state. It is the same idea behind a Hidden Markov Chain. This is the
difference between the partial and fully observed setting. For instance, our field of
vision is a very partial observation of the full state of the universe (the position and

RL4J and Reinforcement Learning | 419

http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf

energy of every particule in the universe). Fortunately, the partial observation setting
can be reduced to a fully observed setting with the use of a history (the state becomes
an accumulation of previous states).

Nevertheless, it is most common to not accumulate the entire history. Either only the
last h observations are stacked (in a windowed fashion) or you can use a Recurrent
Neural Network to learn what to keep in memory and what to forget (that is essen‐
tially how a Long Short-Term Memory [LSTM] works).

Abusing the language slightly for consistency purposes with the existing notation,
history (even truncated ones) will also be called “state” and also symbolized as St.

Single-Player and Adversarial Games
A single-player game has a natural translation into an MDP. The states represent the
moment during which the player is in control. The observations from those states are
all the information accumulated between states (e.g., as many pixel frames as there
are in between frames of control). An action is all the available commands at the dis‐
posal of the player (in the game Doom, go up, right, left, shoot, etc.).

Reinforcement learning also can be applied to adversarial games by self-play: the
agent plays against itself. Often in this setting, there exists a Nash equilibrium such
that it is always in your interest to play as if your opponent were a perfect player. This
makes sense in chess, for example. Given a specific board configuration, a good move
against a chess master would still be a good move against a beginner. Whatever is the
current level of the agent, by playing against himself, the agent stills fains information
about the quality of his previous moves (seen as good moves if he won, bad moves if
he lost).

Of course, the information, which is a gradient in the context of a neural network, is
of higher quality if he played directly against a very good agent from the beginning.
But it is really mind-blowing that an agent can learn to increase his level of play by
playing against himself, an agent of the same level. That is actually the method of
training employed by AlphaGo (the Go agent from DeepMind that beat the World
Champion). The policy was bootstrapped (initially trained) on a dataset of master
moves. It then used reinforcement learning and self-play to further increase the level
(quantified with Elo). In the end, the agent became better than the policy it was learn‐
ing from the original dataset. After all, it beat the master above all the masters. To
compute the final policy, the AlphaGo Team used their policy gradient in combina‐
tion with a Monte-Carlo Search Tree on a massive amount of computation power.

This setting is a bit different from learning from pixels. First, because the input is not
as high-dimensional, the manifold is a lot closer to its embedding space. Neverthe‐
less, a convolutional layer was still used in this case to make efficient use of the local‐

420 | Appendix B: RL4J and Reinforcement Learning

https://en.wikipedia.org/wiki/Nash_equilibrium
https://deepmind.com/alpha-go
http://bit.ly/2vavCrt

ity of some subgrid board patterns. Second, because AlphaGo is not model-free (it is
deterministic).

Q-Learning
I am no friend of probability theory, I have hated it from the first moment when our dear
friend Max Born gave it birth. For it could be seen how easy and simple it made everything,
in principle, everything ironed and the true problems concealed.

—Erwin Schrödinger

From Policy to Neural Networks the following
Our goal is to learn the optimal policy π∗ that maximizes:

E R0 = E ∑t = 0
n γtrt + 1

Let’s introduce an auxilliary function:

Vπ s = E rt + γrt + 1 + γ2rt + 2 + ... + γnrn ∣ st = s, policy followed at each state is π

This is the expected cumulative reward from a state s following the policy π. Let’s con‐
sider an oracle, such as this:

Vπ* s

This gives us the V function of the optimal policy. From it, we could retrieve the opti‐
mal policy by defining the policy that, from among all available actions at the current
state, chooses the action that maximizes the expectation of Vπ* s . This is a greedy
behavior. The optimal policy is the greedy policy with respect to Vπ*:

π* s chooses a s.t a = arg maxa Eπ rt + γV st + 1 ∣ st = s, at = a

If you were very attentive, something probably sounds wrong here. In the model-free
setting, we cannot predict the after-state st + 1 from st because we ignore the transition
model. Even with that oracle, our model is still not computable!

To solve this very annoying issue, we are going to use another auxiliary function, the
Q-function:

Qπ* s, a = Eπ rt + γVπ* st + 1 ∣ st, at = a

RL4J and Reinforcement Learning | 421

In a greedy setting, we have the following relationship:

Vπ st = maxa Qπ st, a

Now, suppose that instead of the V oracle, we have the Q oracle. We can now redefine
π*, as follows:

π* s chooses a s.t a = maxa Qπ* s, a

No more uncomputable expectations, neat.

Nevertheless, we have only moved the expectation from outside to inside the oracle.
And, unfortunately, oracles do not exist in the real world.

The trick here is that we have reduced an abstract notion that is a policy into a
numerical function that might be relatively “smooth” (continuous) thanks to the
expectation. Fortunately for us, there is one weapon at our disposal to approximate
such complex functions: neural networks.

Neural networks are universal function approximators. They can approximate any
continuous differentiable function. However, they can become stuck in local extrema,
and many proofs of convergence from reinforcement learning are not valid anymore
when throwing neural networks in the equation. This is because their learning is not
as deterministic or boundable as their tabular counterparts. Nonetheless, in most
cases, with the right hyperparameters, they are unreasonably powerful. Using deep
learning with reinforcement learning is called deep reinforcement learning.

Policy Iteration
At this point, your knowledge of machine learning and plain old common sense is
likely telling you that there is still something missing about our approach. Neural net‐
works can approximate functions that already have labels. Unfortunately for us, ora‐
cles are not summonable, so we will need to get our labels another way.

This is where the magic of Monte Carlo comes in. Monte Carlo methods rely on
repeated random sampling to calculate an estimator. (A famous example is the pi cal‐
culation.)

If we play randomly from a given state, the better states should get better rewards
on average (thank you law of large numbers). So, without knowing anything about
the environment, you can gather some information about the expected value of a
state. For instance, at poker, better hands will win more often on average than lesser
hands even when every decision is taken randomly. The Monte Carlo Search Tree is

422 | Appendix B: RL4J and Reinforcement Learning

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://mathfaculty.fullerton.edu/mathews/n2003/montecarlopimod.html
http://mathfaculty.fullerton.edu/mathews/n2003/montecarlopimod.html
https://en.wikipedia.org/wiki/Law_of_large_numbers

based on this property, as well (shocking, isn’t it?). This is a phase of exploration that
leads to unsupervised learning and enables us to extract meaningful labels.

More formally, given a policy π, a state s, and an action a, to get an approximation of
Q(s,a), we sample it according to its definition:

Qπ s, a = E rt + γrt + 1 + ... + γnrn ∣ st = s, at = a

In plain English, we can get a label for Qπ s, a by playing a sufficient number of times
from s according to policy π.

From an aggregate of signals (Figure B-2):

Figure B-2. One signal

The actual learning is done by Stochastic Gradient Descent (SGD), using the labels in
batches. The gradient is the standard mean squared error (MSE) one such that the td-
error gets minimized at each iteration.

We use the MSE loss function (L2 loss) with a learning rate of α and apply SGD (on a
batch of size 1) of:

Qπ st, at Qπ st, at + α Rt − Qπ st, at

st, at is the input, Qπ st, at + α Rt − Qπ st, at is the label (e.g., target).

RL4J and Reinforcement Learning | 423

Even if we use MSE, there is no square in the formula because the
loss is applied afterward on the difference of the expected output
Qπ st, at and the label α Rt − Qπ st, at .

Repeat many times, sampling from π:

Qπ st, at Eπ Rt = Est, at, . . . , sn ∼ π ∑i = t
n γi − tri

Figure B-3 can converge to the right expectation.

Figure B-3. Many signals

So, we now can design a naïve prototype of our learning algorithm (in Scala, but it is
intelligible without any Scala knowledge), which you can see in Example B-1.

Example B-1. RL4J Prototype in Scala

//A randomly uninitialized neural network
val neuralNet: NeuralNet

424 | Appendix B: RL4J and Reinforcement Learning

//Iterate until you reach max epoch
for (t <- (1 to MaxEpoch))
 epoch()

def epoch() = {

 //pick a random state and action
 val state = randomState
 val action = randomAction(state)

 //transition to a new state, initalize thethe reward
 var (new_state, accuReward) = transitition(state, action)

 //play until terminal state and accumulate the reward
 accuReward += playRandomly(state)

 //Do SGD over input and label!
 fit((state, action), accuReward)
}

// MDP specific, return the new state and the reward
def transition(state: State, action: Action): (State, Double)

//return a randomly sampled state among all the state space
def randomState: State

//play until terminal state
def playRandomly(state): Double = {
 var s = state
 var accuReward = 0
 var k = 0
 while (!s.isTerminal) {
 val action = randomAction(s)
 val (state, reward) = transition(s, action)
 accuReward += Math.pow(gamma, k) * reward
 k += 1
 s = state
 }
 accuReward
}

//choose a random action among all the available actions at this state
def randomAction(state: State): Action =
 oneOf(state.available_action)

//helper function, pick one among

RL4J and Reinforcement Learning | 425

def oneOf(seq: Seq[Action]): Action =
 seq.get(Random.nextInt(seq.size))

//How it would be roughly done with DL4J
def fit(input: (State, Action), label: Double) =
 neuralNet.fit(toTensor(input), toTensor(label))

//return an INDArray from ND4J
def toTensor(array: Array[_]): Tensor =
 Nd4j.create(array)

There are multiple issues: this should work, but it’s terribly inefficient. We are playing
a full game with n state and n actions for a single label and that label might not be
very meaningful (if the interesting trajectories are difficult to reach at random).

Exploration Versus Exploitation
Exploring at random, the environment will converge to the optimal policy, but this is
guaranteed only after an almost infinite time: you will need to visit every possible tra‐
jectory at least once. (A trajectory is the ordered list of all of the states visited and
actions chosen during an episode.) Considering how many states and branches there
are, it is impossible. The branching issue is the reason why Go is so much more diffi‐
cult than chess. In the real world, we do not have infinite time (and time is money).

Thus, we should exploit the past information and our learning of it to focus our
exploration on the most promising possible trajectories. We can achieve this through
different ways, and one of them is ϵϵ-greedy exploration. ϵϵ-greedy exploration is
fairly simple. It is a policy that chooses an action at random with odd ϵ or the best
action as deemed by our current policy with odd (1−ϵ). Usually ϵ is annealed over
time to privilege exploitation over exploration after enough exploration. This is a
trade-off between exploration and exploitation.

With each new piece of information, our actual Q functions become more accurate
about the present policy, and the exploration is focused on better paths. The policy
based on our new Q function becomes better (because Q is more accurate), and the ϵ-
greedy exploration reaches better paths. Focused on those better paths, our Q func‐
tion can explore yet better parts and must update its returns according to the new
policy. As Figure B-4 illustrates, this is an iterative cycle that enables convergence to
the optimal policy. Unsurprisingly, it’s called policy iteration. Unfortunately, the con‐
vergence can take infinite time and is not even guaranteed when Q is approximated
by neural networks. Nevertheless, impressive results can make up for the lack of for‐
mal convergence proofs.

426 | Appendix B: RL4J and Reinforcement Learning

Figure B-4. Policy iteration

This algorithm also requires you to be able to sample the states in a “good” manner: It
should be proportionally representative of the states that are usually present in a
game (or at least the kind of game at the targeted agent’s level).

Bellman Equation
We can transform the Q equation into a Bellman equation, as demonstrated here:

Qπ s, a = E rt + γrt + 1 + ... + γnrn ∣ st = s, at = a
= E rt + γrt + 1 + V st + 1 ∣ st = s, at = a = E rt + γrt + 1 + ... + γ maxa′

Q st + 1, a′

∣ st = s, at = a

As in the Monte Carlo method, we can do many updates of Q.

RL4J and Reinforcement Learning | 427

MSE:

Qπ st, at Qπ st, at + α rt + maxa Qπ st + 1, a
target

− Qπ st, at
TD‐error

TD-error is the temporal difference error. Indeed, we are actually calculating the dif‐
ference between what the Q approximation expects in the future plus the realized
reward and its present value as evaluated by the neural network.

The Bellman equation only make sense with some boundary conditions. If s is
terminal:

V s = 0

and for any a:

Q st − 1, a = rt

The states near the terminal states are the first to converge because they are closer in
the chain to the “true” label, the known boundary conditions. In Go or chess, rein‐
forcement learning is applied by assigning +1 to the transitions that lead to a final
winning board (respectively –1 for a losing board) and 0 otherwise. It diffuses the Q-
values by finding a point between the two extremes [–1; 1]. A transition with a Q-
value close to 0 represents a transition leading to a balanced board. A transition with
a Q-value close to 1 represents a near certain victory.

It could be surprising that the moves do not have only –1 and 1 values (because devi‐
ating from the optimal path should be fatal). One interesting aspect of calculating Q-
values is the realization that in many games/MDP, no mistake in itself is ever really
fatal. It is the accumulation of them that really kills you. AI is full of life lessons.
Moreover, the expected accumulated reward space is a lot smoother than often
thought. One possible explanation is that expectations always have an average effect:
an expectation is nothing more than a weighted average with probabilities as weights.
Furthermore, gamma being <1<1, the very long-term effects are not too preponder‐
ant. Isn’t it exciting to be able to calculate directly the odds of winning a game for
every transition?

As long as we sample sufficient enough transitions near the terminal states, Q-
learning is able to converge. The incredible power of deep reinforcement learning is
that it will be able to generalize its learning from visited states to unvisited states. It
should be able to understand what is a balanced or winning board even if it has never
seen it before. This is because the network should be able to abstract patterns and

428 | Appendix B: RL4J and Reinforcement Learning

understand the strength of an action based on previously seen pattern (e.g., shoot an
enemy when recognizing its form).

Offline and Online Reinforcement Learning

To learn more about the differences between online and offline
reinforcement learning, see the excellent post from Kofzor.

Initial State Sampling
In a one-player setting (like an Atari game), we do not actually need to learn to play
well in every situation (Although, if we did, that would show that we would have
reached a very good level of generalization). We need only to learn to play efficiently
from the states that our policy encounters. Thus, we can sample from states that are
simply reachable by playing with our current policy from an initial state. This enables
us to sample directly from a played episode by our agent.

Q-Learning Implementation
At this stage, we can design a naïve prototype of our Q-learning. Example B-2
presents the code to do this.

Example B-2. Naïve prototype of our Q-learning in Scala

def epoch() = {

 //sample among the initial state space
 //(often unique state)
 var state = initState

 //while the state is not terminal,
 //play an episode and do a Q-update at each transition
 while(!state.isTerminal) {

 //sample action from eps-greddy policy
 val action = epsilonGreedyAction(state)

 //interaction with the environment
 val (nextState, reward) = transition(state, action)

 //Q-update
 update(state, action, reward, nextState)

 state = nextState
 }
}

RL4J and Reinforcement Learning | 429

http://bit.ly/2tUyTNF

//Our Q-update as explained above
def update(state: State, action: Action, reward: Double, nextState: State) = {
 val target = reward + maxQ(nextState)
 fit((state, action), target)
}

//the eps-greedy policy implementation
def epsilonGreedyAction(state: State) = {
 if (Random.float() < epsilon)
 randomAction(state)
 else
 maxQAction(state)
}

//Retrive max Q value
def maxQ(state: State) =
 actionsWithQ(state).maxBy(_._2)._2

//Retrive action of the max Q value
def maxQAction(state: State) =
 actionsWithQ(state).maxBy(_._2)._1

//return a list of actions and the q-value of their transition from the state
def actionsWithQ(state: State) = {
 val stateActionList = available_actions.map(action => (state, action))
 available_actions.zip(neural_net.output(toTensor(state_action_list)))

def initState: State

Modeling Q(s,a)
Instead of having aa as an additional input of the neural net combined with the state,
the state is the only input and the output contains the Q-value of every action possi‐
ble. This makes sense only when the available actions are consistent across the full
episode (otherwise, the neural output layer would need to be different at each state).
It is many times solvable by having the full set AA of actions as output and ignoring
the impossible actions (some papers put the target of impossible actions at 0).

Experience Replay
There is one issue with using a neural network as the Q approximator. The transitions
are very correlated. This reduces the overall variance of the transition. After all, they
are all extracted from the same episode. Imagine if you had to learn a task without
any memory (not even short-term); you would always optimize your learning based
on the last episode.

The Google DeepMind research team used experience replay, which is a windowed
buffer of the last N transitions (N being a million in the original paper) with DQN,

430 | Appendix B: RL4J and Reinforcement Learning

and greatly improved their performance on Atari. Instead of updating from the last
transition, you store it inside the experience replay and update from a batch of ran‐
domly sampled transitions from the same experience replay.

epoch() becomes:

def epoch() = {

 //sample among the initial state space
 //(often unique state)
 var state = initState

 //while the state is not terminal,
 //play an episode and do a Q-update at each transition
 while(!state.isTerminal) {

 //sample action from eps-greddy policy
 val action = epsilonGreedyAction(state)

 //interaction with the environment
 val (nextState, reward) = transition(state, action)

 //store transition (Exp Replay is just a Ring buffer)
 expReplay.store(state, action, reward, nextState)

 //Q update in batch
 updateFromBatch(expReplay.getBatch())

 state = nextState
 }
}

Compression
ND4J, the tensor library of DL4J, does not support as first-class type uint8. However,
pixels in grayscaling are encoded with that precision. To avoid wasting too much
space on memory, INDArray were compressed to uint8.

