Going modular

with

Where can you get help?

05_pytorch_going

colab.research.google.co » O O

©) 05_pytorch_going_modular_script_mode.ipynb e shae £ (A
File Edit View Insert Runtime Tools Help '

Copy to Drive

4

——

~ 3.1 Making a model (TinyVGG) (script mode)

fin douwbt rum the code”

[14)] $%writefile going_modular/model_builder.py
1€ D model code instantiate a
. rt torch
f torch import nn
> class \yVG n.Mod
"*""Creates

Replicates the T E 2cture f th NN explainer w in PyTorch.

lain

integer in channels. noduiar x

hid inte iic 3) L
hidd un integ dic 2 >f h un & colab ch.google.com/gitt
output shape: An integer indicatinc er of output units.

. (self, input_shap int, hidden_units: int, output_shape: int) -> None:
E super(). init ()
2 self.conv_block_1 = nn.Sequential(

nn.Conv2d(in_channels=input_shape,
out_channels=hidden_units,

) 05_pytorch_going_modular_script_mode.ipynb

File Edit View Insert Runtime Tools Help
Text & Cop = e Vd
: StrOrBytesPath % :

0. Creating a fold¢

kedirs(name [, mode=00777][, exist_ok=False])

10s completed at 11:12 Since we're going to Super-mkdir; create a leaf directory and all intermediate ones. Workate a folder for storing those scripts
that any intermediate path segment (not just the right

Welll call the folder going created if it does not exist. If the target directory already #d

raise an OSError i st_ok is False. Otherwise no exception

Press SHIFT + CMD + SPACE to read the docstring

We're going to start by downloading the same data we used in notebook 04, the pizza_steak_sushi dataset with images of pizza, steak and

t os
requests

zipfile

Search for it stackoverflow B =

image path.is dir():

completed at 11:10

Try again
Ask

Issues Y ament

(0 @ pytorch.org/dc

= mrdbourke / pytorch-deep-learning Fub! @ Unwatch 4 ~ % Fork M Starred

Get

Ecosystem Mobile Blog Tutorials Docs v Resources v GitHub
Started

1 Pull req € Discussions ») Actions [Projects Security

h documentation Edit on GitHub Shortcuts

PYTORCH DOCUMENTATION

Indices and tables

¥ PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.
otes [+

Language Bindings Features described in this documentation are classified by release stati
anguage dings

o Top: All Label ~ Filter ~ Python API Stable: These features will be maintained long-term and there
should generally be no major performance limitations or gaps in
documentation. We also expect to maintain backwards
compatibility (although breaking changes can happen and notice

will be given one release ahead of time).

Categories 7 Discussions

m r 2 & Welcome to pytorch-deep-learning Discussions!

it " neemen

Beta: These features are tagged as Beta because the APl ma
change based on user feedback, because the performance needs
to improve, or because coverage across operators is not yet
complete. For Beta features, we are committing to seeing the
feature through to the Stable classification. We are not, however,
committing to backwards compatibility.

Prototype: These features are typically not available as part of

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions s

run-time flags, and are at an early stage for feedback and testing.

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

“What is going modular?”

“I've written some nice code in a notebook, can | reuse it elsewhere?”

Yes.

What we’re going to build

FoodVision Mini

Build/train a model Predict with the model

. .

we're going to turn the code to do
this from notebook cell code Lnto a

sertes of PYytho gscnpts

o

What we’re going to build

FoodVision Mini

we're going to turn the code to do
this from notebook cell code Lnto a
series of PYythow scripts

2

going_modular/

—— going_modular/ /
— data_setup.py

—— models/

— data/

Prepares data

Functions to traitn/test

— engine.py
—— model_builder.py
—— train.py <
— Utils.py <

/Buiwls a PYyTorch wmodel

TraLns a PYTorch meodel
uttlity functions

—— 05_going_modular_cell_mode_tinyvgg_model.pth
L— 05_going_modular_script_mode_tinyvgg_model.pth

T Tvrained models

L pizza_steak_sushi/

— train/
— pizza/ \ ’
R pata wn standarod
iy Lmage classification
— hi/
S testjus : ']CDVVM/at
— pizza/
steak/
—— sushi/

PyTorch from the command line

Target Python script How big should the batch size be? Train for how long?
python: tra1n pyf;model MODEL NAME}—batch size BATCH SIZE{ Lr LEARNING RATE :—hum_epochs NUM EPOCHS
Model to train What should the learning rate be?

python train.py —model tinyvgg —batch size 32 —1r 0.001 —num epochs 10

Note: there are many WLOYE
hgpevpamme’cers you couwld adad here

“Train the TinyVGG model with a batch size of 32
and a learning rate of 0.001 for 10 epochs.”

