
Computer Vision & Convolutional 
Neural Networks


with 



Where can you get help?

• Follow along with the code


• Try it for yourself


• Press SHIFT + CMD + SPACE to read the docstring


• Search for it


• Try again


• Ask

“If in doubt, run the code”

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions


“What is a computer vision 
problem?”



Example computer vision problems

Binary classification

Multiclass classification

“Is this a photo of sushi, steak or pizza?”

Object detection
(one thing or another)

(more than one thing or 
another)

“Is this a photo of steak or pizza?” “Where’s the thing we’re looking for?”

Segmentation

“What are the different sections in this image?”

Source: On-device Panoptic Segmentation for Camera Using Transformers.

https://machinelearning.apple.com/research/panoptic-segmentation


Tesla Computer Vision

Source: Tesla AI Day Video (49:49). PS see 2:01:31 of the same video for surprise ;) 

https://youtu.be/j0z4FweCy4M?t=2989
https://youtu.be/j0z4FweCy4M?t=7291


Tesla Computer Vision

Source: AI Drivr YouTube channel. 

https://www.youtube.com/watch?v=Vz-SyKC9qnM
https://youtu.be/Vz-SyKC9qnM


• Getting a vision dataset to work with using torchvision.datasets


• Architecture of a convolutional neural network (CNN) with PyTorch


• An end-to-end multi-class image classification problem


• Steps in modelling with CNNs in PyTorch


• Creating a CNN model with PyTorch


• Picking a loss and optimizer


• Training a PyTorch computer vision model


• Evaluating a model

How: 👩🔬👩🍳

What we’re going to cover
(broadly)

(we’ll be cooking up lots of code!)



Computer vision inputs and outputs

(often already exists, if not, you can build one)

[[0.31, 0.62, 0.44…],

[0.92, 0.03, 0.27…],

[0.25, 0.78, 0.07…],

…,

W = 224

H = 224


C = 3

Numerical 
encoding

Sushi 🍣

Actual output

Predicted output
(comes from looking at lots 

of these)

(normalized pixel values)

Steak 🥩
Pizza 🍕

224

224

(c = colour channels, R, G, B)

[[0.97, 0.00, 0.03],

[0.81, 0.14, 0.05],

[0.03, 0.07, 0.90],

…,

🥩 🍕🍣

This is often a 

convolutional neural network (CNN)!



[[0.31, 0.62, 0.44…],

[0.92, 0.03, 0.27…],

[0.25, 0.78, 0.07…],

…,

Input and output shapes

[batch_size, width, height, colour_channels]

Shape = [32, 224, 224, 3]

Shape = [3]

(gets represented as a tensor)

224

224

Shape = [None, 224, 224, 3]
or

[0.00, 0.97, 0.03]


🥩 🍕🍣

(prediction probabilities)

(32 is a very common batch 

size)

These will vary depending on the 
problem you’re working on.

(for an image classification example) We’re going to be building CNNs 
to do this part!



[[0.00, 0.62, 0.44…],

[0.00, 0.03, 0.27…],

[0.01, 0.78, 0.07…],

…,

[batch_size, height, width, colour_channels] (NHWC)

Shape = [32, 28, 28, 1]

Shape = [10]

(gets represented as a tensor)28

28

Shape = [None, 28, 28, 1] (NHWC)

or

[0.00, 0.97, …]


👕 👖…🥾

(prediction probabilities)

(32 is a very common batch 
size)

These will vary depending on the 
problem you’re working on.

Input and output shapes

[batch_size, colour_channels, height, width] (NCHW)
or

Shape = [None, 1, 28, 28] (NCHW)

(colour channels last)

(colour channels first)



“What is a convolutional neural 
network (CNN)?”



Let’s code!



FashionMNIST

Multiclass classification

“What type of clothing is in 
this image?”

(more than one thing or 
another)

torchvision.datasets.FashionMNIST

https://pytorch.org/vision/main/generated/torchvision.datasets.FashionMNIST.html


[[0.00, 0.62, 0.44…],

[0.00, 0.03, 0.27…],

[0.01, 0.78, 0.07…],

…,

[batch_size, height, width, colour_channels] (NHWC)

Shape = [32, 28, 28, 1]

Shape = [10]

(gets represented as a tensor)28

28

Shape = [None, 28, 28, 1] (NHWC)

or

[0.00, 0.97, …]


👕 👖…🥾

(prediction probabilities)

(32 is a very common batch 
size)

These will vary depending on the 
problem you’re working on.

Input and output shapes

[batch_size, colour_channels, height, width] (NCHW)
or

Shape = [None, 1, 28, 28] (NCHW)

(colour channels last)

(colour channels first)



FashionMNIST: Batched

torchvision.datasets.FashionMNIST

Batch 0

…

Num samples/
batch_size

1 …

2 …

3 …

4 …

Sample 0 1 2 3 4 5 32

batch_size=32 
(32 samples per batch)

shuffle=True

(samples all mixed up)

torch.utils.data.DataLoader

…

https://pytorch.org/vision/main/generated/torchvision.datasets.FashionMNIST.html
https://pytorch.org/docs/stable/data.html


Architecture of a CNN

(what we’re working towards 
building)

Steak 🥩
Pizza 🍕

(typical)*

*Note: there are almost an unlimited amount of ways you could stack together a convolutional neural network, this slide demonstrates only one.

