Transfer Learning with

Where can you get help?

earning. X 4

@ colab.research.google.com/github/mrdbourke/pytorc ¢ g/blob/main/06_pytor 2 h & O *» 0O @

() 06_pytorch_transfer_learning.ipynb

File Edit View Insert Runtime Tools Help

G Share £3 R

+ Code + Text # Copy to Drive

4

——

fin douwbt rum the code”

06. PyTorch Transfer Learning

We've built a few models by hand so far.

o
O o W a o n W I e < : o e > But their performance has been poor.
You might be thinking, is there a well-performing model that already exists for our problem?

And in the world of deep learning, the answer is often yes.

We'll see how by using a powerful technique called transfer learning.

What is transfer learning?

°)
Transfer learning allows us to take the patterns (also called weights) another model has learned from another problem and use
them for our own problem.

@& colab.research.google.com/github/mrdbourke/pytorch-deep-le blob/main/06_pytorc L b W » 0O @

() 06_pytorch_transfer_learning.ipynb

G Share £ ;f-u
File Edit View Insert Runtime Tools Help

+ Code + Text) D Dish Vd

VYE @ISU UUILIIEEU WU UU LIS, INEUIAL TIEWWUIRD alt uduaily uile vapauie Ul yuiiily vutl appiupiiaie uata uisuivuuuns

0s completed at 12:58

(they'll calculate where the mean and standard deviations need to be on their own) but setting them at the start can

help our networks achieve better performance quicker.

Let's compose a series of torchvision.transforms to perform the above steps.

o O 2
) ° # Create a transforms pipeline
ress + + O rea € docstrin
transforms.Resize((224, 224)), # 1 : ay
i transforms.ToTensor(), # 2. Turn ijComposes several transforms together. This transform does not suj

transforms.Normalize(mean + |Please, see the note below.

std=[0.229, 0
Args:

transforms (list of Transform objects): list of transforms to cor

Example:
Wonderful!
. >>> transforms.Compose ([
Now we've got a series of transforms ready to prepare ot ., transforms.CenterCrop(10),

transforms.PILToTensor(),

o >
We can create these using the create_dataloaders ful>>”
e a r C O r I Modular Part 2 iii . transforms.ConvertImageDtype(torch.flo
We'll set batch size=32 so our model see's mini-batches of 32 samples at a time.

0Os completed at 12:58

Try again
Ask

Issues Marketp! Explore a ch documenta

(0 @ pytorch.org/dc

PyT h Get

Started

= mrdbourke / pytorch-deep-learning Pub @ Unwatch 4~ Y Fork M

Ecosystem Mobile Blog Tutorials Resources v GitHub
€ Discussions ») Actions il Security

ch documentation Edit on GitHul S

Search Docs PYTORCH DOCUMENTATION

Indices and tables

¥ PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.
otes [+

Language Bindings Features described in this documentation are classified by release status:
anguage dings

New Top: All Label ~ Filter ~ Stable: These features will be maintained long-term and there

Python API
should generally be no major performance limitations or gaps in
documentation. We also expect to maintain backwards
compatibility (although breaking changes can happen and notice

will be given one release ahead of time).

Categories Discussions

& Welcome to pytorch-deep-learning Discussions!

ik " nceme

Beta: These features are tagged as Beta because the APl may
change based on user feedback, because the performance n

to improve, or because coverage across operators is not yet
complete. For Beta features, we are committing to seeing the
feature through to the Stable classification. We are not, however,
committing to backwards compatibility.

Prototype: These features are typically not available as part of

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions s

run-time flags, and are at an early stage for feedback and testing.

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

“What is transfer learning?”

Surely someone has spent the time crafting the right model for the job...