PyTorch in the wild

(examples of Python scripts)

Training & Evaluation in Command Line

We provide two scripts in “tools/plain_train_net.py” and “tools/train_net.py” that are made to train
P P /plain_ - Py / - Py ¥ main v vision [references [detection / Go to file Add file ~

all the configs provided in detectron2. You may want to use it as a reference to write your own
training script.

6} datumbox Fix regression on Detection training script (#5985) X 3ec4b94 5 days ago @ History

n «

Compared to “train_net.py”, “plain_train_net.py” supports fewer default features. It also includes
fewer abstraction, therefore is easier to add custom logic.

README.md Port Multi-weight support from prototype to main (#5618) 2 months ago
To train a model with “train_net.py”, first setup the corresponding datasets following
datasets/README.md, then run:

coco_eval.py Replace asserts with exceptions (#5587) 2 months ago
coco_utils.py Replace asserts with exceptions (#5587) 2 months ago

engine.py support amp training for detection models (#4933) 6 months ago
cd tools/

./train_net.py —--num-gpus 8 \

roup_by_aspect_ratio. Use f-strings almost everywhere, and other cleanups by applying pyupg... 7 months ago
--config-file ../configs/C0OCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml group_by_asp Py ¢ d ps By ying pyupg J

presets.py Detection recipe enhancements (#5715) 2 months ago

The configs are made for 8-GPU training. To train on 1 GPU, you may need to change some train.py Fix regression on Detection training script (#5985) 5 days ago

parameters, e.g.: transforms.py Adding RandomShortestSize transform (#5610) 2 months ago

I I I I N I N I

utils.py Use f-strings almost everywhere, and other cleanups by applying pyupg... 7 months ago
./train_net.py \
-—-config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
——num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025

Source: torchvision object detection GitHub.

Source: Detectron2 documentation.

Fine-tuning
Download the pretrained model from here.

To finetune with multi-node distributed training, run the following on 4 nodes with 8 GPUs each:

Using our standard training reference script, we can train a ResNet50 using the following command: python submitit_finetune.py \

——job_dir ${JOB_DIR} \

——nodes 4 \

—--batch_size 32 \

——model convvit_base_patchl6 \

——finetune ${PRETRAIN_CHKPT} \

——epochs 100 \

——blr 5e-4 —-layer_decay 0.65 \

--weight_decay 0.05 --drop_path 0.1 —-reprob 0.25 —-mixup 0.8 —--cutmix 1.0 \
--dist_eval —-data_path ${IMAGENET_DIR}

torchrun --nproc_per_node=8 train.py --model resnet50 --batch-size 128 --1r 0.5 \
--1lr-scheduler cosineannealinglr --lr-warmup-epochs 5 --lr-warmup-method linear \
--auto-augment ta_wide --epochs 600 --random-erase 0.1 --weight-decay 0.00002 \
--norm-weight-decay 0.0 --label-smoothing 0.1 --mixup-alpha 0.2 --cutmix-alpha 1.0 \

--train-crop-size 176 --model-ema --val-resize-size 232 --ra-sampler --ra-reps 4

Source: ConvMAE paper GitHub.