Convolutional Layers and Image Preprocessing
Convolutional layers are layers that are excellent at detecting local patterns in images.
For pixels, it is used as a processor that is required to reduce the dimension of the
input into its real manifold. Given the proper manifold of observations, the decision
becomes much easier.

Image processing
You could feed the neural network the RGB directly, but then the network would
have to also learn that additional pattern. It seems like the brain is hardwired to com‐

RL4J and Reinforcement Learning | 431

bine colors (fortunately!). Thus, it would seem reasonable to tolerate that preprocess‐
ing.

Figure B-5 depicts what you see.

Figure B-5. A screenshot from the game Doom

Figure B-6 shows what the neural network sees.

432 | Appendix B: RL4J and Reinforcement Learning

Figure B-6. Neural network input from the same screenshot

The image is resized into 84 × 84. As the size of the input grows, so, too, does the
need for memory and compute by the convolutional layers. The fine details of the
image are not required to play the game correctly. Indeed, many are purely aesthetic.
Resizing to a more reasonable size speeds up the training.

Skip Frame

In the original Atari paper, only one in four frames is actually pro‐
cessed. For the following three images, the last action is repeated. It
speeds up roughly by four times the training without losing much
information. Indeed, Atari games are not supposed to be played
frame-perfect, and for most actions, it makes more sense to keep
them for at least four frames.

RL4J and Reinforcement Learning | 433

1 You can use random starts for fair evaluation.

History Processing
To give information to the neural network about the current momentum, the last four
frames (with skip frame, you pick one of every four) are stacked into four channels,
as demonstrated in Figure B-7. Those four frames represent a history, as previously
discussed in “Observation Setting” on page 419.

Figure B-7. History processing and stacking

To fill the first frames of the history, a random policy or a noop replay is used.1

Double Q-Learning
The idea behind double-DQN is that the network is frozen every M updates (hard
update) or smoothly averaged (target = target * (smooth) + current * (1-
smooth)) every update (soft update). Indeed, it adds stability to the learning by using
a Q evaluation to use in the TD-error formula that is less prone to “jiggering.” The Q
update becomes the following:

Ytarget = rt + γ * Qtarget st + 1, arg maxa Q(st + 1, a

434 | Appendix B: RL4J and Reinforcement Learning

Clipping
You can clip the TD-error (bound between two limit values) such that no outlier
update can have too much impact on the learning.

Scaling Rewards
Scaling the rewards such that Q-values are lower (in a range of [–1; 1] is similar to
normalization) can dramatically alter the efficiency of the learning. This is an impor‐
tant hyperparameter to not neglect.

Prioritized Replay
The idea behind prioritized replay is that not all transitions are born equal. Some are
more important than others. One way to sort them is through their TD-error. Indeed,
a high TD-error is correlated to a high level of information (in the sense of surprise).
Those transitions should be sampled more often than the others.

Graph, Visualization, and Mean-Q
To visualize and debug the training or a method of reinforcement learning, it is useful
to have a visual monitoring of the agent’s progress. This is why I built the dashboard
webapp-rl4j (Figure B-8).

RL4J and Reinforcement Learning | 435

http://bit.ly/2sObUUW
https://github.com/rubenfiszel/webapp-rl4j

Figure B-8. Screen capture of webapp-rl4j

436 | Appendix B: RL4J and Reinforcement Learning

The most important thing is to keep track of cumulative rewards, as illustrated in
Figure B-9. This is a way to check that the agents effectively become better. It is
important to notice that it represents the epsilon greedy strategy and not the directly
derived policy from the Q approximation.

Figure B-9. Cumulative reward graph

You also might want to also track the loss (score of the neural network) and mean Q-
values, as shown in Figure B-10.

RL4J and Reinforcement Learning | 437

2 For more details, check out the original blog post at https://rubenfiszel.github.io/posts/rl4j/2016-08-24-
Reinforcement-Learning-and-DQN.html.

Figure B-10. Score and mean-Q graph

Unlike with classic supervised learning, the loss does not necessarily always decrease
because the learning affects the labels!

If used with a target network, you should see some discontinuities from the noncon‐
tinuous evaluation of different target networks. Loss should decrease with respect to a
single target network. The mean Q-values should smoothly converge toward a value
proportional to the mean expected reward.

RL4J
RL4J is available on GitHub. Currently, DQN with Experience Replay, Double Q-
learning, and clipping is implemented.2 Asynchronous Reinforcement Learning with
A3C and Async N-step Q-Learning is included, too. It is possible to play both from
pixels or low-dimensional problems (like Cartpole). Async Reinforcement Learning
is experimental. Hopefully, contributions will enrich the library.

Example B-3 presents a working example with RL4J to play Cartpole with a simple
DQN. You can play Doom, too. Check out rl4j-examples for more examples. It also is

438 | Appendix B: RL4J and Reinforcement Learning

https://rubenfiszel.github.io/posts/rl4j/2016-08-24-Reinforcement-Learning-and-DQN.html
https://rubenfiszel.github.io/posts/rl4j/2016-08-24-Reinforcement-Learning-and-DQN.html
https://github.com/deeplearning4j/rl4j
https://github.com/rubenfiszel/rl4j-examples

possible to provide your own constructed neural network model as an argument to
any training method.

Example B-3. Basic RL4J in Scala

 public static QLearning.QLConfiguration CARTPOLE_QL =
 new QLearning.QLConfiguration(
 123, //Random seed
 200, //Max step By epoch
 150000, //Max step
 150000, //Max size of experience replay
 32, //size of batches
 500, //target update (hard)
 10, //num step noop warmup
 0.01, //reward scaling
 0.99, //gamma
 1.0, //td-error clipping
 0.1f, //min epsilon
 1000, //num step for eps greedy anneal
 true //double DQN
);

 public static DQNFactoryStdDense.Configuration CARTPOLE_NET =
 new DQNFactoryStdDense.Configuration(
 3, //number of layers
 16, //number of hidden nodes
 0.001, //learning rate
 0.00 //l2 regularization
);

 public static void main(String[] args)
 {

 //record the training data in rl4j-data in a new folder (save)
 DataManager manager = new DataManager(true);

 //define the mdp from gym (name, render)
 GymEnv<Box, Integer, DiscreteSpace> mdp = new GymEnv("CartPole-v0", false,
 false);

 //define the training
 QLearningDiscreteDense<Box> dql = new QLearningDiscreteDense(mdp,
 CARTPOLE_NET, CARTPOLE_QL, manager);

 //train
 dql.train();

 //get the final policy
 DQNPolicy<Box> pol = dql.getPolicy();

 //serialize and save (serialization showcase, but not required)

RL4J and Reinforcement Learning | 439

 pol.save("/tmp/pol1");

 //close the mdp (close http)
 mdp.close();

 }

Conclusion
This was an exciting journey through deep reinforcement learning. From equations
to code, Q-learning is a powerful yet somewhat simple algorithm. The field of rein‐
forcement learning is very active and promising. In fact, supervised learning could be
considered a subset of reinforcement learning (by setting the labels as rewards).
Maybe one day, reinforcement learning will be the panacea of Artificial Intelligence.
Until then, we can expect to be awed by its diverse application in more and more
mind-blowing problems. As a word of acknowledgement, I would like to thank Sky‐
mind and its amazing team for this very enriching internship.

440 | Appendix B: RL4J and Reinforcement Learning

APPENDIX C

Numbers Everyone Should Know

Table C-1 lists the numbers everyone should know, also known as “Jeff Dean’s 12
Numbers.”

Table C-1. Jeff Dean’s 12 numbers

Computer architecture operation Duration (in nanoseconds)
L1 cache reference 0.5
Branch mispredict 5
L2 cache reference 7
Mutex lock/unlock 100
Main memory reference 100
Compress 1 KB with Zippy 10,000
Send 2 KB over 1 Gbps network 20,000
Read 1 MB sequentially from memory 250,000
Roundtrip within same datacenter 500,000
Disk seek 10,000,000
Read 1 MB sequentially from network 10,000,000
Read 1 MB sequentially from disk 30,000,000
Send packet CA->Netherlands->CA 150,000,000

441

APPENDIX D

Neural Networks and Backpropagation:
A Mathematical Approach

Alex Black

Introduction
In this appendix, we’ll look at the mathematics that underlie neural network training:
the backpropagation algorithm. But before we dive in, let’s take a step back, and ask
the question: What are we trying to do when training a neural network?

At its core (issues such as overfitting aside), we want the training process to adjust the
parameters of the neural network (based on the training data) such that the network
will generate accurate predictions. The two components to this are accurate predic‐
tions and adjust the parameters.

Let’s for a moment consider the task of classification, for which the neural network is
asked to predict a class of the example, given some input data. There are many differ‐
ent ways to quantify how good predictions are for classification: accuracy, F1 score,
negative log likelihood, and so on. All of these are valid measures, but some of them
are much harder to optimize than others. For example, the accuracy of our network
might not change if we change any given parameter in our network by a small
amount; thus, directly optimizing accuracy using gradient-based methods is not pos‐
sible (i.e., “accuracy" is not differentiable).

Conversely, other measures, such as negative log likelihood, will increase or decrease
as we change the parameter values, even by a small amount. If we restrict ourselves to
the class differentiable loss functions (such as negative log likelihood) to quantify the
quality of our network’s predictions and apply some calculus, we arrive at a simple
and elegant algorithm for training neural networks.

443

The key ideas behind the backpropagation algorithm are quite simple:

• Quantify the goodness/badness of the networks’s current predictions based on a
differentiable loss function

• Calculate gradients for each parameter in the network by applying the rules of
multivariable calculus to the loss function and network structure

• Use the calculated gradients to iteratively adjust the network parameters in the
direction that minimizes this loss function

To specify this in algorithmic form, the Stochastic Gradient Descent (SGD) algorithm
is as follows:

Input: network parameters w, loss function L, training data D, learning rate
α > 0
while termination conditions are not met do

f eatures, labels D . getRandomMiniBatch
out getNetworkOutput �, f eatures
∂L
∂� calculateParameterGradients w, L, out, labels

� � − α ∂L
∂�

end
The key part here is the calculation of the partial derivatives ∂L

∂� . If you’re not familiar
with partial derivatives, you can think of them as describing how the quantity of
interest (the value of the loss function L) changes as a function of some other quantity
(the value of each parameter wi in the weight vector w), if we hold all other values
constant.

Step Size

In most cases, ∂L
∂wi

 is also a function of wi. This is why a) we can

take only small steps (i.e., use small learning rate α), and b) have to
recalculate the gradients after changing the parameter values at
each iteration.

If ∂L
∂wi

 is positive, increasing wi by some small amount will increase the loss L for the

current example; decreasing wi will decrease the loss function.

At its heart, that’s all there is to the backpropagation algorithm: define a loss function,
calculate the derivatives of all parameters with respect to the loss function, and take a
small step in the direction that would minimize the loss function. It is a simple but
very powerful idea that underlies virtually all of deep learning.

444 | Appendix D: Neural Networks and Backpropagation: A Mathematical Approach

Backpropagation in a Multilayer Perceptron
Enough text, let’s get to the mathematics. Here, we’ll be considering a simple multi‐
layer perceptron; that is, a standard fully connected feed-forward neural network
layer, or “DenseLayer” in DL4J) along with the sum of squared error loss function (L2
loss function in DL4J) for a single example:

L y, y = ∑i = 1
N yi − y i

2

where N is the number of outputs, yi is the ith label, and y i = output(w,f) is the net‐
work’s prediction of yi, given the feature vector f and current parameters w.

Figure D-1 shows a single-layer neural network. You will want to refer to this figure
as you progress through the mathematics for the remainder of this appendix.

Figure D-1. Single-layer neural network

Let the input vector to the current layer be the vector � (of length 4), the element-wise
nonlinearity (activation function, such as tanh or Rectified Linear Unit [ReLU]) by σ,
then the forward-pass equations for this network are:

zi = bi + ∑ j = 1
4 w j, iai

Neural Networks and Backpropagation: A Mathematical Approach | 445

y i = σ zi

where bi is the bias and w j, i is the weight connecting input j to neuron i.

Given the loss function, the first partial derivative we want to calculate is with respect
to the network output, y i:

∂L
∂y j

= ∂
∂y j

∑i = 1
N yi − y i

2

= ∂
∂y j

y j − y j
2

= − 2 y j − y j

Following the network structure backward, we next want to calculate the ∂L
∂zi

 as a

function of ∂L
∂yi

. This will depend on the mathematical form of the activation function

σ z . For simplicity, we’ll assume a simple activation function such as sigmoid, tanh,
or ReLU (as the derivatives are simple element-wise functions; some functions such at
softmax do not have this property, however).

∂L
∂zi

= ∂L
∂yi

∂yi
∂zi

= σ′ zi
∂L
∂yi

For example, in the case of the sigmoid activation function, where σ z = 1

1 + e−z , we

have σ′ z = σ z 1 − σ z .

Next, we apply the chain rule to calculate the partial derivatives of the weights
w j, i given the previously calculated derivatives, ∂L

∂zi
:

∂L
∂wj, i

= ∑k = 1
3 ∂L

∂zk

∂zk
∂wj, k

= ∂L
∂zi

∂zi
∂wj, i

446 | Appendix D: Neural Networks and Backpropagation: A Mathematical Approach

= ∂L
∂zi

∂
∂wj, i

bi + ∑k = 1
4 wk, iai

= ai
∂L
∂zi

We can use the same approach to determine that the derivatives for the biases are
given by ∂L

∂bi
= ∂L

∂zi
.

Finally, we want to calculate the derivatives of the loss function with respect to the
input activations ai, again given ∂L

∂zi
:

∂L
∂ai

= ∑ j = 1
3 ∂L

∂z j

∂z j
∂ai

= ∑ j = 1
3 ∂L

∂z j

∂
∂ai

b j + ∑k = 1
4 wk, ja j

= ∑ j = 1
3 ∂L

∂z j
wi, j

And that’s it. If we had another layer below, we could apply the exact same approach,
but with ai taking the place of y i in the previous equations. We just follow the net‐
work connection structure backward, applying the chain rule as we go.

Extending this analysis to the mini-batch (i.e., multiple examples) case is straightfor‐
ward: we can simply average the gradients for each parameter over the examples in
each mini-batch. In practice, these equations are implemented using matrix multipli‐
cation and vector operations over mini-batches of data. Additionally, we can use this
same approach to calculate the derivatives for other (more complex) models, such as
Recurrent Neural Networks and Convolutional Neural Networks.

Neural Networks and Backpropagation: A Mathematical Approach | 447

APPENDIX E

Using the ND4J API

ND4J is a scientific computing library for the Java Virtual Machine (JVM). It is
designed to run fast in production environments. Here are its main features:

• Versatile n-dimensional array object
• Multiplatform functionality including graphics processing units (GPUs)
• Linear algebra and signal processing functions

ND4S is the Scala version of ND4J.

A usability gap has separated Java, Scala, and Clojure programmers from the most
powerful tools in data analysis, like NumPy or Matlab. Libraries like Breeze don’t sup‐
port n-dimensional arrays, or tensors, which are necessary for deep learning and
other tasks. ND4J and ND4S are used by national laboratories for tasks such as cli‐
matic modeling, which require computationally intensive simulations.

ND4J brings the intuitive scientific computing tools of the Python community to the
JVM in an open source, distributed, and GPU-enabled library. In structure, it is simi‐
lar to SLF4J. ND4J gives engineers in production environments an easy way to port
their algorithms and interface with other libraries in the Java and Scala ecosystems.

The Complete ND4J User Guide Online

ND4J supports many more operations than are listed in this appen‐
dix. For the complete ND4J User Guide, go to http://nd4j.org/user‐
guide.

449

http://nd4j.org/userguide
http://nd4j.org/userguide

The Complete ND4J API Javadoc

For a complete resource on the ND4J API, check out Javadoc at
http://nd4j.org/doc/.

Design and Basic Usage
ND4J is designed to run in many places and integrates with today’s modern data sys‐
tems. Following are some of its features:

• GPU support via CUDA
• Integration with Hadoop and Spark
• API is designed to mimic the semantics of Numpy

Most of the operations in ND4J are focused on manipulating arrays of numbers. The
core data structure in ND4J is called an NDArray.

Understanding NDArrays
An NDArray is in essence an n-dimensional array. It is a rectangular array of num‐
bers with some number of dimensions. We quantify an NDArray via the following
properties:

• Rank
• Shape
• Length
• Stride
• Data type

In the list that follows, we explain what each of these properties do with respect to an
NDArray.