Example transfer learning use cases

Computer vision

‘IIIIll.l... ‘-III..
. L 4
. . g .
.‘ w |mageNet X -+ “ .‘ “
ol C (0 A NotSecure | image-net.orgfindex a N a
[u [|
| u []
m =] |
m -] [
u | M [} G E u | =
m =] |
m -] [
| u u ™
] |
- 1e WordNet m : :
L] i n [/ [
[| mageN | ™ -
m -] [
u Click here t¢ abou Net, Click here = _> [] _> u
m =] |
m -] [
| u [] \\\\‘ m
m =] |
m -] [
| u u ™
i En - ; o
m i -] [
| E -] =
- AT ™ - -
- i - u A [
- - | n) [|
“ Find out! : “ ‘ ..
2 ¢ . ¢
. ¢ * L 2
4 L 4
..ll----------------------n------------_---ll.“ ..llII“’
‘-IIIIIIlll.l... “-lll..
4
L 2 * L 2 2
. \g 04 .
! \g N Y
N a [| n
[L [u
] u [n
] u u ™
L] Y - =]
|
: & Notlogged in Talk Contributions ccount Log in - : . . T . d M |@ d b |< u
: : = To: daniel@mrdbourke.com 0: daniel@mrdbourke.com I
Read Edit View history Wikip Q
] | ™ . .]
; : s = Hey Daniel, Hay daniel... .
o Transfer learning = - -
u From Wikipedia, the free encyclopedia : u L]
|] |
[] Transfer learning (TL) is a research problem in machine learning (ML) that focuses on storing knowledge gained while |] . . . R . . . u
m solving one problem and applying it To adiﬁerentlbut related problemi” For example, knowledge géined while Iearrjing to [_> m T h | S d e e p |ea rn | n g CO U rse |S | n C re d | b | e! COO n g rat U1 at | O n S! U Wl n $1 1 392 39230 -
] recognize cars could apply when trying to recognize trucks. This area of research bears some relation to the long history of |] |
m psychological literature on transfer of learning, although formal ties between the two fields are limited. From the practical [} ™) .) n
m standpoint, reusing or transferring information from previously learned tasks chr the learning of new tasks has the potential to [m | C a n t Wa It to U Se W h at | Ve | e a r n e d ! -
m significantly improve the sample efficiency of a reinforcement learning agent.[“ [m -
u Contents [hide] u | []
u 1 History u L] |
u 2 Definition u n | |
u 3 Applications u] ||
[u [u
! g o Ol Spam Pam g
| | 6 Sources L | | []
[u u]
- What links here 1 s -
. & . ¥
* ¢ * L 4
L 4 ’0 4 *

L 4 L 2
S g N EEESEEEEEEEEESEEEEESEESEEEEEEEEEEEEEEEEEEEEmns® Sy EEE NN EEE N EEEE N EEER®

Model learns patterns/weights from similar problem space Patterns get used/tuned to specific problem

mailto:daniel@mrdbourke.com
mailto:daniel@mrdbourke.com

“Why use transfer learning?”

Why use transfer learning?

o Can leverage an existing neural network architecture proven to work on problems similar to our
own
o Can leverage a working network architecture which has already learned patterns on similar

data to our own (often results in great results with less data)

Pretrained EfficientNet
architecture (already works

really well on computer vision
tasks)

Extract/tune patterns/weights
to suit our own problem
(FoodVision Mini)

Learn patternsina
wide variety of images
(using ImageNet)

Model performs better
than from scratch

Improving a model

Method to improve a model

it do?
(reduce overfitting) What does it do?

Gives a model more of a chance to learn patterns between samples
More data (e.g. if a model is performing poorly on images of pizza, show it more
images of pizza).

Increase the diversity of your training dataset without collecting more
data (e.g. take your photos of pizza and randomly rotate them 30°).
Increased diversity forces a model to learn more generalisation
patterns.

Data augmentation

Not all data samples are created equally. Removing poor samples
Better data from or adding better samples to your dataset can improve your
model’s performance.

Take an existing model’s pre-learned patterns from one problem and
Use transfer learning tweak them to suit your own problem. For example, take a model
trained on pictures of cars to recognise pictures of trucks.