Source: Training state-of-the-art computer vision models with torchvision from the PyTorch blog.

https://github.com/Alpha-VL/ConvMAE/blob/main/FINETUNE.md
https://github.com/pytorch/vision/tree/main/references
https://detectron2.readthedocs.io/en/latest/tutorials/getting_started.html
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/#break-down-of-key-accuracy-improvements

My workflow

(exper'wwewt, e)qser'wwewt, exper'umewt!)

ytorch_custom_datase X +
C 0 @ colab.research.google.com/github/mrdbourke/pytorch-deep-learning/blob/m /04_pytorch_custo U * y * = 0O @

() 04_pytorch_custom_datasets.ipynb

GD Share Q \(-.-!
File Edit View Insert Runtime Tools Help

axt # Copy to Drive Dish 7

04. PyTorch Custom Datasets

In the last notebook, notebook 03, we looked at how to build computer vision models on an in-built dataset in PyTorch (FashionMNIST).
The steps we took are similar across many different problems in machine learning.

Find a dataset, turn the dataset into numbers, build a model (or find an existing model) to find patterns in those numbers that can be used for
prediction.

PyTorch has many built-in datasets used for a wide number of machine learning benchmarks, however, you'll often want to use your own
custom dataset.

What is a custom dataset?

A custom dataset is a collection of data relating to a specific problem you're working on.
In essence, a custom dataset can be comprised of almost anything
For example, if we were building a food image classification app like Nutrify, our custom dataset might be images of food.

Or if we were trying to build a model to classify whether or not a text-based review on a website was positive or negative, our custom dataset
might be examples of existing customer reviews and their ratings.

Or if we were trying to build a sound classification app, our custom dataset might be sound samples alongside their sample labels.

Or if we were trying to build a recommendation system for customers purchasing things on our website, our custom dataset might be examples

of products other people have bought.

PyTorch Domain Libraries

i : . “Are these reviews positive or negative?”
“Is this a photo of pizza, steak or sushi?” ra
: ‘ - '; Y R . y P
i3 - AT & :

TorchVision

7s completed at 10:40

Start with Jupyter/Google Colab notebooks

one of many optiows)

data setup.py

import os

from torchvision import datasets, transforms
from torch.utils.data import DatalLoader

NUM_WORKERS = o0s.cpu_count()

def create_dataloaders(train_dir: str, test_dir: str, transform: transforms.Compose,
batch_size: int, num_workers: int=NUM_WORKERS
DE

"""Creates training and testing Dataloaders.

Args:
train_dir: Path to training directory.
test_dir: Path to testing directory.
transform: torchvision transforms to perform on training and testing data.
batch_size: Number of samples per batch in each of the DatalLoaders.
num_workers: An integer for number of workers per DatalLoader.

Returns:
A tuple of (train_dataloader, test_dataloader, class_names).
Where class_names is a list of the target classes.
Example usage:
train_dataloader, test_dataloader, class_names = \
= create_dataloaders(train_dir=path/to/train_dir, test_dir=path/to/test_dir,
transform=some_transform, batch_size=32, num_workers=4)
Use ImageFolder to create dataset(s)
train_data = datasets.ImageFolder(train_dir, transform=transform)
test_data = datasets.ImageFolder(test_dir, transform=transform)

Get class names
class_names = train_data.classes

Turn images into data loaders

train_dataloader = DatalLoader(train_data, batch_size=batch_size, shuffle=True,
num_workers=num_workers, pin_memory=True

)

test_dataloader = DatalLoader(test_data, batch_size=batch_size, shuffle=False,
num_workers=num_workers, pin_memory=True

return train_dataloader, test_dataloader, class_names

Move most useful code to Python scripts

Cellmode vs. Script mode

05_pytorch_going_modular_c X - 05_pytorch_going_modular_s: X +

C O @ colab.research.google.com/github/mrdbourke/pytorch-deep-learning/b...) % @ % O ;'fﬁ. : @ colab.research.google.com/github/mrdbourke/pytorch-deep-learning/b...) % O © * 0O &+

V

() 05_pytorch_going_modular_script_mode.ipynb

File Edit View Insert Runtime Tools Help Cannot save changes

) 05_pytorch_going_modular_cell_mode.ipynb

File Edit View Insert Runtime Tools Help Cannot save changes

@ Share £t lrfe‘-j

& @ Share £t S

+ Code + Text & Copy to Drive g’ Editing . + Code + Text & Copy to Drive g’ Editing

~ 3. Making a model (TinyVGG) ~ 3.1 Making a model (TinyVGG) (script mode)

We're going to use the same model we used in notebook 04: TinyVGG from the CNN Explainer website.) e EEEEEEEEEEEEEEEEEEEEEEEEEEEW

|
[14] m%%writefile going modular/model builder.py *

‘H”l”lllllllllllllllllllllllllll’

The only change here from notebook 04 is that a docstring has been added using Google's Style Guide for Python.