NDArray and INDArray

We’ll use the term NDArray to refer to the general concept of an n-
dimensional array. The term INDArray refers specifically to the
Java interface that ND4J defines. In practice, you can use these two
terms interchangeably.

Rank
The rank of a NDArray is the number of dimensions. Two-dimensional NDAr‐
rays have a rank of 2; three-dimensional arrays have a rank of 3, and so on. You
can create NDArrays with any arbitrary rank.

450 | Appendix E: Using the ND4J API

http://nd4j.org/doc/

Shape
The shape of an NDArray defines the size of each of the dimensions. Suppose
that we have a 2D array with 3 rows and 5 columns: this NDArray would have
shape [3,5].

Length
The length of an NDArray defines the total number of elements in the array. The
length is always equal to the product of the values that make up the shape.

Stride
The stride of an NDArray is defined as the separation (in the underlying data
buffer) of contiguous elements in each dimension. Stride is defined per dimen‐
sion, so a rank N NDArray has N stride values, one for each dimension. Note that
most of the time, you don’t need to know (or concern yourself with) the stride—
just be aware that this is how ND4J operates internally. The next section has an
example of strides.

Data type
The data type of an NDArray refers to the type of data it contains (e.g., float or
double precision). Note that this is set globally in ND4J, so all NDArrays should
have the same data type. Setting the data type is discussed later in this document.

Things to Know About NDArray-Indexing and Dimensions

Rows are dimension 0, and columns are dimension 1; thus, INDAr
ray.size(0) is the number of rows, and INDArray.size(1) is the
number of columns. Like normal arrays in most programming lan‐
guages, indexing is zero-based. As such, rows have indexes 0 to
INDArray.size(0)-1, and so on for the other dimensions.

NDArrays and Physical Memory Storage
NDArrays are stored in memory as a single flat array of numbers (or more generally,
as a single contiguous block of memory) and hence differ a lot from typical Java mul‐
tidimensional arrays such as a float[][] or double[][][].

Physically, the data that backs an INDArray is stored off-heap; that is, it is stored out‐
side of the JVM. This has numerous benefits, including performance, interoperability
with high-performance BLAS libraries, and the ability to avoid some shortcomings of
the JVM in high-performance computing (such as issues with Java arrays being limi‐
ted to 231 – 1 [2.14 billion] elements due to integer indexing).

Using the ND4J API | 451

ND4J General Syntax
There are three types of operations used in ND4J:

• Scalars
• Transforms
• Accumulations

We’ll use the word “op” synonymously with operation. Most of the ops just take
enums, or a list of discrete values that you can autocomplete. Scalars, transforms, and
accumulations each have their own patterns. Let’s take a look at them here.

Scalars
Scalars take just two arguments: the input and the scalar to be applied to that
input. For example, ScalarAdd() takes two arguments: the input INDArray x and
the scalar Number num; i.e., ScalarAdd(INDArray x, Number num). The same for‐
mat applies to every Scalar op.

Transforms
Transforms are the simplest because they take a single argument and perform an
operation on it. Absolute value is a transform that takes the argument x, such as
abs(IComplexNDArray ndarray), and produces the result, which is the absolute
value of x. Similarly, you would apply to the sigmoid transform sigmoid() to
produce the “sigmoid of x.”

Accumulations
Finally, we have accumulations, which are also known as reductions in the con‐
text of GPUs. Accumulations add arrays and vectors to one another and
can reduce the dimensions of those arrays in the result by adding their elements
in a row-wise op. For example, we might run an accumulation on the array

 [1 2
 3 4]

which would give us the vector:

 [3
 7]

This reduces the columns (i.e., dimensions) from two to one.

Accumulations can be either pair-wise or scalar. In a pair-wise reduction, we
might be dealing with two arrays, x and y, which have the same shape. In that
case, we could calculate the cosine similarity of x and y by taking their elements
two by two:

 cosineSim(x[i], y[i])

452 | Appendix E: Using the ND4J API

Or, take EuclideanDistance(arr, arr2), a reduction between one array arr
and another arr2.

The Basics of Working with NDArrays

The ND4J class
This class has a variety of helper static methods to assist in the creation of NDArrays.
In the following subsections, we discuss a few of the more common methods you will
encounter when working with NDArrays.

Nd4j.zeros(int ...). The shape of the arrays are specified as integers. For example, to
create a zero-filled array with 3 rows and 5 columns, use Nd4j.zeros(3,5).

Nd4j.ones(int ...). This method works similar to .zeros(int...) but fills the
returned NDarray with 1s instead of 0s.

Initializing with other values. You can combine the ND4J class methods with other
operations to create arrays with other values. For example, to create an array filled
with 10s, do this:

INDArray tens = Nd4j.zeros(3,5).addi(10)

This initialization works in two steps: first by allocating a 3 × 5 array filled with zeros,
and then by adding 10 to each value.

Initializing with random numbers. ND4J provides a few methods to generate INDAr‐
rays, in which the contents are pseudo-random numbers.

To generate uniform random numbers in the range 0 to 1, use:

Nd4j.rand(int nRows, int nCols)

(for 2d arrays), or:

Nd4j.rand(int[])

(for 3 or more dimensions).

Similarly, to generate Gaussian random numbers with mean zero and standard devia‐
tion 1, use:

Nd4j.randn(int nRows, int nCols)

or:

Nd4j.randn(int[])

For repeatability (i.e., to set ND4J’s random number generator seed) you can use the
following:

Nd4j.getRandom().setSeed(long)

Using the ND4J API | 453

Controlling the shape of NDArrays
In the next subsections, we discuss how to control the shape of NDArrays in the pro‐
cess of performing basic operations.

Creating basic arrays
In the following example, we create a one-dimensional array with two columns. The
columns have the values { 1, 2 }.

INDArray nd = Nd4j.create(new float[]{1,2},new int[]{2}); //vector as row

Example: create a 2 x 2 NDArray. In the example that follows, we create a 2D NDArray
that has two rows and two columns. The first row has the values {1, 2}, and the sec‐
ond row has the values {3, 4}.

INDArray arr1 = Nd4j.create(new float[]{1,2,3,4},new int[]{2,2});
System.out.println(arr1);

Here’s the output:

[[1.0 ,3.0]
[2.0 ,4.0]
]

Be Mindful of Row and Column Arrangements in ND4J

You can encode an NDArray in either C (row-major) or Fortran
(column-major) order. For more details on row versus column
major order, go to https://en.wikipedia.org/wiki/Row-major_order.
ND4J can use a combination of C and F order arrays together, at
the same time. Most users can just use the default array ordering,
but note that it’s possible to use a specific ordering for a given array,
should the need arise.

Example: add two 2 x 2 NDArrays together. Create a second array (arr2) and add it to
the first (arr1):

INDArray arr2 = ND4j.create(new float[]{5,6,7,8},new int[]{2,2});
arr1.addi(arr2);
System.out.println(arr1);

Here’s the output:

[[7.0 ,11.0]
[9.0 ,13.0]]

454 | Appendix E: Using the ND4J API

https://en.wikipedia.org/wiki/Row-major_order

Creating NDArrays from Java arrays
ND4J provides convenient methods for the creation of arrays from Java float and
double arrays.

To create a 1D NDArray from a 1D Java array, use the following:

• Rov vector: Nd4j.create(float[]) or Nd4j.create(double[])
• Column vector: Nd4j.create(float[],new int[]{length,1}) orNd4j.cre
ate(double[],new int[]{length,1})

For 2D arrays, use Nd4j.create(float[][]) or Nd4j.create(double[][]).

For creating NDArrays from Java primitive arrays with three or more dimensions
(double[][][], etc.), one approach is to use the following:

double[] flat = ArrayUtil.flattenDoubleArray(myDoubleArray);
int[] shape = ...; //Array shape here
INDArray myArr = Nd4j.create(flat,shape,'c');

Getting and setting individual NDArray values
For an INDArray, you can get or set values by using the indexes of the element you
want to get or set. For a rank N array (i.e., an array with N dimensions), you need N
indices.

Optimizing the Performance of NDArray Operations

Getting or setting values individually (e.g., one at a time in a for
loop) is generally a bad idea in terms of performance. When possi‐
ble, try to use other INDArray methods that operate on a large
number of elements at a time.

To get values from a 2D array, you can use this:

INDArray.getDouble(int row, int column)

For arrays of any dimensionality, use this:

INDArray.getDouble(int...)

For example, to get the value at index i,j,k use the following:

INDArray.getDouble(i,j,k)

To set values, use one of the putScalar methods:

• INDArray.putScalar(int[],double)

• INDArray.putScalar(int[],float)

• INDArray.putScalar(int[],int)

Using the ND4J API | 455

Here, the int[] is the index, and the double/float/int is the value to be placed at
that index.

Working with NDArray rows
There are multiple helper methods to work with sections of an NDArray.

Get a single row. To get a single row from an INDArray, you can use the following:

INDArray.getRow(int)

This obviously will return a row vector. Of note here is that this row is a view:
changes to the returned row will affect the original array. This can be quite useful at
times (e.g., myArr.getRow(3).addi(1.0) to add 1.0 to the third row of a larger
array). To copy of a row, use this:

getRow(int).dup()

Get multiple rows. Similarly, to get multiple rows, use the following:

INDArray.getRows(int...)

This returns an array with the rows stacked; note, however, that this will be a copy
(not a view) of the original rows, a view is not possible here due to the way NDArrays
are stored in memory.

Setting a single row. For setting a single row, use this:

myArray.putRow(int rowIdx,INDArray row)

This will set the rowIdxth row of myArray to the values contained in the INDArray
row.

Quick reference for determining the size/dimensions of NDArrays
The following methods are defined by the INDArray interface:

• Get the number of dimensions: rank()
• For 2D NDArrays only: rows(), columns()
• Size of the ith dimension: size(i)
• Get the size of all dimensions, as an int[]: shape()
• Determine the total number of elements in array: arr.length()
• See also: isMatrix(), isVector(), isRowVector(), and isColumnVector()

Dataset
The org.nd4j.linalg.dataset.DataSet class represents a data transform with input
and output data.

456 | Appendix E: Using the ND4J API

http://nd4j.org/doc/org/nd4j/linalg/dataset/DataSet.html
http://nd4j.org/doc/org/nd4j/linalg/dataset/DataSet.html

In the context of neural networks a dataset represents a mapping of input features to
an output vector (e.g., outcomes). The outcomes are specifically for neural network
encoding such that any labels that are considered true are 1s. The rest are zeros.

Relationship to NDArray

NDArrays represent specific data vectors for input and output. DataSet objects repre‐
sent the pairing of the input NDArray and the output NDArray. This is how we rep‐
resent the function input and output for the learning process.

Common uses
In the code example that follows, we see how you can use the ND4J API to get the
features and labels from a DataSet class instance. We also see how these structures
are passed in to a trained model and produce the outcome NDArray.

DataSet t = ...
INDArray features = t.getFeatureMatrix();
INDArray lables = t.getLabels();
INDArray predicted = model.output(features,false);

This simple snippet illustrates the core relationship of datasets, NDArrays, and DL4J
models.

Creating Input Vectors
We want to highlight the topic of vector creation because it is a core technique used
in every modeling job. You need to understand a vectorization strategy and then the
practical application of the ND4J API to implement the vectorization strategy. As we
mentioned previously, our input data for modeling is a set of input features associated
with an output vector. In this section, we illustrate how to create both and tie them
together with a DataSet object.

Simple Examples of Vectorization

These code snippets are meant to be simple to show off the basic
concepts of setting features and label values. In practice, there are
other ND4J methods that might be more efficient. Many times the
DL4J record readers will perform most of this work for the practi‐
tioner manually. We’re just showing how to manipulate the data in
a practical manner in this section.

Basics of Vector Creation
Let’s begin by creating a simple feature vector with two columns, as shown here:

INDArray myFeatures = ND4j.create(new float[]{0.5, 0.5},new int[]{1,2});

Using the ND4J API | 457

Sizing the vector

We are controlling the size of the vector with the second parameter to the ND4j.cre
ate() method:

new int[]{1,2}

This parameter instructs ND4J to create an NDArray that is a single row with two
feature columns.

Setting feature values
There are many ways to create feature values. In the following snippet, we show the
simplest way to manually set the feature values in a vector:

for (int row = 0; row < myFeatures.rows(); row++) {
 for (int col = 0; col < myFeatures.getRow(row).columns(); col++) {
 myFeatures.getRow(row).putScalar(col, 0.9);
 }
}

In this example we set every column in every row to the value 0.9.

Setting the label
Setting a label is as simple as setting the feature values because both the input feature
data and the output data use the same data structure: the NDArray. To set up our
label data, we need to encode the data based on what type of model we’re building
and what kind of output strategy we’re after.

Single-label output. In this situation, our output NDArray for the label would have a
single column and we’d set the value to 0.0 for one label and 1.0 for the other label:

myFeatures.getRow(0).putScalar(0, 1.0);

Multiple-label output. In this situation, our output NDArray for the label would have
a column per label. Each class (label) in our training dataset will match up to a spe‐
cific column in the output NDArray. For training purposes, we’d set the value of the
column that has the same index as the label to be 1.0 as we see in the following
example:

myFeatures.getRow(0).putScalar(0, 0.0);
myFeatures.getRow(0).putScalar(1, 1.0);
myFeatures.getRow(0).putScalar(2, 0.0);

Regression output. In this situation, our output NDArray for the output value of the
regression model would have a single column. We set this value to the floating-point
value we associate with the input vector.

myFeatures.getRow(0).putScalar(0, 55.25);

458 | Appendix E: Using the ND4J API

Using MLLibUtil
The DL4J platform contains tools to support interoperability with other machine
learning libraries, as well. In this section, we illustrate a few methods for the MLLibU
til class to help work with Spark vector objects.

Converting from INDArray to MLLib Vector
In the event that you need to convert an NDArray to a MLLib vector, you can use the
MLLibUtil.toVector(INDArray) method, as seen here:

Vector prediction = MLLibUtil.toVector(myNDArray);

Converting from MLLib Vector to INDArray
For the situation in which you need to convert a MLLib vector to an NDArray vector,
you can use the MLLibUtil.toVector(Vector) method, as demonstrated in the fol‐
lowing:

INDArray ndArray = MLLibUtil.toVector(labeledPoint.features());

Making Model Predictions with DL4J
In this section, we look at the interplay of classes in both DL4J and ND4J for making
model predictions at the API level.

Using the DL4J and ND4J Together
Typically, in the context of making a prediction from a model in DL4J, we use a Multi
LayerNetwork method to represent the model and pass in an INDArray object as
input to the output() method. The output of this method is a list of probabilities rep‐
resenting the probability per label, where we’d consider the largest probability as the
“predicted label” for the input:

MultiLayerNetwork.output(INDArray input, boolean train)

We’ll see more examples later of ways to use this method with a trained DL4J model
to produce output represented by ND4J NDArrays.

Where Do the Output Values Come From?

These values are the activations of the final layer (“output layer”) of
the network after a feed-forward pass based on the input vector.

Using the ND4J API | 459

The output values contained in the NDArray returned by the output() method typi‐
cally take this form:

[0.5, 0.5]

In this example, we see a single row of an NDArray that has two columns. Each of
these columns represents the score for the associated label. The meaning of the values
in the columns of each row depends on which type of output layer generated the out‐
put. In the subsections that follow, we show how to deal with the different types of
output generated by different output layers.

Differences between output vector depending on output layer type
Remember that the softmax activation function bounds the sum of the outputs to be
1.0 (e.g., probabilities) versus the sigmoid activation function, which bounds the out‐
put values individually. For example, the probabilities of the output of a softmax layer
will all add up to 1.0, yet the output of a sigmoid layer might have every unit with 0.9
as the output. Sigmoid layers do not have this “lateral” constraint.

Logistic output layer for binary classification. The output for this type of layer represents
the probability of a binary label being true.

INDArray predictions = trainedNetwork.output(ndArrayFeatures);

Each entry in the output vector represents a specific type of label and is independent
from the other labels in terms of its probability value:

Softmax output layer for multilabel classification. The output for the softmax layer will
be a list of probabilities all summing to 1.0:

INDArray predictions = trainedNetwork.output(ndArrayFeatures);
for (int row = 0; row < output.rows(); row++) {
 System.out.println("Input Row: " + row);
 for (int col = 0; col < output.getRow(row).columns(); col++) {
 System.out.println("\tColumn: " + col + ":" + output.getRow(row)
 .getDouble(col));
 }
}

This gives us output similar to the following:

Input Row: 0
 Column: 0:0.996791422367096
 Column: 1:0.0032307980582118034
Input Row: 1
 Column: 0:0.0016306628240272403
 Column: 1:0.9983481764793396
Input Row: 2
 Column: 0:0.0016311598010361195
 Column: 1:0.9983481168746948

460 | Appendix E: Using the ND4J API

Input Row: 3
 Column: 0:0.9988488554954529
 Column: 1:0.0011729325633496046

Each entry in the output vector represents the probability of the associated label.
Each column in a row is associated with a specific label.

