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Published as a conference paper at ICLR 2021

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy***, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn™,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby™
*equal technical contribution, Tequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.!

1 INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989;
Krizhevsky et al., 2012; He et al., 2016). Inspired by NLP successes, multiple works try combining
CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing
the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while
theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to
the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-
like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al.,
2020).

Source: https://arxiv.org/pdf/2010.11929.pdf (ViT paper)
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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What is paper replicating?

import torch as nn

class ViT(nn.Module):
"""Creates a Vision Transformer architecture with ViT-Base hyperparameters by default."""

__init__(self,

img_size:int=224, # Training resolution from Table 3 in ViT paper
in_channels:int=3, # Number of channels in input image
patch_size:int=16, # Patch size

num_transformer_layers:int=12, # Layers from Table 1 for ViT-Base
embedding_dim:int=768, # Hidden size D from Table 1 for ViT-Base
mlp_size:int=3072, # MLP size from Table 1 for ViT-Base
num_heads:int=12, # Heads from Table 1 for ViT-Base
num_classes:int=1000): # Default for ImageNet but can customize this

super().__init__ ()

self.patch_embedding = PatchEmbedding(in_channels=in_channels,
patch_size=patch_size,
embedding_dim=embedding_dim)

self.transformer_enedoder = nn.Sequential(x[TransformerEncoderBlock(embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_size=mlp_size) for _ in range(num_transformer_layers)])

self.classifier = nn.Sequential(
nn.Linear(in_features=embedding_dim, out_features=num_classes)

)

forward(self, x):

x = self.patch_embedding(x)

X = self.transformer_enedoder(x)
return self.classifier(x[:, 0])

# Create ViT

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before

every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

Source: Vil paper
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.!

I INTRODUCTION
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Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989;
Krizhevsky et al., 2012; He et al., 2016). Inspired by NLP successes, multiple works try combining
CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing
the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while
theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to
the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-
like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al.,
2020).

Source: https://arxiv.org/pdf/2010.11929.pdf (ViT paper)

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

Source: Vil paper
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62 1. Download a paper

63 2. Implement it

64 @. Keep doing this until you have skills

- George Hotz, founder of comma.ai

*Machine Learning Engineering also involves building infrastructure around your models/
data preprocessing steps
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Anatomy of a research paper*

(and many other kinds of sctentific papers)

Section

Abstract

Introduction

Method

Results
Conclusion
References

Appendix

Whatis it?

An overview/summary of the paper's main findings/contributions.

What's the paper's main problem? And details of previous methods used to try and solve it.

What steps did the researchers take when conducting their research? For example, what model(s), data
sources, training setups were used?

What are the outcomes of the paper? If a new type of model or training setup was used, how did the
results of findings compare to previous works? (this is where experiment tracking comes in handy)

What are the limitations of the suggested methods? What are some next steps for the research
community?

What resources/other papers did the researchers look at to build their own body of work?

Are there any extra resources/findings to look at that weren't included in any of the above sections?

*This structure is quite fluid. It’s more of a general guide than a required outline.
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ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.

1 INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989;
Krizhevsky et al., 2012; He et al., 2016). Inspired by NLP successes, multiple works try combining
CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing
the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while
theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to
the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-
like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al.,

df/2010.11929.pdf (ViT paper)
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An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, Neil Houlsby

While the Transformer architecture has become the de-facto standard for natural language processing
tasks, its applications to computer vision remain limited. In vision, attention is either applied in
conjunction with convolutional networks, or used to replace certain components of convolutional
networks while keeping their overall structure in place. We show that this reliance on CNNs is not
necessary and a pure transformer applied directly to sequences of image patches can perform very well
on image classification tasks. When pre-trained on large amounts of data and transferred to multiple
mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision
Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while
requiring substantially fewer computational resources to train.
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Machine Learning vs. Deep Learning
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« Gradient boosted models
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
«classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al. (2017).
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al. (2017).
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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What we’re going to cover

(broadtg)
Getting setup (importing previously written code)

Introduce machine learning paper replicating with PyTorch
Replicating ViT for FoodVision Mini € &&
Training a custom VIT

Feature extraction with a pretrained ViT

(we'll be cooking up lots of code!) €8

How:




Let’s codel




Models Dataset

ViT-B/{16,32} JFT-300M

ViT-L/32 JFT-300M

ViT-L/16 JFT-300M

ViT-H/14 JFT-300M

R50x{1,2} JFT-300M

R101x1 JFT-300M

R152x{1,2} JFT-300M
R50+ViT-B/{16,32}  JFT-300M
R50+ViT-L/32 JFT-300M 7
R50+ViT-L/16 JFT-300M 7/14
ViT-B/{16,32} ImageNet-21k 90
ViT-L/{16,32} ImageNet-21k ~ 30/90
ViT-x ImageNet 300

Base LR LR decay Weight decay Dropout

8104
6-10"4
4-104
3-1074
10~°
1074
104
1074
.10~4
1074
1073
10~ °
3-107°

linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear

cosine

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.03
0.03
0.3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1

Table 3: Hyperparameters for training. All models are trained with a batch size of 4096 :and learn-
ing rate warmup of 10k steps. For ImageNet we found it beneficial to additionally apply gradient
clipping at global norm 1. Training resolution is 224.

