
Transfer Learning with 



Where can you get help?

• Follow along with the code


• Try it for yourself


• Press SHIFT + CMD + SPACE to read the docstring


• Search for it


• Try again


• Ask

“If in doubt, run the code”

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions


“What is transfer learning?”

Surely someone has spent the time crafting the right model for the job…



Computer vision

🥩

🍕

🍣

Example transfer learning use cases

Natural language processing

To: daniel@mrdbourke.com

Hay daniel…


C0ongratu1ations! U win $1139239230

Spam

To: daniel@mrdbourke.com

Hey Daniel,


This deep learning course is incredible!

I can’t wait to use what I’ve learned!

Not spam

Model learns patterns/weights from similar problem space Patterns get used/tuned to specific problem

mailto:daniel@mrdbourke.com
mailto:daniel@mrdbourke.com


“Why use transfer learning?”



• Can leverage an existing neural network architecture proven to work on problems similar to our 

own


• Can leverage a working network architecture which has already learned patterns on similar 

data to our own (often results in great results with less data)

Why use transfer learning?

Learn patterns in a 

wide variety of images


(using ImageNet)

Pretrained EfficientNet 
architecture (already works 

really well on computer vision 
tasks)

Extract/tune patterns/weights 
to suit our own problem


(FoodVision Mini)

🥩

🍣

🍕

Model performs better

than from scratch



Improving a model
Method to improve a model 


(reduce overfitting)
What does it do?

More data
Gives a model more of a chance to learn patterns between samples 

(e.g. if a model is performing poorly on images of pizza, show it more 
images of pizza).

Data augmentation

Increase the diversity of your training dataset without collecting more 
data (e.g. take your photos of pizza and randomly rotate them 30°). 

Increased diversity forces a model to learn more generalisation 
patterns.

Better data
Not all data samples are created equally. Removing poor samples 
from or adding better samples to your dataset can improve your 

model’s performance.

Use transfer learning
Take an existing model’s pre-learned patterns from one problem and 

tweak them to suit your own problem. For example, take a model 
trained on pictures of cars to recognise pictures of trucks.



Where to find pretrained models

PyTorch domains libraries (torchvision, torchtext, torchaudio, 
torchrec). Source: https://pytorch.org/vision/stable/models.html 


🤗  HuggingFace Hub. 

Source: https://huggingface.co/models 


Torch Image Models (timm library). 

Source: https://github.com/rwightman/pytorch-image-models 


Paperswithcode SOTA. 

Source: https://paperswithcode.com/sota 


https://pytorch.org/vision/stable/models.html
https://huggingface.co/models
https://github.com/rwightman/pytorch-image-models
https://paperswithcode.com/sota


• Getting setup (importing previously written code)


• Introduce transfer learning with PyTorch 


• Customise a pretrained model for our own use case 

(FoodVision Mini 🍕🥩🍣)


• Evaluating a transfer learning model


• Making predictions on our own custom data

How: 👩🔬👩🍳

What we’re going to cover
(broadly)

(we’ll be cooking up lots of code!)



Let’s code!



Original Model vs. Feature Extraction

Working 

architecture 


(e.g. EfficientNet) 

Stays same (frozen)

Changes

Changes

Output layer(s) gets trained 


on new data

(original model layers

don’t update during training)

Input Layer

Layer 2

Layer 234

Layer 235

Output Layer (shape = 1000)

…
…

…

Large dataset (e.g. ImageNet)

Original Model 

Input Layer

Layer 2

Layer 234

Layer 235

3

…
…

…

Different dataset (e.g. 3 classes of food 🍕🥩🍣)

Feature Extraction Transfer Learning Model

ImageNet has 
1000 classes



Kinds of Transfer Learning

Input Layer

Layer 2

Layer 234

Layer 235

Output Layer (shape = 1000)

…
…

…

Large dataset (e.g. ImageNet)

Original Model 

Input Layer

Layer 2

Layer 234

Layer 235

3

…
…

…
Different dataset (e.g. 3 classes of food 🍕🥩🍣)

Feature Extraction

Stays same 

(frozen)

Changes

Changes

Input Layer

Layer 2

Layer 234

Layer 235

3

…
…

…

Fine-tuning

Stays same 

(frozen)

Might change

Stays same

Changes

(unfrozen)

Top layers get trained 


on new data

Fine-tuning usually requires more data than feature extraction



Type Description What happens When to use

Original model (“As is”)
Take a pretrained model as it is and 

apply it to your task without any 
changes.

The original model remains 
unchanged.

Helpful if you have the exact same kind of data 
the original model was trained on.

Feature extraction

Take the underlying patterns (also 
called weights) a pretrained model 
has learned and adjust its outputs 

to be more suited to your problem. 

Most of the layers in the original 
model remain frozen during training 
(only the top 1-3 layers get updated).

Helpful if you have a small amount of custom 
data (similar to what the original model was 

trained on) and want to utilise a pretrained model 
to get better results on your specific problem.

Fine-tuning
Take the weights of a pretrained 

model and adjust (fine-tune) them 
to your own problem.

Some, many or all of the layers in 
the pretrained model are updated 

during training.

Helpful if you have a large amount of custom data 
and want to utilise a pretrained model and 

improve its underlying patterns to your specific 
problem.

Kinds of Transfer Learning



EfficientNet feature extractor

Stays same 

(frozen, pretrained on ImageNet)

3

Changes

(same shape as number 


of classes)

Input data

(Pizza, Steak, Sushi)

EfficientNetB0 architecture. Source: https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html 


Linear classifier layer 

(torch.nn.Li
near)

🥩

🍕

🍣

EfficientNetB0 Backbone 
(torchvision.models.efficientnet_b0)

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html


EfficientNet feature extractor
EfficientNetB0 Backbone 

(torchvision.models.efficientnet_b0(prertained=True) Extracts features 
from image

Turns features into a feature 
vector (by taking the average)

Turns feature vector 
into prediction logits

Can adjust depending on the 
number of classes you have



Original Model + Changed Classifier Head 
(3 output classes for 🍕, 🥩, 🍣)

Original Model 
(1000 output classes for ImageNet)

EfficientNet feature extractor — 
changing the classifier head

EfficientNetB0 Backbone 
(torchvision.models.efficientnet_b0(prertained=True)

Same

Changed



torchinfo.summary(model, input_size=(32, 3, 224, 224))
Are the layers trainable? 

(unfrozen)

Input shape of data per layer

Output shape of data per layer

Total number of parameters 
and trainable parameters



torchinfo.summary(model, input_size=(32, 3, 224, 224))
Many layers 

untrainable (frozen) 

Less trainable parameters 
because many layers are 

frozen

Final layer output (same as 
number of classes 🍕🥩🍣)

Only last layers are trainable