Linear output layer for regression output. A regression model uses a single output that
represents the value we’re looking to model as output from an “identity” activation
function (e.g., linear).

Getting the redicted label from the returned INDArray

We take the result probabilities from the output() method call on the trained net‐
work and find the maximum probability, as demonstrated here:

INDArray predictions = trainedNetwork.output(ndArray);
int maxLabelIndex = Nd4j.getBlasWrapper().iamax(predictions);

Advantages of Using the .output() Method Over .predict()

You can use the output() method with regression and classifica‐
tion, so it’s a bit more flexible in how you can use it.

Using the ND4J API | 461

APPENDIX F

Using DataVec

Alex Black

DataVec is a library for handling machine learning data. DataVec handles the Extract,
Transform, and Load (ETL) or vectorization component of a machine learning pipe‐
line. The goal of DataVec is to simplify the preparation and loading of raw data into a
format ready for use for machine learning. DataVec includes functionality for loading
tabular (comma-separated values [CSV] files, etc.), image, and time-series datasets,
both for single machine and distributed (Apache Spark) applications.

ND4J Vector Creation and DataVec

DataVec is meant to handle many of the feature and label creation
chores mentioned previously in this book. Using DataVec is con‐
sidered a best practice for DL4J workflows on a single machine and
on Spark.

DataVec provides two main categories of functionality:

• Functionality for loading data, from a variety of formats
• Functionality for performing common data transformation operations (often

called data wrangling or data munging)

These two categories of functionality are discussed separately in the sections that
follow.

Loading Data for Machine Learning
Machine learning data comes in a wide variety of formats, with different require‐
ments and libraries for loading each. Too often, machine learning practitioners end

463

1 Additional types include IntWritable, LongWritable, FloatWritable, and NullWritable. DataVec also pro‐
vides an NDArrayWritable class for efficient handling of numerical array data using ND4J, such as images.

up writing one-off code to load their data; this can be both time consuming and error
prone. DataVec attempts to alleviate these issues in two ways: first, by providing data
loading functionality for common use cases (e.g., reading images and CSV data), and,
second, by providing a simple set of abstractions for adding in new data formats or
data sources.

ETL, Preprocessing, and Vectorization

It is a recommended best practice to use a tool like DataVec to pre-
process the data into a format that DL4J can easily read and auto‐
matically vectorize. Hand-vectorizing raw data is a labor-intensive
activity and you should avoid it whenever possible.

The set of abstractions that DataVec provides is relatively simple.

Writable is an interface that represents a piece of data. For example, you can use a
DoubleWritable to represent double-precision numerical values, and you can use
Text instances for text data.1

The RecordReader interface provides a mechanism for going from raw data formats
to a common example format. Specifically, a RecordReader takes raw data and con‐
verts it to a List<Writable> representation, which then can be read by DL4J’s Record
ReaderDataSetIterator class, which also handles combining examples into mini-
batch DataSet objects. Figure F-1 shows this process.

Figure F-1. DataVec processing pipelines

464 | Appendix F: Using DataVec

Similarly, the SequenceRecordReader interface provides a mechanism for loading
sequence (time-series) data. Whereas a single (nonsequence) example is represented
as a List<Writable> in DataVec, a sequence example is represented as a
List<List<Writable>>: we can think of this as a list of (or sequence of) time-steps.
That is, the outer list is a list of time-steps, and the inner list is a list of values at each
time-step. Put another way, the code mySequence.get(i).get(j) would return the
jth value at the ith time-step. Using a sequence record reader is virtually the same as a
record reader, as illustrated in Figure F-2.

Figure F-2. DataVec sequence pipeline

One important aspect of the way DataVec and DL4J handle training data is that data
is loaded only when required, through the use of iterator patterns. This means that we
can load our training data only when we need it (prefetching it asynchronously, if
necessary) instead of loading all of our data into memory at once (which usually isn’t
feasible with large datasets). The RecordReader, SequenceRecordReader, and DataSe
tIterator interfaces all have next(), hasNext(), and reset() methods for this pur‐
pose.

Loading CSV Data for Multilayer Perceptrons
You can load CSV data by using just a few lines of code. The process here also can be
used for other delimited data such as tab-delimited formats.

Example F-1 shows how to load a CSV data file and create a DataSetIterator ready
for training a network in DL4J.

Example F-1. Loading CSV data

//First, specify the file location, and some properties:

File file = new File(“/path/to/my/file.csv”);

Using DataVec | 465

int numLinesToSkip = 0; //Optional, allows us to skip header lines

String delimiter = “,”; //Comma-delimited

//Create the record reader, and initialize it:

RecordReader reader = new CSVRecordReader(numLinesToSkip, delimiter);
InputSplit inputSplit = new FileInputSplit(file);
reader.initialize(inputSplit);

//Create the DataSetIterator. We are assuming classification here:

int minibatchSize = 10; //Number of examples in each minibatch

int labelIndex = 7; //Index of column that contains the label

int numClasses = 5; //Number of classes (label categories)

DataSetIterator iterator =
 new RecordReaderDataSetIterator(reader, minibatchSize, labelIndex, numClasses);

//Train the network with the DataSetIterator:

myNetwork.fit(iterator);

Here are some notable points:

• The no-arg constructor (new CSVRecordReader()) defaults to comma-delimited
format and 0 lines skipped.

• In RecordReaderDataSetIterator, the mini-batch size is freely configurable by
the user.

• A number of other constructors exists on RecordReaderDataSetIterator for
cases such as multilabel regression, and situations without labels, such as unsu‐
pervised learning.

• For classification, RecordReaderDataSetIterator assumes that one of the col‐
umns contains integer values for the class index. That is, one column contains
integer values in the range 0 to numClasses – 1 inclusive.

• You can use alternative delimiters. For example, \t for tab-delimited, or use the
static field CSVRecordReader.QUOTE_HANDLING_DELIMITER to handle records that
contain quotes with commas in them.

466 | Appendix F: Using DataVec

• CSVRecordReader outputs examples in the order in which they appear in the file.
If the data is in a nonrandom order (such as all class 0 examples followed by all
class 1 examples), it should first be shuffled as an extra step.

Loading Image Data for Convolutional Neural Networks
DataVec’s ImageRecordReader is the record reader to use with image data and to per‐
form common image operations such as cropping. ImageRecordReader supports a
wide variety of image formats (including JPG, PNG, TIFF, and BMP, among others)
with efficient loading and image operations provided by JavaCV and OpenCV.

The ImageRecordReader implementation contains a great degree of flexibity as to
how data files are loaded. Example F-2 presents a simple demonstration for loading
images. In this example, assume that our image files are present in directories, where
the name of the directory is the label (image class/category). For example, files are in
directories .../root_directory/label_0, .../root_directory/label_1/. Note that label direc‐
tory names themselves can be anything.

Example F-2. Loading image data

//First, specify input image depth (number of channels)

int inputNumChannels = 3; //3 for color/RGB, 1 for grayscale

int outputHeight = 32; //Scale to 32 pixels height output

int outputWidth = 32; //Scale to 32 pixels width output

//Second, specify the root directory, and allowable formats

// We’ll use a Random instance to randomize the order

File rootDir = new File(“/path/to/my/root_directory/”);

String[] allowedExtensions = BaseImageLoader.ALLOWED_FORMATS;

Random rng = new Random();

FileSplit inputSplit = new FileSplit(rootDir, allowedExtensions, rng);

//Each image has to be associated with a label. We’ll use the path of each

// file to do this, using ParentPathLabelGenerator

ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();

Using DataVec | 467

//Create and initialize our ImageRecordReader

ImageRecordReader reader =
 new ImageRecordReader(outputHeight, outputWidth, inputNumChannels, labelMaker);

reader.initialize(inputSplit);

//Finally, create the DataSetIterator:

int minibatchSize = 10; //Number of examples in each minibatch

int labelIndex = 1; //Always value 1 for ImageRecordReader

int numClasses = 3; //Number of classes (label categories)

DataSetIterator iterator =
 new RecordReaderDataSetIterator(reader, minibatchSize, labelIndex, numClasses);

//Train the network with the DataSetIterator:

myNetwork.fit(iterator);

ImageRecordReader supports a large number of other features.

For example, to implement a train/test split on our images, we can add the code in
Example F-3 to that in Example F-2.

Example F-3. Creating test/train splits

InputSplit[] trainTest = inputSplit.sample(null, 80, 20);

InputSplit trainData = trainTest[0]; //80% train

InputSplit testData = trainTest[1]; //20% test

(other code omitted)

reader.initialize(trainData);

Similarly, to add some additional transform steps to the process, we can pass in an
ImageTransform class to the ImageRecordReader initialization, as illustrated in
Example F-4; for example, to randomly flip and randomly crop images.

468 | Appendix F: Using DataVec

Example F-4. Transform steps

int maxCropPixels = 20;

ImageTransform transform =
 new MultiImageTransform(new Random(),
 new FlipImageTransform(), new CropImageTransform(maxCropPixels));

reader.initialize(trainData, transform);

Loading Sequence Data for Recurrent Neural Networks
There are many possible representations and formats for sequence (time-series) data.
In this section, we focus on a simple but useful format:

• CSV data, with one time-series per file (time-series lengths can differ between
files).

• In the CSV files, each row represents one time-step.
• The features and labels are present for all time-steps and are included in the same

file for each example (i.e., some columns are features, one column is the label
index for classification).

As per the (nonsequence) CSV example earlier, in Example F-5 we will assume a clas‐
sification problem, where the class label is an integer value between 0 and numClasses
– 1 (inclusive).

Example F-5. Loading sequence data with DataVec

//First, specify the base directory that contains the CSV files

File baseDir = new File("/path/to/base_directory/");

//Second, create and initialize the sequence record reader

// We are using a random number generator to randomize the order

InputSplit inputSplit = new FileSplit(baseDir, new Random());

int numLinesToSkip = 0; //Optional, allows us to skip header lines

String delimiter = ","; //Comma-delimited files

SequenceRecordReader reader = new CSVSequenceRecordReader(numLinesToSkip, delimiter);

reader.initialize(inputSplit);

//Create the DataSetIterator for training:

Using DataVec | 469

int minibatchSize = 10; //Number of examples in each minibatch

int labelIndex = 7; //Index of column that contains the label

int numClasses = 5; //Number of classes (label categories)

boolean regression = false;

DataSetIterator iterator =
 new SequenceRecordReaderDataSetIterator(reader, minibatchSize, numClasses,
 labelIndex, regression);

DataSetIterator iterator =
 new SequenceRecordReaderDataSetIterator(reader, minibatchSize, labelIndex,
 numClasses);

//Train the network with the DataSetIterator

myNetwork.fit(iterator);

SequenceRecordReader also supports other use cases, such as regression and loading
features and labels from separate SequenceRecordReaders (e.g., separate files).

Transforming Data: Data Wrangling with DataVec
Frequently, machine learning data is in a format that requires some level of prepro‐
cessing before we can use it. This preprocessing can be as simple as removing some
unnecessary columns from the dataset, or as complex as joining and cleaning data
from multiple independent data sources. DataVec also provides functionality for this
stage of the pipeline, with extensive transformation functionality for both standard
and sequence data.

The typical workflow when using DataVec for data wrangling is as follows:

1. Define a Schema for the raw input data (more on this later).
2. Define a set of operations to perform on the data (removing columns, handling

missing values, etc.).
3. Load the data.
4. Execute the operations.
5. Save the processed data.

When you’re handling data that requires preprocessing, we recommend separating
out the data preprocessing and network training into separate steps. That is, we rec‐
ommend executing the preprocessing, storing the data to disk, and then loading it
from disk when required for network training.

470 | Appendix F: Using DataVec

For executing a set of operations on a dataset, Apache Spark is used; this enables exe‐
cution on both a cluster and a single machine (via Spark in local mode). Further‐
more, by executing operations on Spark, it is possible to scale to large datasets
(hundreds of millions of records, or more). Though Spark execution is currently the
only option, keep in mind that the DataVec API itself is independent of the execution
platform; other cluster computing frameworks can be added in the future.

DataVec Transforms: Key Concepts
For transformation functionality, DataVec has a few key design ideas and classes of
which you should be aware.

First, examples in DataVec are represented in the same manner as in the previous sec‐
tion: each example is a List<Writable> for standard data, or a List<List<Writa
ble>> for sequences. After each operation, the new data is represented in one of these
formats. This also means that you can use the RecordReader and SequenceRecord
Reader classes to load the raw data that you want to transform.

A Schema in DataVec is a class that defines three things for our data:

• The name of each column
• The type of each column (numerical, categorical, string, etc.)
• The restrictions (if any) on allowable values for each column (e.g., whether a col‐

umn must contain only positive values)

For sequence data, we instead have a SequenceSchema, which contains the same per-
column information as a normal Schema. DataVec tracks the Schema as it changes
after each operation. We can obtain the Schema after the transformation operations
have been executed or at any point during the process.

A TransformProcess defines a sequence of operations to perform on our data. A
TransformProcess is constructed by specifying two things:

• The Schema of the initial input data
• The set of operations we wish to execute

These are specified by use of a builder pattern (as in the examples that follow), or
optionally using a JSON or YAML file.

DataVec provides a number of types of operations that you can execute on data.
Table F-1 summarizes these operations.

Using DataVec | 471

Table F-1. DataVec operation types

Name Description Example applications
Transform A general operation per example or per sequence Removing columns, mathematical operations,

parsing data/time values
Filter Remove examples that match a condition Filtering examples with missing or invalid values
Reduce Group examples by a key and reduce Minimum, maximum, or sum values for each

customer ID
Convert to
Sequence

Group individual examples into a sequence, by one
or more key columns

Log data: group separate records into a sequence for
each IP or customer

Convert from
Sequence

Split each time-step in sequence data into separate
(nonsequence) format

Split sequences of custom transactions into separate
records

DataVec Transform Functionality: An Example
This section shows a very simple example of how to perform some common opera‐
tions on a small dataset.

For this example, assume that we have some transaction data from which we want to
predict a label (fraud/legitimate). Let’s further assume that we have the following sim‐
ple dataset, with the following columns: [customerID, dateTime, amount, label]:

3420348,2016-01-01 06:55:07,150.00,legitimate
9087434,2016-01-01 15:16:18,78.10,legitimate
4530843,2016-01-02 11:39:24,780.83,fraud

Our first step is to specify a Schema for the data. We can do this as follows:

Schema schema = new Schema.Builder()
.addColumnLong("customerID")
.addColumnString("dateTime")
.addColumnDouble("amount")
.addColumnCategorical("label", Arrays.asList("legitimate","fraud"))
.build();

Note that the columns are specified in the order in which they appear in the file.

However, this dataset cannot be used as is. To train a neural network, we require
numerical inputs for our data. To prepare the data for training, we will do the
following:

• Remove the customer ID column
• Convert the categorical (string) label to an integer (0 or 1)
• Parse the dateTime column, and extract out the hour of the day as a new feature

column

472 | Appendix F: Using DataVec

We can specify all of these operations by using TransformProcess, as follows:

TransformProcess process = new TransformProcess.Builder(schema)
.removeColumns("customerID")
.categoricalToInteger("label")
.stringToTimeTransform("dateTime","YYYY-MM-dd HH:mm:ss", DateTimeZone.UTC)
.transform(new DeriveColumnsFromTimeTransform.Builder("dateTime")
 .addIntegerDerivedColumn("hourOfDay", DateTimeFieldType.hourOfDay()).build())
.removeColumns("dateTime")
.build();

Each operation will be executed in the order in which it is specified. Most of these
operations are straightforward to understand from the names. For those with more
detailed arguments (such as the stringToTimeTransform operation) refer to the
DataVec Javadoc.

Finally, we must load our data, execute the operations just defined, and then save our
data. We can do this as follows:

//Some initial setup for Apache Spark:
SparkConf conf = new SparkConf();
conf.setMaster("local[*]");
conf.setAppName("DataVec Example");
JavaSparkContext sc = new JavaSparkContext(conf);

//Load our data using Spark
String path = "/path/to/my/file.csv";
JavaRDD<String> lines = sc.textFile(path);
JavaRDD<List<Writable>> examples =
 lines.map(new StringToWritablesFunction(new CSVRecordReader()));

//Execute the operations
SparkTransformExecutor executor = new SparkTransformExecutor();
JavaRDD<List<Writable>> processed = executor.execute(examples, process);

//Save the processed data:
JavaRDD<String> toSave = processed.map(new WritablesToStringFunction(","));
toSave.saveAsTextFile("/path/to/save/to/");

After executing these operations, our data is as follows:

6,150.00,0
15,78.10,0
11,780.83,1

The column of the output data above are “hourOfDay,” “amount,” and “label.” We can
obtain the column names and types from the Schema for the output data using
process.getFinalSchema().