Where to find pretrained models

O rwightman/pytorch-image-m X +

Models and pre-trained weig X +
c 0 @ github.com/rwightman/pytorch-image-models

< C 0 @ pytorch.org/vision/stable/models.html w O © *» O &5

O Search or jump to... Pullrequests Issues Marketplace Explore LT + - c'

O PyTorch Get

Ecosystem Mobile Blog Tutorials C Resources v GitHub
Started

& rwightman [/ pytorch-image-models ' Public Q) sponsor > Watch 272 ~ % Fork 3.k Starred 18.6k

> Models and pre-trained weights [>-] shortcuts
<> Code () Issues 48 19 Pullrequests 16 () Discussions () Actions [Projects [J Wiki @ Security |22 Insights

A search Docs MODELS AND PRE-TRAINED WEIGHTS Mo Pretrained

P master v+ ¥ 18branches © 31tags Go to file Add file ~ <> Code ~ About

The torchvision.models subpackage contains definitions of models for addressing different tasks, PyTorch image models, scripts

i rwightman Merge pull request #1266 from kaczmarjfenh/... .. fd360ac 2 daysago ¥ 1,383 commits pretrained weights -- ResNet, ResNeXT,
EfficientNet, EfficientNetV2, NFNet,

.github Update pytest for GitHub runner to use --forked with xdis... 5 months ago Vision Transformer, MixNet, MobileNet-

V3/V2, RegNet, DPN, CSPNet, and more

Package Reference . L e N . . . -
including: image classification, pixelwise semantic segmentation, object detection, instance

segmentation, person keypoint detection, video classification, and optical flow.

convert Move aggregation (convpool) for nest into NestLevel, clea... 11 months ago

2 i i i - -
docs Update README and change timmdocs link in documenta... last month ¢ rwightman.github.io/pytorch-image-m...

Backward compatibility is guaranteed for loading a serialized state_dict to the model
created using old PyTorch version. On the contrary, loading entire saved models or serialized

ScriptModules (seralized using older versions of PyTorch) may not preserve the historic

results Update PyTorch 1.10 benchmark numbers for latest code 2 months ago et Jesnet pESpeodel>

Feature extraction for model inspection i . i mixnet pretrained-weights
e ‘ Odel Inspecti behaviour. Refer to the following documentation tests Swin-V2 test fixes, typo 10 days ago

imagenet-classifier distributed-training

timm Make dev version 0.6.2.dev0 for pypi pre 7 days ago dual-path-networks cnn-classification

Examples and training references)
mobilenet-v2 mnasnet

C l ass lﬁ cation .gitattributes Add .gitattributes 3 years ago

mobile-deep-learning mobilenetv3

The models subpackage contains definitions for the following model architectures for image -gitignore Update gitignore, remove out of date notebooks 2 months ago

classification:

efficientnet augmix randaugment

LICENSE Add Apache LICENSE file 3 years ago efficientnet-training nfnets

PyTorch domains libraries (torchvision, torchtext, torchaudio, Torch Image Models (t imm library).
torchrec). Source: https://pytorch.org/vision/stable/models.html Source: https://github.com/rwightman/pytorch-image-models

the State-of-
Models - Hugging Face X +
& paperswithcode.com/so
huggingface.co/models e h % 0O U *» O

% Hugging Face Models Datasets Spaces Docs Solutions Pricing LogIn Sign Up

e State-of-the-Art

hmarks 3,092 tasks 71,000 papers with code

Models 1l Sort: Most Downloads
Image Classification Translation
Image Segmentation Fill-Mask distilgpt2
Automatic Speech Recognition
Token Classification Sentence Similarity

Audio Classification €9 Question Answering

Summarization Zero-Shot Classification

bert-base-uncased Computer Vision

Libraries

distilbert-base-uncased-finetuned-sst-2-english
PyTorch ¢ TensorFlow o#% JAX

1 * TN : ‘{“ ann

L

Semantic Object Detection Image Generation Denoising
Segmentation Classification

™

Datasets
roberta-base
common_voice wikipedia squad glue

bookcorpus emotion conll2003 =

SEBIS/code_trans_t5_small_program_synthese_transfer_lea..