Sushi 🍣



Typical architecture of a CNN
(coloured block edition)

Simple CNN

Deeper CNN



CNN Explainer model
Input layer Conv2d layers ReLU activation layers Pooling layers Output layer

Source: CNN Explainer website, architecture is known as TinyVGG.

https://poloclub.github.io/cnn-explainer/


Breakdown of torch.nn.Conv2d layer

Hyperparameter name What does it do? Typical values

in_channels Defines the number of input channels of the input data. 1 (grayscale), 3 (RGB color images)

out_channels Defines the number output channels of the layer (could 
also be called hidden units). 10, 128, 256, 512

kernel_size (also referred to as 
filter size)

Determines the shape of the kernel (sliding windows) over 
the input. 

3, 5, 7 (lowers values learn smaller 
features, higher values learn larger 

features)

stride
The number of steps a filter takes across an image at a 

time (e.g. if strides=1, a filter moves across an image 1 
pixel at a time).

1 (default), 2

padding
Pads the target tensor with zeroes (if “same”) to preserve 

input shape. Or leaves in the target tensor as is (if 
“valid”), lowering output shape.

0, 1, “same”, “valid”

Example code: torch.nn.Conv2d(in_channels=3, out_channels=10, kernel_size=(3, 3), stride=(1, 1), padding=0)

Example 2 (same as above): torch.nnConv2d(in_channels=3, out_channels=10, kernel_size=3, stride=1, padding=0)

📖 Resource: For an interactive demonstration of the above hyperparameters, see the CNN Explainer website.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://poloclub.github.io/cnn-explainer/


📖 Resource: For an interactive demonstration of the above hyperparameters, see the CNN Explainer website.

Breakdown of torch.nn.Conv2d layer
(Visually)

https://poloclub.github.io/cnn-explainer/
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html


FashionMNIST -> CNN

👕

👖

🥾

👡

👗

…

Keep going until number 
of classes is fulfilled

Inputs

[[0.00, 0.62, 0.44…],

[0.00, 0.03, 0.27…],

[0.01, 0.78, 0.07…],

[0.21, 0.34, 0.00…],

[0.91, 0.66, 0.81…],

[0.90, 0.55, 0.99…],

[0.00, 0.22, 0.57…],

…,

Numerical 
encoding

Layers learn numerical 
representation

Output layer outputs 
predictions



torch.optim torch.nn

torch.nn.Module

torchvision.models

torchmetrics

See more: https://pytorch.org/tutorials/beginner/ptcheat.html 


torch.utils.data.Dataset

torch.utils.data.DataLoader

torchvision.transforms

torch.utils.tensorboard

torch.save

torch.load

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/vision/stable/models.html
https://torchmetrics.readthedocs.io/en/latest/
https://pytorch.org/tutorials/beginner/ptcheat.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/stable/data.html
https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/docs/stable/tensorboard.html
https://pytorch.org/docs/stable/generated/torch.save.html
https://pytorch.org/docs/stable/generated/torch.load.html


What is overfitting?
Overfitting — when a model over learns patterns in a particular dataset and isn’t able to 
generalise to unseen data.


For example, a student who studies the course materials too hard and then isn’t able to perform 
well on the final exam. Or tries to put their knowledge into practice at the workplace and finds 
what they learned has nothing to do with the real world.

BalancedUnderfitting Overfitting
(goldilocks zone)



Improving a model

Common ways to improve a deep model:

• Adding layers

• Increase the number of hidden units

• Change/add activation functions

• Change the optimization function

• Change the learning rate

• Fitting for longer

(from a model’s perspective)

Smaller model

Larger model

(because you can alter each of 
these, they’re hyperparameters)



Improving a model
(from a data perspective)

Method to improve a model 

(reduce overfitting)

What does it do?

More data
Gives a model more of a chance to learn patterns between samples 

(e.g. if a model is performing poorly on images of pizza, show it more 
images of pizza).

Data augmentation

Increase the diversity of your training dataset without collecting more 
data (e.g. take your photos of pizza and randomly rotate them 30°). 

Increased diversity forces a model to learn more generalisation 
patterns.

Better data
Not all data samples are created equally. Removing poor samples 
from or adding better samples to your dataset can improve your 

model’s performance.

Use transfer learning
Take a model’s pre-learned patterns from one problem and tweak 

them to suit your own problem. For example, take a model trained on 
pictures of cars to recognise pictures of trucks.



What is data augmentation?

Original Rotate Shift Zoom

Looking at the same image but from different perspective(s)*.

*Note: There are many more different kinds of data augmentation such as, cropping, replacing, shearing. This slide only demonstrates a few.



Popular & useful computer vision 
architectures: see torchvision.models
Architecture

Release 
Date

Paper Use in PyTorch When to use

ResNet (residual 
networks)

2015
https://arxiv.org/abs/

1512.03385
torchvision.models.resnet…

A good backbone for 
many computer vision 

problems

EfficientNet(s) 2019
https://arxiv.org/abs/

1905.11946
torchvision.models.efficientnet…

Typically now better than 
ResNets for computer 

vision

Vision Transformer (ViT) 2020
https://arxiv.org/abs/

2010.11929
torchvision.models.vit_…

Transformer architecture 
applied to vision

MobileNet(s) 2017
https://arxiv.org/abs/

1704.04861
torchvision.models.mobilenet…

Lightweight architecture 
suitable for devices with 

less computing power

https://pytorch.org/vision/stable/models.html
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1704.04861


The machine learning explorer’s 
motto

“Visualize, visualize, visualize”

Data

Model

Training

Predictions

It’s a good idea to visualize 

these as often as possible. 



The machine learning practitioner’s 
motto

“Experiment, experiment, experiment”


👩🔬👩🍳
(try lots of things and see what 

tastes good)