Using DataVec | 473

That’s it. In just a few lines, we have loaded our data, executed a number of prepro‐
cessing operations (in a way that is scalable to very large datasets), and exported our
data ready for training. Though the example is simple, hopefully it demonstrates the
utility and flexibility of DataVec for preparing machine learning data.

474 | Appendix F: Using DataVec

APPENDIX G

Working with DL4J from Source

Some developers might choose to build custom extensions, modify the core of DL4J,
or work from the latest codebase. For those practitioners, we provide the instructions
here on how to get DL4J set up directly from source.

GitHub is a web-based revision control system, and the de facto host for most open
source projects. If you’re planning to contribute to the ND4J or DL4J projects by fix‐
ing bugs and committing code, you will need Git and GitHub.

Do You Really Need to Work from Source?

If you plan to simply use the code base, you do not need to install
GitHub, and thus you should avoid downloading the source code.

Verifying Git Is Installed
To verify that Git is installed and working, type the following into the command line:

git --version

If the command returns an error, we suggest installing Git. If you do not already have
a GitHub account we suggest signing up for one; it’s free and simple to do.

475

Cloning Key DL4J GitHub Projects
To work with source, clone ND4J, or DL4J, type the following commands into the
console:

git clone https://github.com/deeplearning4j/nd4j

git clone https://github.com/deeplearning4j/datavec

git clone https://github.com/deeplearning4j/deeplearning4j

You might also want to clone the DL4J examples so that they can work with ND4J or
DL4J’s prebuilt samples (the version will vary):

git clone https://github.com/deeplearning4j/dl4j-0.4-examples

More Examples Help

For a walkthrough of installing our examples with Git, IntelliJ, and
Maven, see our Quickstart page.

Downloading Source via Zip File
Another way to get the source code is by clicking the Download ZIP button from the
ND4J GitHub page.

Using Maven to Build Source Code
You can use Maven in conjunction with Git to ensure that ND4J, DataVec, and DL4J
build correctly. To ensure that you have the most recent, working version of these
libraries locally, change into their root directories and type the following command
into your prompt:

mvn clean install -DskipTests=true -Dmaven.javadoc.skip=true

Running a clean install on ND4J, DataVec, and DL4J, in that order, is a good way to
get the most recent bug fixes and features.

476 | Appendix G: Working with DL4J from Source

http://deeplearning4j.org/quickstart.html#walk
https://github.com/deeplearning4j/nd4j/archive/master.zip

APPENDIX H

Setting Up DL4J Projects

DL4J is a suite of tools that together provide a full platform for deep learning. There
are multiple dependencies that you can wire together to perform different functions
in support of deep learning models. DL4J uses Maven to control how dependencies
are wired together in a project. In this section, we show you a few of the relevant
dependencies that you can can use to build your own deep learning models, tools,
and integrations.

Creating a New DL4J Project
DL4J is an open source project targeting professional Java developers familiar with
production deployments, an IDE such as IntelliJ, and an automated build tool such as
Maven. Our tool will serve you best if you have those tools under your belt already.
ND4J and DataVec, our vectorization library, will be automatically installed by fol‐
lowing the quickstart instructions below.

Here are the system configuration requirements:

1. Java 7 or above
2. Maven 3.2.5 or above (dependency management and automated build tool)
3. Git

There are also some optional steps that you might want to perform including instal‐
ling the following:

• Cuda 7 for GPUs
• Scala 2.10.x
• Windows
• GitHub

477

Let’s begin by setting up your environment, starting with Java.

Java
Java is the main interface and networking language of ND4J because it’s used for
everything from distributed cloud-based systems with thousands of nodes, to low-
memory Internet of Things (IoT) devices. It’s a “write once, run anywhere” language.

To test which version of Java you have (or whether you have it at all), type the follow‐
ing into your command line:

java -version

If you don’t have Java 7 installed on your machine, download the Java Development
Kit (JDK) here. For newer Macs, you’ll want the file on the first line to mention Mac
OS X (the number after jdk-7u increments with each update). It will look something
like this:

Mac OS X x64 185.94 MB - jdk-7u79-macosx-x75.dmg

Working with Maven
Maven is an automated build tool for Java projects (among its other uses). It locates
the latest version of ND4J and DL4J project libraries (.jar files) and downloads them
automatically. You can find those repositories on Maven Central. Maven lets you to
install both ND4J and DL4J projects easily. It works well with Integrated Develop‐
ment Environments (IDEs) such as IntelliJ.

To check if Maven is installed on your machine and which version you have, type the
following into the command line:

mvn --version

If you do not have the most recent version of Maven, you’ll need to update it (as of
this writing, it is 3.3.x). You can find instructions to install Maven at https://
maven.apache.org/.

Download the compressed file containing Maven’s latest stable version. Lower on the
same page, follow the instructions specific to your operating system; for example,
“Unix-based Operating Systems (Linux, Solaris, and Mac OS X).”

A minimal Project Object Model file
To run DL4J in your own projects, we highly recommend using Apache Maven for
Java users, or a tool such as SBT for Scala. The basic set of dependencies and their
versions are shown here:

478 | Appendix H: Setting Up DL4J Projects

http://bit.ly/2ty2o5B
http://bit.ly/2ty2o5B
https://search.maven.org/
https://maven.apache.org/
https://maven.apache.org/

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>MyGroupID</groupId>
 <artifactId>MyArtifactId</artifactId>
 <version>1.0-SNAPSHOT</version>

 <properties>
 <nd4j.version>0.5.0</nd4j.version>
 <dl4j.version>0.5.0</dl4j.version>
 <datavec.version>0.5.0</datavec.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.deeplearning4j</groupId>
 <artifactId>deeplearning4j-core</artifactId>
 <version>${dl4j.version}</version>
 </dependency>

 <dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-x86</artifactId>
 <version>${nd4j.version}</version>
 </dependency>

 </dependencies>
</project>

Project Object Model explanation. Project Object Model (POM) files can be compli‐
cated, so we’ll note a few key configurations to help you better understand what’s
going on. The following describes a couple of core DL4J POM configuration entries
and what they install in our local maven repo:

deeplearning4j-core

Contains the core DL4J neural network implementations

nd4j-x86

The CPU version of the ND4J library that powers DL4J

Setting Up DL4J Projects | 479

IDEs
An IDE will allow you to work with our API and build your networks with a few
clicks. We suggest using IntelliJ or Eclipse, either of which will work with your
installed version of Java and communicate with Maven to handle the dependencies.

Quickstart a DL4J project by using IntelliJ
The free community edition of IntelliJ has installation instructions.

After installation, perform the following steps to get up and running (Windows users,
see the Walkthrough section at http://deeplearning4j.org/quickstart.html#walk):

1. In the command line, type the following:
git clone https://github.com/deeplearning4j/dl4j-0.4-examples.git

We are currently on examples version 0.0.4.x.)
2. In IntelliJ, in the menu tree, click File → New → Project from Existing Sources,

and then create a new project using Maven.
3. Point to the root directory of the preceding examples. This opens them in your

IDE.
4. Copy and paste the pom.xml file described in the next section that powers the

Maven project.
5. Wait for IntelliJ to download all the dependencies. (You’ll see the horizontal bar

working in the lower right.)
6. Select an example from the lefthand file tree, and then click “run.”

Setting Up Other Maven POMs
In this section, we look at how to quickly set up Maven pom.xml files for ND4J. We
also look at other components in the suite of tools.

ND4J and Maven
ND4J backends are what power the linear algebra operations behind DL4J’s neural
networks. ND4J backends vary by chip where CPUs work fastest with x86 and GPUs
work best with Jcublas. To find ND4J backends on Maven Central, do the following:

1. Click the linked version number under Latest Version.
2. Copy the dependency code on the left side of the subsequent screen.
3. Paste the code into your project root’s pom.xml in IntelliJ.

480 | Appendix H: Setting Up DL4J Projects

http://deeplearning4j.org/quickstart.html#walk

The nd4j-x86 backend will look something like this:

<dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-x86</artifactId>
 <version>${nd4j.version}</version>
</dependency>

The ND4J backend nd4j-x86 works with all examples. To install an additional
dependency, OpenBlas, Windows and Linux users should refer to the DL4J Getting
Started page.

Setting Up DL4J Projects | 481

APPENDIX I

Setting Up GPUs for DL4J Projects

Vyacheslav Kokorin and Susan Eraly

Training neural networks involves a host of linear algebra calculations. Graphics pro‐
cessing units (GPUs), with their thousands of cores, were designed to excel at such
problems. They are therefore often used to speed up training and eventually attain
better compute performance per dollar, per watt.

Switching Backends to GPU
DL4J can be used with nVIDIA GPUs with support currently for Cuda 7.5. Cuda 8.0
will be supported when available. DL4J is written to be plug-and-play. This means
that switching the compute layer from CPU to GPU is as easy as switching out the
artifactId line under the nd4j in the dependencies in the pom.xml file.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.nd4j</groupId>
 <artifactId>nd4j-cuda-7.5-platform</artifactId>
 <version>${nd4j.version}</version>
 </dependency>
 </dependencies>
</dependencyManagement>

Picking a GPU
In general, a high-end consumer-grade model or a professional Tesla device is recom‐
mended: as of this writing, a pair of NVidia GeForce GTX 1070 GPUs would be a
solid choice with which to begin.

483

Here are features to consider when buying a GPU:

Amount of multiprocessors (or cores) on board
The more, the better. As simple as that. This relates to how many parallel threads
the GPU can process at any given moment.

Memory available on device
This defines how much data can be uploaded to the device for processing. How‐
ever, the memory type also matters because it dictates the memory bandwidth
and therefore the transfer speed. GDDR5 is considered the absolute minimum.
GDDR5X is better, and HBM/HBM2 is the top choice.

Another feature worth mentioning is optional native support for half precision,
which is available in the top-end Tesla P100 devices and special Tegra devices. This
feature is able to boost deep learning speeds up to 200 to 300 percent, depending on
the data dimensionality and model size.

It is also important to consider the interconnect options available between devices. As
of this writing, there are only two options available on the market, PCIe and NVLink,
with NVLink being the clear winner by being capable of providing 160 GBps band‐
width. This makes NVLink a highly desirable feature for multi-GPU systems for all
possible deep learning parallelism models. NVIDIA even offers a prebuilt server pow‐
ered with eight Tesla P100 devices that are NVLink interconnect–enabled, called the
DGX-1. It comes at a hefty price tag with the clever tagline “Supercomputer in a Box.”
Clever or not, the tagline is a hard one to refute.

Training on a Multiple GPU System
DL4J also supports training on a multi-GPU system in data-parallel mode. DL4J has a
ParallelWrapper class that you can use to convert an existing model to one that will
train in parallel.

Here’s a simple example:

 ParallelWrapper wrapper = new ParallelWrapper.Builder(YourExistingModel)
 .prefetchBuffer(24)
 .workers(4)
 .averagingFrequency(1)
 .reportScoreAfterAveraging(true)
 .build();

ParallelWrapper takes the existing model as primary argument, and then carries out
the training in parallel. In the case of GPUs, it’s a good idea to keep the number of
workers equal to or higher than the number of GPUs. Exact values are subject to tun‐
ing, because they are task- and hardware-dependent.

Within the ParallelWrapper, the initial model will be duplicated, and each worker
will be training its own copy of the model. After every X iteration, defined by

484 | Appendix I: Setting Up GPUs for DL4J Projects

averagingFrequency(X), all models will be averaged and then copied to the workers.
Training continues in this manner.

It’s worth noting that for data-parallel training, a higher learning rate is recom‐
mended. Something around +20 percent should be a good starting value.

CUDA on Different Platforms
The following list shows where to find extended instructions for CUDA on different
platforms.

• CUDA on Linux
• CUDA on Windows
• CUDA on OS X

Monitoring GPU Performance
After you begin training neural networks on GPUs, you will want to monitor whether
and how well the GPUs are working. In the section that follows, we list some resour‐
ces to help debug and monitor GPU operations.

NVIDIA System Management Interface
Install the NVIDIA System Management Interface (SMI).

Using the NVIDIA SMI

There will be many things in the logs, but look for “Java” in the out‐
put to better triage what ND4J is doing.

Setting Up GPUs for DL4J Projects | 485

http://bit.ly/2tUojGa
http://bit.ly/2tUoqS6
http://bit.ly/2tUojGa
http://bit.ly/2sUQ0dG

APPENDIX J

Troubleshooting DL4J Installations

If anything goes wrong when you attempt to run the examples, you’ll need to do
some troubleshooting. In the following sections we discuss some of the common
issues that new users of DL4J experience.

Previous Installation
If you have installed DL4J before and now see the examples throwing errors, please
update your libraries. With Maven, just update the versions in your pom.xml file to
match the latest versions on Maven Central. With source, you can run a git
clone on ND4J, Canova, and DL4J, and a mvn clean install -Dskiptests=true -
Dmaven.javadoc.skip=true within all three directories, in that order.

Memory Errors When Installing From Source
As the code base grows, installing from source requires more memory. If you
encounter a Permgen error during the DL4J build, you might need to add more heap
space. To do that, you’ll need to find and alter your hidden .bash_profile file, which
adds environmental variables to bash. To see those variables, in the command line,
type env. To add more heap space, in your console, type this command:

echo "export MAVEN_OPTS="-Xmx512m -XX:MaxPermSize=512m"" > ~/.bash_profile

Older Versions of Maven
Older versions of Maven, such as 3.0.4, are likely to throw exceptions like a NoSuchMe
thodError. You can fix this by upgrading to the latest version of Maven, which is cur‐
rently 3.3.x. To check your Maven version, in the command line, type mvn -v.

487

https://search.maven.org/

Maven and PATH Variables
After installing Maven, you might receive a message like this:

mvn is not recognised as an internal or external command,
operable program or batch file.

This means that you need Maven in your PATH variable, which you can change like
any other environmental variable.

Bad JDK Versions
If you see:

Invalid JDK version in profile 'java8-and-higher': Unbounded range:
 [1.8, for project com.github.jai-imageio:jai-imageio-core
 com.github.jai-imageio:jai-imageio-core:jar:1.3.0

your installation may have a Maven issue. You should update to version 3.3.x.

C++ and Other Development Tools
To compile some ND4J dependencies, install some development tools for C and C++.

ND4J Specific Instructions

For specific instructions, see our ND4J guide at http://nd4j.org/
getstarted.html#devtools.

Windows and Include Paths
The include path for Java CPP doesn’t always work on Windows. One workaround is
to take the the header files from the include directory of Microsoft Visual Studio and
put them in the include directory of the Java Run-Time Environment (JRE), where
Java is installed.

standardio.h

This will affect files such as standardio.h. You can find more infor‐
mation at http://nd4j.org/getstarted.html#windows.

488 | Appendix J: Troubleshooting DL4J Installations

http://nd4j.org/getstarted.html#devtools
http://nd4j.org/getstarted.html#devtools
http://nd4j.org/getstarted.html#windows

Monitoring GPUs
As mentioned Appendix I we can monitor graphics processing units (GPUs) with the
NVIDIA System Management Interface (SMI).

For additional help with monitoring GPUs, go to http://nd4j.org/
getstarted.html#gpu.

Using the JVisualVM
One major reason to use Java is its prebaked diagnostics in the JVisualVM. In the
command line, type jvisualvm and the system will display visuals on the local CPU,
Heap, PermGen, Classes, and Threads.

The Sampler View

A useful view in this tool is the sampler view. In the upper right,
click the Sampler tab, and then select the CPU or Memory button
for visuals.

Working with Clojure
When using deeplearning4j-nlp from a Clojure application and building an uberjar
with Leiningen, it is necessary to specify the following in the project.clj so that the
akka reference.conf resource files are properly merged:

:uberjar-merge-with {#"\.properties$" [slurp str spit] "reference.conf"
 [slurp str spit]}

(Note that the first entry in the map for the properties file is the usual default). If this
is not done, the following exception will be thrown when trying to run from the
resulting uberjar:

Exception in thread "main" com.typesafe.config.ConfigException$Missing:
 No configuration setting found for key 'akka.version'

OS X and Float Support
Float support is buggy on OS X. If you see NANs where you expect numbers running
our examples, switch the data type to double.

Troubleshooting DL4J Installations | 489

http://nd4j.org/getstarted.html#gpu
http://nd4j.org/getstarted.html#gpu

Fork-Join Bug in Java 7
There is a bug in fork-join in Java 7. Updating to Java 8 fixes it. If you get an OutofMe
mory error that looks like the following, fork-join is the problem:

java.util.concurrent.ExecutionException: java.lang.OutOfMemoryError ….java.util
 .concurrent.ForkJoinTask.getThrowableException(ForkJoinTask.java:536)

Online Support Through Gitter
Please feel free to ask us about error messages on our Gitter Live Chat.

When you post your question, include the following information (it will really speed
things up!):

• Operating system (Windows, OS X, Linux) and version
• Java version
• Maven version
• Stacktrace

Precautions
In the following sections we list some things to check when the DL4J examples don’t
build or run correctly.