@ HuggingFace Hub. Paperswithcode SOTA.
Source: https://huggingface.co/models Source: https://paperswithcode.com/sota

https://pytorch.org/vision/stable/models.html
https://huggingface.co/models
https://github.com/rwightman/pytorch-image-models
https://paperswithcode.com/sota

What we’re going to cover
(broadtg)

o Getting setup (importing previously written code)

e Introduce transfer learning with PyTorch

e Customise a pretrained model for our own use case
(FoodVision Mini € &)

o Evaluating a transfer learning model

e Making predictions on our own custom data

(we'll be cooking up lots of code!) €8 :
How:

Let’s codel

Original Model vs. Feature Extraction

nas, Ol,d:‘Pl/d: Laaer(s) gets trained

Changes i .:v- . on WEW data

ImageNet has
1000 classes

Working
architecture (original model La gjers

(e.g. EfficientNet) : - : dow't wpdlate during training)
A uressarnasannans’ ' :
-

Stays same (frozen)

Changes

Large dataset (e.g. ImageNet) Different dataset (e.g. 3 classes of food € &> &)

Original Model Feature Extraction Transfer Learning Model

Large dataset (e.g. ImageNet)

Original Model

Kinds of Transfer Learning

Changes Stays same
Changes
(unfrozen)
Stays same g
(frozen)
Stays same
(frozen)
Changes Might change

Different dataset (e.g. 3 classes of food € 2 R)

Feature Extraction

Top Layers get trained
on new data

Fine-tuning

Kinds of Transfer Learning

Type Description What happens When to use

Take a pretrained model as it is and

Original model (“Asis”) apply it to your task without any
changes.

The original model remains Helpful if you have the exact same kind of data
unchanged. the original model was trained on.

Take the underlying patterns (also
called weights) a pretrained model
has learned and adjust its outputs
to be more suited to your problem.

Helpful if you have a small amount of custom
data (similar to what the original model was
ined on) and want to utilise a pretrained model
to get better results on your specific problem.

Most of the layers in the original
model remain frozen during training fra
(only the top 1-3 layers get updated).

Feature extraction

Helpful if you have a large amount of custom data
and want to utilise a pretrained model and
improve its underlying patterns to your specific
problem.

Take the weights of a pretrained Some, many or all of the layers in
Fine-tuning model and adjust (fine-tune) them the pretrained model are updated
to your own problem. during training.

EfficientNet feature extractor

Input data

(Pizza, Steak, SUShi) Changes
Stays same

(frozen, pretrained on ImageNet)

“II..

(same shape as number
of classes)

‘0

112x112x32
112x112x16

™

x
<
N
N

X
v
N
N

56x56x24
56x56x24
28x28x40
28x28x40
28x28x80
28x28x80
28x28x80
14x14x112
14x14x112
14x14x112
7x7x192
7xX7x192
7x7x192
7x7x192
7x7x320

Conv3x3
MBConv1, 3x3
MBConv6, 3x3
MBConv6, 3x3
MBConv6, 5x5
MBConv6, 5x5
MBConv6, 3x3
MBConv6, 3x3
MBConv6, 3x3
MBConv6, 5x5
MBConv6, 5x5
MBConv6, 5x5
MBConv6, 5x5
MBConv6, 5x5
MBConv6, 5x5
MBConv6, 5x5
MBConv6, 3x3

“IIIIIIIIIIIIIIIIIII..

4
..llllllllllllllllll-‘

L 2
4
L 4

..llllII-‘

EfficientNetBO architecture. Source: https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

EfficlentNet®Bo Backbone Linear classifier Layer
(torchvision.models.efficientnet_b0) (torch,nn.Linear)

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

EfficientNet feature extractor

EfficlentNet®o Backbone e femtures
(torchvision.models.efficientnet bO(prertained=True) Extracts

000 fVDVM, mege
o L o

(features) Sequential(
(@) : ConvNormActivation(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(2): SiLU(inplace=True)
)
(1): Sequential(
(0): MBConv(
(block): Sequential(
(@) : ConvNormActivation(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
: (1): BatchNorm2d(32, eps=1le-05, momentum=0.1, affine=True) ,
. (2): SiLU(inplace=True) TUrns -(:eatures tnto a ‘featbt\fﬂ