Image size = 224x224 (height=224, width=224)

Source: Vil paper

Image size and batch size

Batch size = 4096
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Inputs, outputs, layers and blocks

Contains a function to
~ manipulate an input , for

—— Outputs example: ( QKT> ;

Inputs
Attention(Q, K, V) = softmax

V di
Block = stgek of layers

Inputs — - Outputs

Model = stgepo of blocks

Inputs — Outputs



VIT Overview: Inputs and Outputs

Vision Transformer (ViT) Transformer Encoder

OUtpUtS Bird . MLP ] MLP = Multilayer

Head perceptron

Transformer Encoder

"f‘é‘%ﬂﬁeﬁ’?ﬁf‘f?"* ) @) ) @5 Nenons |

* Extra learnable o
[class] embedding Linear Projection of Flattened Patches - A A A
1

"% n ‘ : Norm ]
: = | A T mo
g % Embedded

|
Patches J

Figure 1: Model overview. We:split an image into fixed-size patches, linearly embed each of them.,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. :In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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Figure 1: Model overview. We split an:image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. :In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The 1illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Source: Vil paper
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VIT Overview:

Four Equations

Vision Transformer (ViT) Transformer Encoder
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l
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| Z0 = 1Xclass, xlE' x2E' E ¢ R(PQ'C)XD, E,.s € RVAL*D
Patch + Position __ Jo¥, : sy ) "} Tob ) : . AV z'y = MSA{LN(z,_ 1)) —I— Zy_ 1.,‘ ¢{=1...L

I

I

)

I

I

* Extra learnable
[class] embedding ®emnnn

Embedding r‘ -"lll
—MLP{LN(Z' o)} ¥ 2/ ¢=1...L

M£F y = LN(ZL)

4 e = *\ ';’Muv‘,
w(tfi“ WS w i:bx .

=

Ql

Embedded 3 i The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
Patches attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, oy block, and i Eh-l?l connections, gf-tf: A -b-19 : k (Wang et al., 2019; Baevski & Auli, 2019).

add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al. (2017).

Source: ViT paper section 3.1

Source: Vil paper Figure 1
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VIiT Overview: Workflow

vieuwalize, Vviewalize, visuallze!l

Original image

FoodVision Mini € &



Paper reading tip: math to text

@ Editing vit-paper-demo - Snip X -+

cC O @& snip.mathpix.com/danielbourke/notes/8b64581d-cdf5-4eaf-9257-1a4f04340ae8/edit

SNIPS —+  vit-paper-demo

# Magic!

M . !
z Xetas; XoE; X2E xE| +E, EcRFOxD g, e RN+ 1)) q Ic
z MSA(LN(z T { 1 2) g .

it - . $$
\beginialigned

\mathbf{z; {0} &=\left|\mathbfi{x;_{\text {class };; 20 = [Xelass ; X B3 3B 3 % E] + By,

[q-, k’ V] — ZquU Z} - MSA(LN(Zg_l)) + Zg-1,

A — softmax (qkr/m> \mathbf{x;_{pM1; \mathbf{E} ; \mathbf{x;_{pi™{2 20 — MLP(LN(2))) + 7,

\mathbf{E} ; \cdots ; \mathbfix;_{p:*N y = LN(2)
\mathbf{E}\right|+\mathbf{E}_{p 0 s}, & & \mathbf{E} \in
\mathbb{R}*\left(PA{2} \cdot C\right) \times D},

\mathbf{E} {p o s} \in \mathbb{R}*(N+1) \times D W
\mathbf{z}_{\ell;*{\prime
&=\operatorname{MSA}\left(\operatorname{LN\left(\math
bf{z}_{\ell-1}\right)\right)+\mathbf{z} {\ell-1}, & & \ell=1
\ldots L \\

\mathbf{z; {\ell
&=\operatorname{MLP}\left(\operatorname{LN}\left(\math
bf{z}_{\ell}*\primej\right)\right)+\mathbf{z}_{\ell}{\prime
, & & \ell=1 \ldots L \\

\mathbf{y
&=\operatorname{LN\left(\mathbf{z;_{L;*O0j\right) & &
\end{aligned

¢

SA(z) = Av.