Other Local Repositories
Ensure that you have not cloned other repositories locally. The main DL4J repository
is undergoing continuous improvements, the latest of which might not be thoroughly
tested with examples.

Check Maven Dependencies
Ensure that all of your dependencies for examples are downloaded from Maven
rather than found locally. To remove older dependencies, type the following:

rm -rf ls ~/.m2/repository/org/deeplearning4j

Reinstall Dependencies
To rebuild the examples from source and ensure that its installed correctly, in the
dl4j-0.4-examples directory, type the following:

mvn clean install -DskipTests=true -Dmaven.javadoc.skip=true

490 | Appendix J: Troubleshooting DL4J Installations

https://gitter.im/deeplearning4j/deeplearning4j

If All Else Fails
If you have trouble, the first thing you should check is your pom.xml file.

Different Platforms
To compile certain ND4J dependencies, you will need to install some development
tools for C, including gcc. To check whether you have gcc, on your terminal or com‐
mand prompt, type gcc -v.

OS X
Some versions of the Apple developer tool Xcode will install gcc for you. If you do
not already have gcc, at the command prompt, type the following:

brew install gcc

Windows
Windows users might need to install Visual Studio Community 2013, which is free.
You can download it from https://www.visualstudio.com/en-us/products/visual-studio-
community-vs.aspx.

Setting up PATH Environment Variables

You will need to add Visual Studio’s path to your PATH environ‐
ment variable manually. The path will look something like this:

C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin

To determine whether Visual Studio’s path is set up correctly at the command
prompt, type the following:

cl

You might get a message informing you that certain .dll files are missing. Ensure that
that the VS/IDE folder is in the path (see the preceding Warning). If the command
prompt returns usage information for the cl command, it’s in the right place.

Setting up Visual Studio
To set up the and configure Visual Studio, perform the following steps:

1. Set up the PATH environment variable to point to \bin\ (for cl.exe, etc.).

Troubleshooting DL4J Installations | 491

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

2. Also try running vcvars32.bat (also in bin) to set up the environment before
invoking mvn clean install on ND4J (it can save you from copying headers
around).

vcvars32

vcvars32 might be temporary, so you might need to run it every
time you want to do ND4J mvn install.

After installing Visual Studio 2015 and setting the PATH variable, you need to run
the vcvars32.bat to set up the environment variables (INCLUDE, LIB, LIBPATH)
properly so that you don’t need to copy header files. But, if you run the .bat file from
Explorer, because the settings are temporary, they’re not properly set. Therefore, run
vcvars32.bat from the same CMD window as your mvn install, and all the environ‐
ment variables will be set correctly.

Here is how they should be set:

INCLUDE = C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\include LIB =
 "C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\lib" //so you can
 //link to .lib
 //files^^

Remember to Click C++

In Visual Studio, you also need to click C++. It is no longer set by
default.

Java CPP and Windows

In addition, the include path for Java CPP doesn’t always work on
Windows. One workaround is to take the the header files from the
include directory of Visual Studio and put them in the include
directory of the Java Run-Time Environment (JRE), where Java is
installed. This will affect files such as standardio.h.

Working with Windows on 64-bit platforms
You can get the .dll for the Windows 64 platform at http://avulanov.blogspot.cz/
2014/09/howto-to-run-netlib-javabreeze-in.html.

Download the .dll libraries and place them in the Java bin folder (e.g., C:\prg\Java
\jdk1.7.0_45\bin).

492 | Appendix J: Troubleshooting DL4J Installations

https://github.com/bytedeco/javacpp
http://avulanov.blogspot.cz/2014/09/howto-to-run-netlib-javabreeze-in.html
http://avulanov.blogspot.cz/2014/09/howto-to-run-netlib-javabreeze-in.html

Other Dependencies

The library netlib-native_system-win-x86_64.dll depends on:
libgcc_s_seh-1.dll, libgfortran-3.dll, libquadmath-0.dll,
libwinpthread-1.dll, libblas3.dll, and liblapack3.dll. (liblapack3.dll
and libblas3.dll are just renamed copies of libopeblas.dll)
You can download compiled libraries from http://www.open‐
blas.net/.

Linux
If you use either Ubuntu and Centos, you will need to follow two separate sets of
instructions.

Ubuntu
For Ubuntu, first type:

sudo apt-get update

Then, you’ll need to run a version of this command:

sudo apt-get install linux-headers-$(uname -r) build-essential

$(uname -r) will vary according to your Linux version. To get your Linux version,
open a new window of your terminal and type this command:

uname -r

You will see something like this: 3.2.0-23-generic. Whatever you see, copy and
paste it into the first line of the script in place of $(uname -r). Then, insert one space
and type build-essential. Watch out for typos. You can press tab to complete any
command.

Centos
In your terminal (or ssh session), type the following as a root user:

yum groupinstall 'Development Tools'

After that, you should see a lot of activity and installs on the terminal. To verify that
you have, for example, gcc, type this line:

gcc --version

For more complete instructions, go to http://www.cyberciti.biz/faq/centos-linux-
install-gcc-c-c-compiler/.

Troubleshooting DL4J Installations | 493

http://www.openblas.net/
http://www.openblas.net/
http://www.cyberciti.biz/faq/centos-linux-install-gcc-c-c-compiler/
http://www.cyberciti.biz/faq/centos-linux-install-gcc-c-c-compiler/

Index

Symbols
.fit() method, 174
3D volumetric input, 146
<scope> tag, 377

A
accuracy, 38
acknowledgements, xix
activation functions

definition of term, 53
evolution of in practice, 95
for general architecture, 94
for hidden layers, 94
hard tanh, 68, 255
in deep networks, 93-95

(see also deep networks)
linear, 66
output layer for binary classification, 95
output layer for multiclass classification, 95
output layer for regression, 95, 242
rectified linear, 69, 242
sigmoidal, 65, 94, 254
softmax, 68, 245
summary table for, 255
tanh, 67, 252
tuning techniques, 253-256

activation maps, 133
AdaDelta, 102, 261
AdaGrad, 102, 261
Adam, 102, 261
adjacency matrices, 355
adversarial training, 279
AlexNet, 85, 142
AlphaGo, 420

Alternating Least Squares, 15
anomaly detection

using autoencoders, 207-213
using variational autoencoders, 214-220

Apache Hadoop, 268, 325, 357
(see also also Spark and Hadoop)

Apache Nutch project, 359
Apache Spark (see Spark and Hadoop)
ApplicationMasters, 364
Area Under the Curve (AUC), 280
artificial intelligence (AI), 405-415

Artificial Winters of, 412
vs. deep learning, 406
definition of term, 407
history of, 405, 407
vs. machine learning, 409
modern definitions of, 408-412
renewed interest in, 413
study of intelligence, 407
underpinnings of, 3

artistic style, modeling, 90
Async N-step Q-Learning, 438
Asynchronous Reinforcement Learning, 438
attributions, xvii
audio data, 240
autoencoders, 112, 118, 207-213
automatic feature extraction, 6, 13, 88, 119, 322

B
backpropagation learning

algorithm intuition, 57
backpropagation pseudocode, 61-65
fractional error responsibility and, 64
gentle, 120

495

loss functions, 61
mathematics underlying, 443-447
mini-batch training and, 65, 104, 129, 147
neural network notation, 58-60
origins of, 57
process of, 42

backpropagation through structure (BPTS), 161
backpropagation through time (BPTT), 157,

310
bag-of-words model, 348
batch learning algorithms, 266
batch normalization, 139
Bayes's theorem, 19
Bayesianism, 17
bell-curve (see normal distribution)
Bellman equation, 427-429
Bernoulli distribution, 334
biases, 53
Bidirectional Recurrent Neural Networks

(BRNN) , 150
big data, 267
binarization, 334
binary classification

examples of, 25
hinge loss, 257
output layer for, 95
single output vs. two outputs, 243

biological neural networks, 4, 43-45, 54
blended networks, 159
bootstrapping, 22
Broyden-Fletcher-Goldfarb-Shanno (BFGS),

99, 263

C
C and C++, 488
categorical data attributes, 325
centering, 329
central limit theorem, 21
CIFAR-10 dataset, 126
class imbalance, 39, 280-283
classification

definition of term, 25
loss functions for, 75
model output layer, 243-245

more than two labels, 243
multiclass models, 244
multilable models, 245
single-label, 243

Clojure, 489

clustering, 26
code

full import listings, xvii
using examples, xvii, 166

Collaborative Filtering, 26
columnar data, modeling, 166, 240, 325, 335,

465
comments, xviii
computational efficiency, 274
ComputationGraph, 245
computer vision, 85, 159
conditional probability, 18, 34
confusion matrix, 36-40
Conjugate Gradient Methods, 15, 99, 263
connection weights, 53, 251, 282
connectionist models, 148

(see also Recurrent Neural Networks)
contact information, xviii
contrastive divergence, 109
convergence, 28
convex optimization, 29
convolution operation, 131
convolutional layers

activation maps, 133
batch normalization, 139
concept of convolution, 131
filters in, 132, 299-301
hyperparameters in

filter size, 138
output depth, 139
overview of, 138
stride, 139, 298
zero-padding, 139, 299

learned filters and renders, 137
parameter sharing, 136
purpose of, 130
receptive fields, 136
ReLU activation functions as, 138
tuning techniques, 297-303

Convolutional Neural Networks (CNNs)
architecture overview, 128
biological inspiration for, 126
convolutional layers, 130-139
correct application of, 126, 166
vs. Deep Belief Networks, 121
efficacy of, 125
evolution in applications of, 167
evolution of, 84
fully-connected layers, 140

496 | Index

goal of, 125
image representation in, 45, 337, 467
input layers, 130
intuition, 126
layers in, 81, 87
modeling hand-written images, 182-190
normalization and, 333
notable CNNs, 141
other applications of, 141
pooling layers, 140, 303
raw image data and, 167
Spark model, 397-403

job configuration and data loading, 400
LeNet architecture and training, 401

tuning techniques
common architectural patterns, 294-297
configuring convolutional layers,

297-303
configuring pooling layers, 303
convolution stage, 293
detector stage, 294
transfer learning, 304

cosine similarity, 11
cross entropy, 78, 96, 258
cross-validation, 22
CSV data (see columnar data)
CUDA, 272, 485
curriculum learning, 279

D
data cleaning, 328
data mining, 3, 265
data parallelism, 267
data types

audio, 240
columnar, 166, 175-182, 240, 335, 465
columnar raw data attributes

interval, 326
nominal, 325
ordinal, 326
ratio, 327

graph structures, 354
images, 166, 182-190, 207-213, 236, 240,

336-339, 467
nonshuffled data, 288
requiring vectorization, 322
text, 167, 347-354
timeseries sequences, 167, 240, 340-346
video, 240, 337

data wrangling, 470
DataSet class, 456
DataSet objects, 173
DataSetIterator class, 173
DataVec

benefits of, 170
ETL and vectorization with, 334
goal of, 463
image data and vector normalization with,

339
loading CSV data for multilayer percep‐

trons, 465-467
loading data for machine learning, 463-465
loading image data for CNNs, 467-468
loading sequence data for RNNs, 469-470
main categories of functionality, 463
transforming data, 470-474
vectorizing sequential data with, 341-346

Dean, Jeff, 270
debugging

bad JDK versions, 488
C++ and other development tools, 488
Clojure, 489
fork-join bug in Java 7, 490
JVisualVM, 489
Maven and PATH variables, 488
memory errors, 487
monitoring GPUs, 489
older versions of Maven, 487
OSX and Float support, 489
previous installations, 487
Spark and Hadoop, 379
understanding debug output during train‐

ing, 257
visual monitoring for, 435
Windows and include PATHS, 488

decentralized systems, 5
decision boundary, 28
deconvolutional network (deconvnet), 122
Deep Belief Networks (DBNs)

automatic learning, 119
categorization of, 88
vs. Convolutional Neural Networks, 121
feature extraction, 119
fine-tune phase, 120
layers in, 87
network architecture, 118
role in deep learning, 121
tuning techniques

Index | 497

hidden unit count, 319
two-phase training, 317
using Momentum, 318
using regularization, 319

Deep Convolutional Generative Adversarial
Network (DCGAN), 123

deep learning
vs. artificial intelligence, 406
benchmark records achieved by, 86
definition of learning, 2
definition of term, 6, 81
generative mechanics demonstrated by, 7
impacts of, 87
vs. machine learning, 3, 6, 162
role of Deep Belief Networks in, 121
successful application of, 91, 162
when to use, 163

deep networks
architectural principals of

activation functions, 93
hyperparameters, 100-104
layers, 93
loss functions, 95
optimization algorithms, 96
parameters, 92

architecture selection, 165-169, 240-242
building blocks of, 105-115

autoencoders, 112
overview of, 105
unsupervised layer-wise pretraining, 106
variational autoencoders, 114

vs. feed-forward multilayer, 81
intuition for building, 238-240
major architectures of

Convolutional Neural Networks,
125-143

evolution of, 82
overview of, 117
Recurrent Neural Networks, 143-160
recursive neural networks, 160
selecting, 162, 165-169, 240-242
unsupervised pretrained networks,

118-125
Deep Q-Networks (DQNs), 417

(see also Q-Learning)
deep reinforcement learning, 83, 422
Deeplearning4j library

activation functions in layers, 138
basic concepts of, 172-175

getting input for models, 173
loading and saving models, 172
setting up model architecture, 173
training and evaluation, 174

benchmarking, 171
computational efficiency of, 274
DL4J project set up

creating new projects, 477-479
GPU set up, 483-485
IDEs, 480
other Maven POMs, 480

focus of, 170
functions performed by, 169-171

scientific computing, 170
vectorization, 170

image data representation in, 337
image training data arrays in, 129
matching networks with data types, 165-169
memory and precision and, 251
multilayer perceptron model setup, 175-182
network statistics tool, 284-291
parallelization architecture, 269
Spark best practices, 385
support for Hadoop environment, 360, 381
troubleshooting

bad JDK versions, 488
C++ and other development tools, 488
Clojure, 489
fork-join bug in Java 7, 490
JVisualVM, 489
Maven and PATH variables, 488
memory errors, 487
monitoring GPUs, 489
older versions of Maven, 487
OSX and float support, 489
previous installations, 487
Windows and include PATHS, 488

tuning DL4J jobs on Spark, 371
updaters in, 102, 259
using with ND4J, 459-461
working from source, 475

DeepMind, 430
DeepWalk, 354
dimensionality reduction, 333
discrete data attributes, 325
discriminative models, 33
DistBelief, 270
distributed file systems, 386
distributions, 19-22

498 | Index

central limit theorem, 21
continuous vs. discrete, 19
long-tailed, 21
normal, 19
rank-frequency, 21

DL4J (see Deeplearning4j library)
Doc2Vec, 227
document classification, 231-236
dot product, 11
Downpour SGD, 269
DropConnect, 104, 279
Dropout, 103, 277-278, 319
“dying ReLU” issue, 70, 242, 255

E
element-wise product, 11
entropy, 77
enumerated data attributes, 325
epochs, 273-275
executors (Spark), 358, 365-392
experience replay, 430
expert domain knowledge, 324
exploding gradients, 311
Extract, Transform, and Load (ETL), 325, 328,

334, 387, 463, 470

F
F1 score, 39, 280
FaceNet, 236
facial recognition, 236
feature binarization, 334
feature detectors, 131
feature engineering

definition of term, 327
feature copying, 328
move toward automation, 322
techniques of, 328

feature extraction, 6, 13, 88, 119
feature maps (see activation maps)
feed-forward multilayer network

artificial neuron evolution
activation functions, 53
artificial neuron input, 51-53
biases, 53
connection weights, 53, 251
diagram of, 50

backpropagation in, 445-447
correct application of, 166
vs. deep networks, 81

definition of term, 50
learning algorithm caution, 58
modeling CSV data with, 175-182
multilayer Spark example, 387-392
network architecture

connections between layers, 56
hidden layer, 55, 246
input layer, 55
layer concept, 54
output layer, 55

topology, 42
tuning techniques, 246-251

filter renders, 137
fine-tune phase, 120
.fit() method, 174
fitting, 25
forget gate, 155
fork-join bug, 490
forward propagation, 53
fractional error responsibility, 64
frequentism, 17
fully-connected layers, 140
functional parallelism (see task parallelism)

G
garbage collection, 370
Gated Recurrent Units (GRUs), 87, 156, 253
gaussian distribution (see normal distribution)
Gaussian Elimination, 14
Generative Adversarial Networks (GANs)

conditional GANs, 124
DCGAN networks, 123
description of visual output, 90
discriminator network, 122
drawbacks of, 125
generative network, 122
key aspect of, 121
training generative models, 121
vs. variational autoencoders, 124

generative mechanics, 7
generative models

building, 123
vs. discriminative, 33
drawbacks of, 125
Generative Adversarial Networks, 90,

121-125
inceptionism, 89
modeling artistic style, 90
Recurrent Neural Networks, 90