.. / vector (by taking the average)
Zé'v' gpool) : AdaptiveAvgPool2d(output_size=1): Turns feature vector

e i R TTTIITECOTIITES

(c1a551f1er Sequential
(@): Dropout(p=0.2, inplace=Trye).......cccuuuunnns : —
(1): Linear(in_features=1280, out _features= 1@@@ b1as-True)

)'. ... - can adjust dC‘PCVbdiwg own the
number of classes You have

4 N
|

into prediction Logits

EfficientNet feature extractor —
changing the classifier head

EfficientNet®o Backbone
(torchvision.models.efficientnet bO(prertained=True)

Eff1c1entNet

L

s

eNEEEREDYN

"‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.‘

(
(

(0):

(0):
(1):
(2):

)
(1):

(0):

(

a_qpool) AdaptiveAvgP (output size=1)

classifier): Sequentlal(

(0):
(1):

(features): Sequential(

ConvNormActivation(

SiLU(inplace=True)

Sequential(
MBConv (
block): Sequential(
(@) : ConvNormActivation(

Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2),
BatchNorm2d (32, eps=1e-05, momentum=0.1, affine=True)

padding=(1, 1))

(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)

(2): SiLU(inplace=True)

Dropout(p=0.2, 1np1ace—True)

..................'IIIIIIIIIIIIIIIIII

EEE?®

Linear(in_features=1280, .out features= 1@@0 bias=True)

‘IIIIIIIIIIIIIIIII"

.)IIIIIIIIIIIIIIIIIIIIIIIIIIIIlllllllllllllllllllllmi

Original Model

EEEEEEEEEEEEEEEEEEEEEEERD®

’.IIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

E (1): Linear(in features=1280, ~out featur =% bias=True)
2

)lIIIIIIIIIIIIIMI.I.I.I.I.I.I.III.III.IIIIIIIIIIIII‘
)

(features): Sequential(
(0): ConvNormActivation(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(2): SiLU(inplace=True)
)
(1): Sequential(
(0): MBConv(
(block): Sequential(
(0): ConvNormActivation(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1),
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(2): SiLU(inplace=True)

©
Q
Q.
Q.
[N
=

(.lQ
—
-

ool) Ada_ptlveA _g_PoolZd(ou tput . size=1)

Tc la S.S.l. f.1.e.r.): Sequentiall(
(0): Dropout(p=0.2, 1np1ace—True)

QpmEEEnEs

(1000 output classes for mageNet)

Original Model + Changed Classifier Head
(= output classes for €, &, 8)

S
S——

EEEEEEEEEEEEEEEEEEEEEEERE?®

’lllllllllll

IIIIIIIIIIIIIIIIIIIII.‘IIIIIIIIIIIIIIIIIIII

torchinfo.summary (model, input size=(32, 3, 224, 224))

Are the layers tratnable?

‘IIIIIIIIIIIIII.“IIIIIIIIIIIIIIII. ‘I-IIII.