Contains PyTorch model code to instantiate a TinyVGG model.

nnn

y B I E EEENEEEEEEEENEEENEEERNN
import torch

[91]

from torch import nn import torch

from torch import nn

class TinyVGG(nn.Module):

class TinyVGG(nn.Module):

Creates the TinyVGG architecture.
Creates the TinyVGG architecture.

Replicates the TinyVGG architecture from the CNN explainer website in PyTorch.

(R
H O W oo N e W

See the original architecture here: https://poloclub.github.io/cnn-explainer/ Replicates the TinyVGG architecture from the CNN explainer website in PyTorch.

=
N

See the original architecture here: https://poloclub.github.io/cnn-explainer/

Args:

input shape: An integer indicating number of input channels. Args:

1
2
3
4
5
6
7
8
9
0
1
2

L 2
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e

hidden units: An integer indicating number of hidden units between layers. input_shape: An integer indicating number of input channels.

output shape: An integer indicating number of output units.

=
v U W

[
(o)}

hidden units: An integer indicating number of hidden units between layers.
output shape: An integer indicating number of output units.

w

-
=

e

00

[
w

def init (self, input shape: int, hidden units: int, output shape: int) -> None:

super(). init () def init (self, input shape: int, hidden units: int, output shape: int) -> None:

super(). init ()

(e -
~J O\

ol

O ©
) N =
o v

N
=

self.conv_block 1 = nn.Sequential(
nn.Conv2d(in_channels=input_shape,
out_channels=hidden units,

self.conv_block 1 = nn.Sequential(
nn.Conv2d(in_channels=input_shape,
out_channels=hidden units,

..lllllllllllllllllllllllllll’
N
N

)
N
W

20 » kernel size=3, # how big is the square that's going over the image:
4 EEEEEEEEEEEEEEEEEREEEEEEEEEENEEEEEEEEEEEEEEEEENEEEEEEEEENER

| 2

10s completed at 11:11 @ 10s completed at 11:12

Notebook 05 Part 1: Cell mode Notebook 05 Part 2: Script mode
(twrns useful code into Python scripts)

torchvision.transforms

torch.utils.data.Dataset
. ; _ ren., ‘' torch.save
torch.utils.data.Dataloader : : : torch load

2. Build or pick a
1. Get data ready pretrained model
(turn into tensors) ::(to suit your problem)

I O

2.2 Build a training loop

3. Fit the model to the 4. Evaluate the model 5. Improve through 6. Save and reload
data and make a experimentation your trained model
prediction

2.1 Pick a:loss function-& optimizer

torch.nn

torch.nn.Module Each ofthese wuw[be turned

into a Python script!

: torchvision.models :

See more: https: . ' ' . é

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/vision/stable/models.html
https://torchmetrics.readthedocs.io/en/latest/
https://pytorch.org/tutorials/beginner/ptcheat.html
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/docs/stable/tensorboard.html
https://pytorch.org/docs/stable/generated/torch.save.html
https://pytorch.org/docs/stable/generated/torch.load.html

What we’re going to cover
(broaoltg)

Transforming data for use with a model

Loading custom data with pre-built functions

Building FoodVision Mini to classify € && images

Turning useful notebook code (all of the above) into Python
scripts

Training a PyTorch model from the command line

(we'll be cooking up lots of code!)

Let’s codel

Standard image classification data format

Your own Aata format
will depend on what
You're working

pizza_steak_sushi/ # <- overall dataset folder
train/ # <- training images
pizza/ # <— class name as folder name
image@l. jpeg
image02. jpeg

steak/
image24. jpeg
image25. jpeg

sushi/
image37.jpeg

test/ # <- testing images
pizza/
imagel@l. jpeg
imagel02. jpeg

steak/
imagelb54. jpeg
imagel55. jpeg

sushi/
imagel67/. jpeg