Index | 499

types of, 89
GitHub projects, cloning, 476
global minimum, 32
global vectors, 227
GloVe, 227
Google DeepMind, 430
Google File System, 266
GoogLeNet, 142
Gov2Vec, 235
GPUs (graphical processing units)

Mesos and, 367
monitoring, 489
setting up for DL4J projects, 483-485
vectorized math and, 272

gradient descent, 30, 98
graphs, modeling, 354

H
Hadamard product (see element-wise product)
Hadoop (see Spark and Hadoop)
Hadoop Distributed File System (HDFS), 169,

358, 386
Hadoop YARN (Yet Another Resource Negotia‐

tor) framework, 358
HAL 9000 computer, 86
hard tanh activation function, 68, 255
Hessian matrix, 33, 97
Hessian-free optimization, 100, 263
hidden layers

determining count, 246
in feed-forward multilayer networks, 55
in RBM network, 107

Hidden Markov Chains, 419
hinge loss, 75, 257
hit rate (see true positive rate)
hybrid architectures, 169, 314
hyperparameters (see also tuning techniques)

categories of, 100
in convolutional layers, 138
definition of term, 100
large parameter count, 101
layer size, 100
learning rate, 78, 101-103, 258-263
magnitude group, 101
mini-batching, 104
momentum, 79, 258
Nesterov's momentum, 102, 261
normalization and, 329
purpose of, 28

receptive fields, 136
regularization, 79, 103
selecting, 78, 100
sparsity, 80, 263, 319

hyperplanes, 10

I
identity covariance matrix, 333
image classification benchmark dataset, 127,

182
image data

anomaly detection, 207-213
facial recognition, 236
modeling, 166, 182-190, 240, 467
vectorization of, 336-339

ImageRecordReader (DataVec), 339
inceptionism, 89
INDArrays, 450, 459
informational theory, 78
inner product (see dot product)
input layers

in Convolutional Neural Networks, 130
in feed-forward multilayer networks, 55
lack of activation functions in, 94

IntelliJ, 480
interval values, 326
iris dataset, 11
Item2Vec, 236
iterative methods, 14

J
Jacobian matrix, 33, 97
jar size, controlling, 377
Java Development Kit (JDK), 478, 488, 490
Java serialization, 377
Jeff Dean’s 12 Numbers, 441
JVisualVM, 489
JVM tuning, 370

K
K-means clustering, 26
Kerberos, 361, 386
kernel hashing, 353
kernels, 132
Kyro dependency, 377, 380

L
L-BFGS optimization algorithm, 99, 263

500 | Index

L1 and L2 penalty methods, 104, 242, 275
law of large numbers, 422
layers

deconvolutional layers, 122
in deep networks, 93
evolutionary progress of, 87
in CNNs, 128-141
in feed-forward multilayer networks, 42
in LSTM networks, 156
layer count, parameter count, and memory,

246-251
layer size hyperparameter, 100

leaky ReLUs, 70, 252, 254
learned filters, 137
learning rate

definition of term, 65, 101-103
parameter adjustment and, 78
tuning techniques, 258-263

lemmatization, 347
LeNet CNN, 142, 182-190, 401
likelihood, 23
linear activation function, 66
linear algebra

converting data into vectors, 11
hyperplanes, 10
mathematical operations

dot product, 11
element-wise product, 11
outer product, 11

matrices, 10
ND4J library and, 170
scalars, 9
solving systems of equations, 13-15

direct method, 14
iterative methods, 15
methods for, 14

tensors, 10
vectors, 9

linear regression
goal of, 23
model setup, 23
plotted visualization, 24
relating the model, 25

local minima, 32, 42, 248
logistic loss functions, 75, 258
logistic regression, 34-36
Long Short-Term Memory (LSTM) networks

advances in neuron types, 87
applications for, 169

critical component of, 150
example use cases, 150
vs. Gated Recurrent Unit, 156
layers in, 156
LSTM block, 153
modeling sequence data

classifying sensor time-series sequences,
200-207

generating the works of Shakespeare,
191-200

network architecture, 151
normalization and, 333
orthogonal weight initialization, 253
properties of, 150
Spark model, 392-397

LSTM architecture, 395
training, tracking and results, 396

training, 156
training complexity in, 151
tuning techniques, 311
unit connections, 153

loss functions
for classification, 75
for reconstruction, 77, 96
for regression, 72-75, 242
loss function notation, 71
matching with activation functions, 239
pseudocode representation, 61
purpose of, 28, 71, 95
summary table of, 257
tuning techniques, 256-258
weighted, 282

lower upper (LU) decomposition, 14
LSTM block, 153
LSTM Memory Cell, 87, 153

M
machine learning

vs, artificial intelligence, 409
core concepts

linear algebra, 8-15
statistics, 15-23

vs. data mining, 3
vs. deep learning, 6
definition of term, 2, 96
history of, 1
hyperparameters, 78-80
logistic regression, 34-36
model evaluation, 36-40

Index | 501

optimization methods, 23-34 (see also opti‐
mization)
classification, 25
clustering, 26
convex optimization, 29
generative vs. discriminative models, 33
gradient descent, 30
parameter optimization, 27
Quasi-Newton optimization methods, 33
regression, 23
stochastic gradient descent, 32, 65
underfitting and overfitting, 26, 79

successful application of, 162
when to use, 164
workflow setup, 8

MapReduce, 266-269, 357, 359, 366
Mark I Perceptron, 46
Markov Decision Process (MDP), 417-418
Markov models, 148
masking, 147, 312-314, 346
matrices, 10
matrix decomposition, 14
matrix inversion, 14
Maven Project Object Model (POM)

DL4J project creation, 477-479
IDEs, 480
major dependencies, 372
older versions of Maven, 487
other Maven POMs, 480
platform dependency, 374
POM file for CDH 5.x, 378
POM file for HDP 2.4, 378
pom.xml file dependency template, 374-378
working with DL4J from source, 476

max pooling, 140
Max-Norm regularization, 276
maximum likelihood estimation (MLE), 29
MCXENT loss function, 243
mean, 330
mean absolute error (MAE) loss, 74
mean absolute percentage error (MAPE) loss,

74
mean squared error (MSE) loss, 72, 242
mean squared log error (MSLE), 74
memory cells, 153
memory requirements, 250, 274, 368, 371, 451,

484, 487
Mesos, 363, 367
min-max scaling, 332

mini-batch training, 32, 65, 104, 129, 147,
273-275, 337

minimum point (see stationary point)
missing values, dealing with, 329
MLLibUtil class, 459
MNIST handwriting benchmark

anomaly detection, 207-213
evolution of, 84
modeling hand-written images, 182-190
reconstructing MNIST digits, 214-220
reconstruction in RBMs and, 110
Spark model, 397-403

model-free reinforcement learning, 419
models

building from raw data, 324
DL4J basic concepts, 172-175

getting input for models, 173
loading and saving models, 172
setting up model architecture, 173
training and evaluation, 174

evaluating, 36-40, 280, 313
forms of, 2
generative models, 89
generative vs. discriminative, 33
matching networks with data types,

165-169, 240-242
model calibration, 281
purpose of, 1
relating model goal and output layers,

242-245
momentum, 79, 258
Momentum, 318
Monte Carlo methods, 422
multiclass classification, 244
multilabel classification, 244
multilayer feed-forward network (see feed-

forward multilayer network)
multiple classifications, output layer for, 69, 95
multivariate Bernoulli distribution, 334

N
n-dimensional arrays, 449
n-gram vectorization, 353
Nash equilibrium, 420
Natural Language Processing (NLP)

bag-of-words model, 348
distributed representations of sentences,

227-231
document classification, 231-236

502 | Index

filter sizes in, 132
learning word embeddings, 221-226
sentiment analysis, 126
techniques for deep learning, 221

ND4J (N-Dimensional Arrays for Java) library
acceleration of training with, 171
benchmarking, 171
ceating input vectors, 457-458
DataSet class, 456
debugging, 380
design and basic usage, 450-456

general syntax, 452
understanding NDArrays, 450
working with NDArrays, 453-456

interoperability, 459
lack of support for first-class type uint8, 431
main features, 449
Maven and, 480
memory and precision and, 251
runtimes and, 170
user guide, 449
using with DL4J, 459-461

ND4S (N-Dimensional Arrays for Scala), 449
NDArrays, 173, 450
negative log likelihood, 76, 180, 258
Nesterov's momentum, 102, 261
neural networks

activation functions, 65-70
biological inspiration for, 4, 43-45, 54
evolution of, 6
evolutionary progress and resurgence, 83-91

automated feature learning, 88
better labeled data, 84
computer vision, 85
feature learning, 89
generative modeling, 89
hybrid architectures, 87, 169
layer types, 87
network architecture, 87
neuron types, 87
optical character recognition, 84
technologies benefiting from, 85, 87

feed-forward multilayer, 42, 50-56
fundamental units of, 1, 5
history of, 1
long-term information storage in, 41
loss functions, 71-78
network architecture, 41, 441
parameter vectors, 2

perceptron model, 45-49
training, 56-65

NeuralNetConfiguration object, 173
no free lunch theorem, 163
Node2Vec, 235, 354
NodeManagers, 364
nominal values, 325
nonshuffled data, 288
normal distribution, 19
Normal Equations, 14
normalization, 11, 329-334
nVIDIA GPUs, 483
NVIDIA System Management Interface (SMI),

485

O
odds, vs. probability, 17
one-hot vector representation, 180, 326
online learning algorithms, 266
optical character recognition, 84
optimization

alternate algorithms, 97
classification, 25
clustering, 26
conjugate gradient, 99, 263
convex optimization, 29
definition of term, 23
first- vs. second-order algorithms, 96
first-order methods, 97
functions at work in, 28
generative vs. discriminative models, 33
gradient descent, 30, 98
Hessian-free optimization, 100, 263
Jacobian matrix, 97
parameter optimization, 27
practical usage of, 97
Quasi-Newton methods, 33, 99
regression, 23-25
second-order methods, 98, 263
stochastic gradient descent, 32, 65, 98
tuning techniques, 263-265
underfitting and overfitting, 26, 79

optimization efficiency, 274
ordinal values, 326
orthogonal weight initialization, 253
outer product, 11
output layers

for binary classification, 95, 243
for multiclass classification, 95, 244

Index | 503

for regression, 95, 242
in feed-forward multilayer networks, 55
overall objective and, 120
relating to model goal, 242-245

overfitting, 26, 79, 101, 103, 283

P
paragraph vectors, 227-236
parallelization, 265-271, 280, 372
ParallelWrapper class, 484
parameters

in deep networks, 92
NDArrays and, 93
parameter optimization, 27
parameter sharing, 136
parameter vectors, 2
parameter-averaging technique, 267, 270
tuning techniques, 246-251

Pavlovian conditioning, 417
perceptron model

definition of, 46
history of, 46
influence of biological neurons on, 48
learning algorithm, 48
limitations of single-layer, 49
multilayer, 50, 166, 175-182, 445-447
multilayer Spark example, 387-392
precursor to, 45
single-layer, 47
summation function parameters, 47

permission, obtaining, xvii
PhysioNet Challenge, 40, 280
pi calculation, 422
policy iteration, 422-424, 426
pooling layers, 140, 303
populations vs. samples, 22
positive prediction value, 39
post scaling, 282
posterior probability, 19
practitioners

data scientists, xv
definition of term, xiv
Java engineers, xv
matching input data to architecture, 91

precision, 39
pretraining, 106, 109
principle component analysis (PCA), 333
prior functions, 275
prioritized replay, 435

probabilistic sampling, 282
probability

Bayesian vs. frequentist, 17
conditional probability, 18, 34
expression of, 16
joint, 34
vs. odds, 17
posterior probability, 19
probability distributions, 19-22

Q
Q-Learning

Bellman equation, 427-429
clipping, 435
double Q-Learning, 434
experience replay, 430
exploration vs. exploitation, 426
goal of, 421
history processing, 434
image preprocessing, 431-433
implementation, 429
initial state sampling, 429
mean Q-values, 438
modeling Q(s, a), 430
policy iteration, 422-426
prioritized replay, 435
scaling rewards, 435

Quasi-Newton optimization methods, 33, 99
questions, xviii

R
ratio values, 327
raw iris dataset, 323
RDD (Resilient Distributed Datasets), 358
recall, 39
receptive fields, 126, 136

(see also visual fields)
recommendation, 26
reconstruction, loss functions for, 77, 96
RecordReaders class, 173
rectified linear activation functions, 69, 242
Recurrent Models of Visual Attention, 159
Recurrent Neural Networks

3D volumetric input, 146
applications for, 90
vs. backpropagation through time, 157
benefits and drawbacks of, 143
domain-specific applications, 159
history of, 84

504 | Index

layers in, 81, 87
LSTM networks, 150-158
vs. Markov models, 148
model input and output, 145
modeling sequence data

classifying sensor time-series sequences,
200-207

generating the works of Shakespeare,
191-200

using DataVec, 469
modeling the time dimension, 143
network architecture, 149
normalization and, 333
timeseries sequences and, 167
tuning techniques

challenges of, 306
debugging LSTMs, 311
hybrid architectures, 314
input data and input layers, 307
output layers and RNNOutputLayer, 308
padding and masking, 312-314
training the network, 309-310

vanishing gradient problem, 149
Recursive Neural Networks

applications of, 161
network architecture, 160
vs. Recurrent Neural Networks, 160
varieties of, 161

Recursive Neural Tensor Network (RNTN), 161
regression

definition of term, 23
linear regression, 23
logistic regression, 34-36
loss functions for, 72-75
normalization and, 333
output layer for, 95, 242

regularization, 79, 275-280, 284, 290, 310, 317,
319

reinforcement learning
definition of term, 82, 417
Markov Decision Process (MDP), 417-418
model-free, 419
observation setting, 419
offline vs. online, 429
single-player vs. adversarial games, 420
terminology, 418
visual monitoring for debugging, 435-438

relational database management system
(RDBMS), 240, 325

ReLU (rectified linear units), 70, 138, 242, 252,
254

renders, 137
resampling methods, 22
ResNet, 142
Restricted Boltzmann Machines (RBMs), 87,

105-112, 118, 238
tuning techniques

alternate unit types, 316
hidden units, 315
regularization, 317
use cases, 314

RL4J (Reinforcement Learning for the JVM)
downloading, 438
prototype in Scala, 424
working example, 438

RMSProp, 102, 198, 259, 261
rotation estimation (see cross-validation)
rotation invariance, 137

S
sample mean, 330
samples vs. populations, 22
scalar product (see dot product)
scalars, 9
scaling, 329, 332
<scope> tag, 377
seat of consciousness, 45
selection bias, 22
sensitivity, 38
sentiment analysis, 126
sequential data

graphical representation of, 167
modeling

classifying sensor time-series sequences,
200-207

generating the works of Shakespeare
RNNmodelshake5, 191-200

using DataVec, 469
sources of, 144
tuning techniques, 241
vectorization of, 340-346

SerDe (serialization and deserialization), 380
serialization, 377, 380
sigmoid activation function, 52, 65, 94, 254
softmax activation function, 68, 245
softplus activation functions, 70
Spark and Hadoop

best practices, 385

Index | 505

command-line operation of Spark, 360-362
configuring and tuning Spark

foreground vs. background clients, 362
general tuning guide, 367-370
running Spark on Mesos, 363
running Spark on YARN, 364-366
tuning DL4J jobs, 371

Convolutional Neural Networks
job configuration and data loading, 400
LeNet architecture and training, 401
modeling MNIST, 397-403

DL4J parallel execution on Spark, 381
DL4J support for, 357
Hadoop security and Kerberos, 361
history of Hadoop, 359
LSTM networks, 392-397
Maven Project Object Model (POM)

major dependencies, 372
platform dependency, 374
POM file for CDH 5.x, 378
POM file for HDP 2.4, 378
pom.xml file dependency template,

374-378
minimal Spark training example, 383-385
multilayer perceptron Spark example,

387-392
distributed training and model evalua‐

tion, 390
DL4J job execution, 392
MLP network architecture, 390

overview of parallel-processing, 358, 372
Spark key components, 358
Spark training on single machines, 382
troubleshooting, 379

sparse Initialization, 252
sparsity, 80, 263, 319
specificity, 38
standardization, 330-332
stationary point, 31
statistical whitening, 333
statistics, 15-23

conditional probability, 18, 34
distributions, 19-22
likelihood, 23
means and variances, 330
posterior probability, 19
probability, 16
resampling methods, 22
samples vs. population, 22

selection bias, 22
stemming, 347
stochastic gradient descent (SGD)

benefits of, 98
best practices, 265
definition of term, 32
iterative methodology of, 15
learning rate and, 254, 258
mini-batch variant, 65
parallelizing, 269
in Q-Learning, 423
standardization and, 331
tuning techniques, 263

stochastic pooling, 279
stride, 139, 298
structural descriptions, 2

(see also models)
super sampling, 282
Symbolic Aggregated approXimation (SAX),

343

T
table of confusion (see confusion matrix)
tanh activation function, 67, 252
task parallelism, 267, 372
TD (Temporal difference) error, 428, 435
TD-gammon algorithm, 419
tensor product, 11
tensors, 10
term frequency vector, 349
text data, modeling, 167, 347-354
TF-IDF (term frequency–inverse document fre‐

quency), 349-352
Threshold Logic Unit (TLU), 46
time dimension, modeling, 143
time-series data, 144, 147, 167, 200-207, 240
time-steps, 149
tokenization, 347
transfer learning, 304
true positive rate, 39
truncated BPTT, 157
tuning techniques

activation functions, 253-256
basic concepts of, 237-240
epochs and mini-batch size, 273-275
for CNNs, 293
for DBNs, 317-320
for Recurrent Neural Networks, 306-314