2= - - = Sm— ()
Layer (type (var_name)) - Input Shape : Output Shape = Param # :Trainable: ULV\I{YOZCV\/
- — = — —] —= _.F é.:
EfficientNe{ ”) i E— : E I— : - .
—Sequentia eatures . [32, 3, 224, 224] § [32, 1280, 7, 7 = o
L_ConvNormActivation (@) " [32, 3, 224, 224] # [32, 32, 112, 112] & — rue : — (V\}Pl/(,t Sl’la'PC O'f data 'PCY Lager
Lconv2d (@) = [32, 3, 224, 224] » [32, 32, 112, 112]] 864 !
L_BatchNorm2d (1) = [32, 32, 112, 112]# [32, 32, 112, 112] ; 64 .
LsiLu (2) - [32, 32, 112, 112]% [32, 32, 112, 112] = — -
__Sequential (1) © [32, 32, 112, 1121% (32, 16, 112, 112] = —- " True : Ol/(.t‘Pl/Lt Sha'PC O‘F data 'PBV Laaer
LMBConv (@) : [32, 32, 112, 112]% [32, 16, 112, 112] . 1,448 = True -
—Sequential (2) = [32, 16, 112, 112]: [32, 24, 56, 56] . — = True .
L MBConv (0) . [32, 16, 112, 112]= [32, 24, 56, 56] [6,004 = True :
LMBConv (1) = [32, 24, 56, 56] =« [32, 24, 56, 56] 1 10,710 = True :
—Sequential (3) - [32, 24, 56, 56] & [32, 4@, 28, 28] - = = True -
LMBConv (@) - [32, 24, 56, 56] 3 [32, 40, 28, 28] . 15,350 = True -
LMBConv (1) . [32, 40, 28, 28] ¢ [32, 40, 28, 28] . 31,290 = True -
—Sequential (4) = [32, 40, 28, 28] - [32, 80, 14, 14] & —- = True "
S (37, 80, 14, 141 £ (32, 80, 14, 141 } 103,900 fTre -
LMBConv (2) - [32, 80, 14, 141 3 1[32, 80, 14, 14] - 102,900 = True -
—Seqﬂtial (5) - [32, 80, 14, 141 § [32, 112, 14, 14] « — " True .
BConv (0) " [32, 80, 14, 14] = [32, 112, 14, 14] . 126,004 " True .
LMBConv (1) s 32, 112, 14, 14] & (32, 112, 14, 14] I 208,572 “True
LMBConv (2) - [32, 112, 14, 14] # [32, 112, 14, 14] } 208,572 = True .
—Sequential (6) « [32, 112, 14, 14] = [32, 192, 7, 7] - — = True .
LMBConv () = [32, 112, 14, 14] 5 [32, 192, 7, 7] = 262,492 = True -
LmBConv (1) - [32, 192, 7, 71 § [32, 192, 7, 71 =« 587,952 = True -
LMBConv (2) s [32, 192, 7, 71 *® [32, 192, 7, 7] . 587,952 = True -
LMBConv (3) 32,192, 7, 71 = 32, 192, 7, 7] " 587,952 = True .
_Sequential (7) = [32, 192, 7, 71 » [32, 320, 7, 7] . — = True -
LMBConv (0) - [32, 192, 7, 71 & [32, 320, 7, 71 = 717,232 = True -
__ConvNormActivation (8) - [32, 320, 7, 71 § [32, 1280, 7, 71 = —- = True -
LConv2d (@) . [32, 320, 7, 71 § 32, 1280, 7, 71 . 409,600 s True ;
L_BatchNorm2d (1) = [32, 1280, 7, 7] . [32, 1280, 7, 7] 5 2,560 " True .
Lsilu (2) = [32, 1280, 7, 71 = [32, 1280, 7, 71 T — .- a
AdaptiveAvgPool2d (avgpool) = [32, 1280, 7, 71 & [32, 1280, 1, 1] % -- . .
| Sequential (classifier) = [32, 1280] 5 [32, 1000] . = True -
LDropout (0) - [32, 1280] s [32, 1280] e - n
LLinear (1) = [32, 1280] * [32, 1000] = 1,281,000 = True m
= o — == 3=
I B e el R e g * EEEEEEEEEEEEESR * IIIIIIIIIIIIIII:.: ¢ EEEEER
iTotal parans: 5,288,548 3 ' " ' B Total nuwmber of parameters
=Trainable params: 5,288,548 =]3
“Non-trainable params: 0 . ’
“Total mult-adds (G): 12.35 = anod tVaLV\zabLB 'Pa rameters
'I..I..J_I_I.I..I.J..I_I_I.I.J.I_I_I.I.J.I_I.I.I..I.I_L’

Input size (MB): 19.27
Forward/backward pass size (MB):
Params size (MB): 21.15
Estimated Total Size (MB): 3492.77

3452.35

torchinfo.summary (model,

input size=(32,

3, 224,

224))

Many La yers

e untrainable (frozen)

000

_L‘llllll.‘

Layer (type (var_name)) Input Shape Output Shape Param # :'Trainable:
== =

EfficientNet - S ce = Partial -

| Sequential (features) [32, 3, 224, 224] [32, 1280, 7, 7] — = False "

LConvNormActivation (@) [32, 3, 224, 224] [32, 32, 112, 112] e - False n

LConv2d (@) [32, 3, 224, 224] [32, 32, 112, 112] (864) " False .