506 | Index

for Restricted Boltzmann Machines,
314-317

GPUs, 272, 367
layer count, parameter count, and memory,

246-251
learning rates, 258-263
loss functions, 256-258
matching input data to architecture,

240-242
network statistics tool, 284-291
optimization methods, 263-265
overfitting, 283
parallelization, 265-271, 372
regularization, 275-280
relating model goal and output layers,

242-245
for Spark, 367-370
sparsity, 263
weight initialization strategies, 251

Turing Complete networks, 143
typographical conventions, xvi

U
underfitting, 26
uneven time-series, 147
unit variance, 331
unsupervised pretrained networks (UPNs)

architectures discussed, 118
benefits and drawbacks of pretraining, 106
Deep Belief Networks, 118
Generative Adversarial Networks, 121-125

updates-to-parameters ratio, 259

V
vanishing gradient problem, 149, 311
variances, 330
variational autoencoders (VAEs), 114, 124,

214-220
Vector Space Model (VSM), 347, 353
vectorization

additional resources on, 173
challenges of, 321
columnar raw data attributes, 325
considerations for, 325
data types requiring, 324
dealing with missing values, 329
definition of term, 9, 322

feature engineering, 327-328
of graph structures, 354
handcrafted vs. algorithmic approaches to,

324
of image data, 336-339
kernel hashing, 353
n-gram vectorization, 353
in ND4J, 457-458
normalization methods, 329-334
of text data, 347-354
phases of, 323
process of, 327
purpose of, 11
of sequential data, 340-346
using DataVec, 170, 334, 463-474

VGGNet, 142
video data, 240, 337
visual fields, 126

W
webapp-rl4j dashboard, 435
weight initialization strategies, 251, 287, 309
weighted loss functions, 282
whitening, 333
word embeddings, 221-226
Word2Vec

additional uses for, 226
alternatives to, 227
applications for, 221, 235
example, 225
Java code listing, 224
model and algorithm, 221
modeling context, 222
similar meaning and semantic relationships,

222
vector arithmetic and word embeddings,

223
vs. Vector Space Model, 353

Y
YARN, 364-366

Z
zero mean, 331
zero-padding, 139, 299, 312-314
ZF Net, 142

Index | 507

About the Authors
Josh Patterson currently is the head of field engineering at Skymind. Josh previously
ran a consultancy in the big data/machine learning/deep learning space. Previously,
he worked as a principal solutions architect at Cloudera and as a machine learning/
distributed systems engineer at the Tennessee Valley Authority, where he brought
Hadoop into the smart grid with the openPDC project. Josh has a Master’s in com‐
puter science from the University of Tennessee at Chattanooga where he published
research on mesh networks (tinyOS) and social insect optimization algorithms. Josh
has more than 17 years in software development and is very active in the open source
space, contributing to projects such as DL4J, Apache Mahout, Metronome, Iterati‐
veReduce, openPDC, and JMotif.

Adam Gibson is a deep learning specialist based in San Francisco. He works with
Fortune 500 companies, hedge funds, PR firms, and startup accelerators to create
their machine learning projects. Adam has a strong track record helping companies
handle and interpret big realtime data. He has been a computer nerd since the age of
13, and actively contributes to the open source community through http://deeplearn‐
ing4j.org.

Colophon
The animal on the cover of Deep Learning is the oarfish (Regalecus glesne), a large
lampriform (ray-finned) fish native to temperate and tropical oceans. They have a
long and slender body with spiny dorsal fins running down their back. Oarfish can
grow up to 11 meters in length, making them the largest bony fish in the world.

Oarfish are solitary animals and are rarely seen by humans. They spend much of their
time in the mesopelagic zone (200 to 1,000 meters deep) and only go to the surface
when they are sick or injured. Oarfish are carnivores that feed primarily on zooplank‐
ton as well as small fish, jellyfish, and squid.

The meat of the oarfish has a gelatinous consistency, so it is not targeted by commer‐
cial fishermen. Humans generally encounter the species only when dead or dying
oarfish wash up on shore. Because of their size and shape, it is thought that oarfish
may be the basis for sea serpent legends. Although their total population is unknown,
there are no known environmental threats to oarfish.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Braukhaus Lexicon. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://deeplearning4j.org
http://deeplearning4j.org
http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	What’s in This Book?
	Who Is “The Practitioner”?
	Who Should Read This Book?
	The Enterprise Machine Learning Practitioner
	The Enterprise Executive
	The Academic

	Conventions Used in This Book
	Using Code Examples
	Administrative Notes
	O’Reilly Safari
	How to Contact Us
	Acknowledgments
	Josh
	Adam

	Chapter 1. A Review of Machine Learning
	The Learning Machines
	How Can Machines Learn?
	Biological Inspiration
	What Is Deep Learning?
	Going Down the Rabbit Hole

	Framing the Questions
	The Math Behind Machine Learning: Linear Algebra
	Scalars
	Vectors
	Matrices
	Tensors
	Hyperplanes
	Relevant Mathematical Operations
	Converting Data Into Vectors
	Solving Systems of Equations

	The Math Behind Machine Learning: Statistics
	Probability
	Conditional Probabilities
	Posterior Probability
	Distributions
	Samples Versus Population
	Resampling Methods
	Selection Bias
	Likelihood

	How Does Machine Learning Work?
	Regression
	Classification
	Clustering
	Underfitting and Overfitting
	Optimization
	Convex Optimization
	Gradient Descent
	Stochastic Gradient Descent
	Quasi-Newton Optimization Methods
	Generative Versus Discriminative Models

	Logistic Regression
	The Logistic Function
	Understanding Logistic Regression Output

	Evaluating Models
	The Confusion Matrix

	Building an Understanding of Machine Learning

	Chapter 2. Foundations of Neural Networks and Deep Learning
	Neural Networks
	The Biological Neuron
	The Perceptron
	Multilayer Feed-Forward Networks

	Training Neural Networks
	Backpropagation Learning

	Activation Functions
	Linear
	Sigmoid
	Tanh
	Hard Tanh
	Softmax
	Rectified Linear

	Loss Functions
	Loss Function Notation
	Loss Functions for Regression
	Loss Functions for Classification
	Loss Functions for Reconstruction

	Hyperparameters
	Learning Rate
	Regularization
	Momentum
	Sparsity

	Chapter 3. Fundamentals of Deep Networks
	Defining Deep Learning
	What Is Deep Learning?
	Organization of This Chapter

	Common Architectural Principles of Deep Networks
	Parameters
	Layers
	Activation Functions
	Loss Functions
	Optimization Algorithms
	Hyperparameters
	Summary

	Building Blocks of Deep Networks
	RBMs
	Autoencoders
	Variational Autoencoders

	Chapter 4. Major Architectures of Deep Networks
	Unsupervised Pretrained Networks
	Deep Belief Networks
	Generative Adversarial Networks

	Convolutional Neural Networks (CNNs)
	Biological Inspiration
	Intuition
	CNN Architecture Overview
	Input Layers
	Convolutional Layers
	Pooling Layers
	Fully Connected Layers
	Other Applications of CNNs
	CNNs of Note
	Summary

	Recurrent Neural Networks
	Modeling the Time Dimension
	3D Volumetric Input
	Why Not Markov Models?
	General Recurrent Neural Network Architecture
	LSTM Networks
	Domain-Specific Applications and Blended Networks

	Recursive Neural Networks
	Network Architecture
	Varieties of Recursive Neural Networks
	Applications of Recursive Neural Networks

	Summary and Discussion
	Will Deep Learning Make Other Algorithms Obsolete?
	Different Problems Have Different Best Methods
	When Do I Need Deep Learning?

	Chapter 5. Building Deep Networks
	Matching Deep Networks to the Right Problem
	Columnar Data and Multilayer Perceptrons
	Images and Convolutional Neural Networks
	Time-series Sequences and Recurrent Neural Networks
	Using Hybrid Networks

	The DL4J Suite of Tools
	Vectorization and DataVec
	Runtimes and ND4J

	Basic Concepts of the DL4J API
	Loading and Saving Models
	Getting Input for the Model
	Setting Up Model Architecture
	Training and Evaluation

	Modeling CSV Data with Multilayer Perceptron Networks
	Setting Up Input Data
	Determining Network Architecture
	Training the Model
	Evaluating the Model

	Modeling Handwritten Images Using CNNs
	Java Code Listing for the LeNet CNN
	Loading and Vectorizing the Input Images
	Network Architecture for LeNet in DL4J
	Training the CNN

	Modeling Sequence Data by Using Recurrent Neural Networks
	Generating Shakespeare via LSTMs
	Classifying Sensor Time-series Sequences Using LSTMs

	Using Autoencoders for Anomaly Detection
	Java Code Listing for Autoencoder Example
	Setting Up Input Data
	Autoencoder Network Architecture and Training
	Evaluating the Model

	Using Variational Autoencoders to Reconstruct MNIST Digits
	Code Listing to Reconstruct MNIST Digits
	Examining the VAE Model

	Applications of Deep Learning in Natural Language Processing
	Learning Word Embedding Using Word2Vec
	Distributed Representations of Sentences with Paragraph Vectors
	Using Paragraph Vectors for Document Classification

	Chapter 6. Tuning Deep Networks
	Basic Concepts in Tuning Deep Networks
	An Intuition for Building Deep Networks
	Building the Intuition as a Step-by-Step Process

	Matching Input Data and Network Architectures
	Summary

	Relating Model Goal and Output Layers
	Regression Model Output Layer
	Classification Model Output Layer

	Working with Layer Count, Parameter Count, and Memory
	Feed-Forward Multilayer Neural Networks
	Controlling Layer and Parameter Counts
	Estimating Network Memory Requirements

	Weight Initialization Strategies
	Using Activation Functions
	Summary Table for Activation Functions

	Applying Loss Functions
	Understanding Learning Rates
	Using the Ratio of Updates-to-Parameters
	Specific Recommendations for Learning Rates

	How Sparsity Affects Learning
	Applying Methods of Optimization
	SGD Best Practices

	Using Parallelization and GPUs for Faster Training
	Online Learning and Parallel Iterative Algorithms
	Parallelizing SGD in DL4J
	GPUs

	Controlling Epochs and Mini-Batch Size
	Understanding Mini-Batch Size Trade-Offs

	How to Use Regularization
	Priors as Regularizers
	Max-Norm Regularization
	Dropout
	Other Regularization Topics

	Working with Class Imbalance
	Methods for Sampling Classes
	Weighted Loss Functions

	Dealing with Overfitting
	Using Network Statistics from the Tuning UI
	Detecting Poor Weight Initialization
	Detecting Nonshuffled Data
	Detecting Issues with Regularization

	Chapter 7. Tuning Specific Deep Network Architectures
	Convolutional Neural Networks (CNNs)
	Common Convolutional Architectural Patterns
	Configuring Convolutional Layers
	Configuring Pooling Layers
	Transfer Learning

	Recurrent Neural Networks
	Network Input Data and Input Layers
	Output Layers and RnnOutputLayer
	Training the Network
	Debugging Common Issues with LSTMs
	Padding and Masking
	Evaluation and Scoring With Masking
	Variants of Recurrent Network Architectures

	Restricted Boltzmann Machines
	Hidden Units and Modeling Available Information
	Using Different Units
	Using Regularization with RBMs

	DBNs
	Using Momentum
	Using Regularization
	Determining Hidden Unit Count

	Chapter 8. Vectorization
	Introduction to Vectorization in Machine Learning
	Why Do We Need to Vectorize Data?
	Strategies for Dealing with Columnar Raw Data Attributes
	Feature Engineering and Normalization Techniques

	Using DataVec for ETL and Vectorization
	Vectorizing Image Data
	Image Data Representation in DL4J
	Image Data and Vector Normalization with DataVec

	Working with Sequential Data in Vectorization
	Major Variations of Sequential Data Sources
	Vectorizing Sequential Data with DataVec

	Working with Text in Vectorization
	Bag of Words
	TF-IDF
	Comparing Word2Vec and VSM Comparison

	Working with Graphs

	Chapter 9. Using Deep Learning and DL4J on Spark
	Introduction to Using DL4J with Spark and Hadoop
	Operating Spark from the Command Line

	Configuring and Tuning Spark Execution
	Running Spark on Mesos
	Running Spark on YARN
	General Spark Tuning Guide
	Tuning DL4J Jobs on Spark

	Setting Up a Maven Project Object Model for Spark and DL4J
	A pom.xml File Dependency Template
	Setting Up a POM File for CDH 5.X
	Setting Up a POM File for HDP 2.4

	Troubleshooting Spark and Hadoop
	Common Issues with ND4J

	DL4J Parallel Execution on Spark
	A Minimal Spark Training Example

	DL4J API Best Practices for Spark
	Multilayer Perceptron Spark Example
	Setting Up MLP Network Architecture for Spark
	Distributed Training and Model Evaluation
	Building and Executing a DL4J Spark Job

	Generating Shakespeare Text with Spark and Long Short-Term Memory
	Setting Up the LSTM Network Architecture
	Training, Tracking Progress, and Understanding Results

	Modeling MNIST with a Convolutional Neural Network on Spark
	Configuring the Spark Job and Loading MNIST Data
	Setting Up the LeNet CNN Architecture and Training

	Appendix A. What Is Artificial Intelligence?
	The Story So Far
	Defining Deep Learning
	Defining Artificial Intelligence

	What Is Driving Interest Today in AI Today?
	Winter Is Coming

	Appendix B. RL4J and Reinforcement Learning
	Preliminaries
	Markov Decision Process
	Terminology

	Different Settings
	Model-Free
	Observation Setting
	Single-Player and Adversarial Games

	Q-Learning
	From Policy to Neural Networks the following
	Policy Iteration
	Exploration Versus Exploitation
	Bellman Equation
	Initial State Sampling
	Q-Learning Implementation
	Modeling Q(s,a)
	Experience Replay
	Convolutional Layers and Image Preprocessing
	History Processing
	Double Q-Learning
	Clipping
	Scaling Rewards
	Prioritized Replay

	Graph, Visualization, and Mean-Q
	RL4J
	Conclusion

	Appendix C. Numbers Everyone Should Know
	Appendix D. Neural Networks and Backpropagation: A Mathematical Approach
	Introduction
	Backpropagation in a Multilayer Perceptron

	Appendix E. Using the ND4J API
	Design and Basic Usage
	Understanding NDArrays
	ND4J General Syntax
	The Basics of Working with NDArrays
	Dataset

	Creating Input Vectors
	Basics of Vector Creation

	Using MLLibUtil
	Converting from INDArray to MLLib Vector
	Converting from MLLib Vector to INDArray

	Making Model Predictions with DL4J
	Using the DL4J and ND4J Together

	Appendix F. Using DataVec
	Loading Data for Machine Learning
	Loading CSV Data for Multilayer Perceptrons
	Loading Image Data for Convolutional Neural Networks
	Loading Sequence Data for Recurrent Neural Networks
	Transforming Data: Data Wrangling with DataVec
	DataVec Transforms: Key Concepts
	DataVec Transform Functionality: An Example

	Appendix G. Working with DL4J from Source
	Verifying Git Is Installed
	Cloning Key DL4J GitHub Projects
	Downloading Source via Zip File
	Using Maven to Build Source Code

	Appendix H. Setting Up DL4J Projects
	Creating a New DL4J Project
	Java
	Working with Maven
	IDEs

	Setting Up Other Maven POMs
	ND4J and Maven

	Appendix I. Setting Up GPUs for DL4J Projects
	Switching Backends to GPU
	Picking a GPU
	Training on a Multiple GPU System

	CUDA on Different Platforms
	Monitoring GPU Performance
	NVIDIA System Management Interface

	Appendix J. Troubleshooting DL4J Installations
	Previous Installation
	Memory Errors When Installing From Source
	Older Versions of Maven
	Maven and PATH Variables
	Bad JDK Versions
	C++ and Other Development Tools
	Windows and Include Paths
	Monitoring GPUs
	Using the JVisualVM
	Working with Clojure
	OS X and Float Support
	Fork-Join Bug in Java 7
	Precautions
	Other Local Repositories
	Check Maven Dependencies
	Reinstall Dependencies
	If All Else Fails

	Different Platforms
	OS X
	Windows
	Linux

	Index
	About the Authors
	Colophon