LBatchNorm2d (1) [32, 32, 112, 112] [32, 32, 112, 112] (64) " False .

LsiLu (2) [32, 32, 112, 112] [32, 32, 112, 112] —- . -

__Sequential (1) [32, 32, 112, 112] [32, 16, 112, 112] -- = False -

LMBConv (@) [32, 32, 112, 112] [32, 16, 112, 112] (1,448) = False -

—Sequential (2) [32, 16, 112, 112] [32, 24, 56, 56] = - False =

L_MBConv (0) [32, 16, 112, 112] [32, 24, 56, 56] (6,004) "False .

LmBConv (1) [32, 24, 56, 56] [32, 24, 56, 56] (10,710) = False |

—Sequential (3) [32, 24, 56, 56] [32, 40, 28, 28] — = False -

LMBConv (@) [32, 24, 56, 56] [32, 40, 28, 28] (15,350) = False -

LMBConv (1) [32, 40, 28, 28] [32, 40, 28, 28] (31,290) = False o

__Sequential (4) [32, 40, 28, 28] [32, 80, 14, 14] — " False .

L_MBConv (0) [32, 40, 28, 28] [32, 80, 14, 14] (37,130) "False =

LMBConv (1) [32, 80, 14, 14] [32, 80, 14, 14] (102,900) = False .

LMBConv (2) [32, 80, 14, 14] [32, 80, 14, 14] (102,900) = False -

Sequential (5) [32, 80, 14, 14] [32, 112, 14, 14] —- =« False =

L_MBConv (@) [32, 80, 14, 14] [32, 112, 14, 14] (126,004) = False m

LMBConv (1) [32, 112, 14, 14] [32, 112, 14, 14] (208,572) " False .

LMBConv (2) [32, 112, 14, 14] [32, 112, 14, 14] (208,572) " False -

—Sequential (6) [32, 112, 14, 14] [32, 192, 7, 7] P - False -

LMBConv (@) [32, 112, 14, 14] [32, 192, 7, 7] (262,492) = False -

L mBConv (1) [32, 192, 7, 7] [32, 192, 7, 7] (587,952) « False =

LMBConv (2) [32, 192, 7, 7] [32, 192, 7, 7] (587,952) = False o

L MBConv (3) [32, 192, 7, 7] [32, 192, 7, 7] (587,952) " False -

_Sequential (7) [32, 192, 7, 7] [32, 320, 7, 7] — = False -

L_MBConv (@) [32, 192, 7, 7] [32, 320, 7, 7] (717,232) = False -

—ConvNormActivation (8) [32, 320, 7, 7] [32, 1280, 7, 7] o = False -

LConv2d (0) [32, 320, 7, 7] [32, 1280, 7, 7] (409, 600) « False =

LBatchNorm2d (1) [32, 1280, 7, 7] [32, 1280, 7, 7] (2,560) % False "

LSiLu (2) [32, 1280, 7, 7] [32, 1280, 7, 7] - ':'—:'.'.:::'

—AdaptiveAvgPool2d (avgpool) [32, 1280, 7, 7] [32, 1280, 1, 1] - " K
| Sequential (classifier) [32, 1280] [32, 3] - =True o

L Dropout (0) [32, 1280] , =l3%. 1280] - . — .

LLinear (1) [32, 1280] « [32, 3] 3,843 “True =

®sapEEEEEn

only Last Layers are trawnable

Funal La Yer output (same as

4eEEmEnmEp

nunmber of classes LI

=Total params: 4,011,391
=Trainable params: 3,843

-Non-trainable params: 4,007,548

"Total mult-adds (G): 12.31

4L N A LEE NN LES A LEAE NN LAEBNEUEA

AEEEEEERD

Less traunable parameters

Input size (MB): 19.27

Forward/backward pass size (MB): 3452.09

Params size (MB): 16.05

Estimated Total Size (MB): 3487.41

because many La yers are
frozewn