Source: mathpix.com, see a live demo
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Equation 1: The Patch Embedding

20 = [Xetass; XL E; X2E; -+ 5 xXVE]+ By,  (E € REOXDEE e RNFDXD

Z/g = MSA(LN(Zg_l)) + Zyp_1, ¢=1...L

i~ 00 @) ) @) @) 60 @) @) €

* Extra learnable ) . i
[class] embedding Linear Projection of Flattened Patches

zy = MLP(LN(z'))) + 2’4, {=1...L
y = LN(z])

‘ ’ g , i *

‘ 5@ oA o »

- _- n""‘ ._;'3: : ~o 4 4 "‘h. v ﬂ A ‘

v e -rop ‘ , y - } g 5 o

W¢ .‘:h~ L —_— m e o -~ q 3.1 VISION TRANSFORMER (VIT)

-, A
Se et A

) SR e
T . = -
< ﬂi An overyview, of the model is depicted in Figure, 1. The standard Transformer receives as input a1
sequence of token embeddings. To handle 2D images, we reshape the image x € R7”*WXC into a

Figure 1: Model overview. =We split an image into fixed-size patches, linearly embed each of them; sequence Qf flattened 2D patches x, € RY .><(P 0), th?re (H, W).is the resolution of the origina21
add position embeddings, and feed the resulfing sequence of vectors to a standard Transformer image, C is the number of channels, (P, P) is the resolution of each image patch, and N = HW/P

encoder. In order to perform classification, we use the standard approach of adding an extra learnable 1s the resulting number of patches, which also serves as the effective input sequence length for the

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by Transformer. The Transformer uses constant latent vector size ) through all of its layers, so we

Vaswani et al. (2017). flatten the patches and map o ) dimensions with a trainable linear projection (Bg; 1).:We refer to

the output of this projection as the patch embeddings.

Image size= (H, W, C) -> (N Patches, (P2« C)) Embedding size (D) = 763(ViT-Base)

For example, patch size =16 (ViT-Base) :
(224, 224, 3) -> (196, )



Equation 1: The Patch Embedding

# 1. Create a class which subclasses nn.Module
class PatchEmbedding(nn.Module):
"""Turns a 2D input image into a 1D sequence learnable embedding vector.

Args:
in_channels (int): Number of color channels for the input images. Defaults to 3.

ot ge paEch_size (int): Size of patches to convert input image into. Defaults to 16.
Paétlg;egg::éon —- @ .I.I.I'I.I@.I.Ig.lg‘ embedding_dim (int): Size of embedding to turn image into. Defaults to 768.

* Extra learnable i i i # 2. Initialize the class with appropriate variables
[class] embedding Linear Projection of Flattened Patches def __init_ (self,

in_channels:int=3,

| gags'~x patch_size:int=16,

LT .\ "" |5 e embedding_dim:int=768): # same as ViT-Base

I sy | 2505 o€
GER il SRR NE
. Q"’ e ‘ | S | # 3. Create a layer to turn an image into patch embeddings

. iﬁL_ self.patcher = nn.Conv2d(in_channels=in_channels,

out_channels=embedding_dim,
kernel_size=patch_size,
stride=patch_size,
padding=0)

Zo = [Xetass;XLE; X2E; -+ 3 XVE] o Epos,  (E € REVOXD IR e RVHDXD

z'y = MSA(LN(zp_1)) + z¢_1, ¢=1...L
, , # 4. Create a layer to flatten the patch feature maps into a single dimension
Zy = MLP(LN(Z e)) + Z g, ¢=1...L self.flatten = nn.Flatten(start_dim=2, # only flatten the feature map dimensions

y = LN(Z%) end_dim=3)

# 5. Define the forward method

def forward(self, x):
x_patched = self.patcher(x)
x_flattened = self.flatten(x_patched)

# 6. Make sure the output shape has the right order
return x_flattened.permute(@, 2, 1) # [batch_size, P~2+C, N] —> [batch_size, N, P"2(]
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Equation 1: The Class Token

xVE] + Epos, EeREOXD g e RNV+HDUXD
z'y = MSA(LN(zy_1)) + z¢_1, ¢=1...L
= MLP(LN(z'y)) + 2's, {=1...L
y = LN(z})

o LColm. 21, )
Z) = [Xclass; XpE, XPE, Tt

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z8 = Xclass), Whose state at the output of the Transformer encoder (z%) serves as the
image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z{ . The classification head is implemented by a MLP with one hidden layer at pre-training
time and by a single linear layer at fine-tuning time.

Prepend a learnable class embedding token to
the 0 index of the patch embedding



Sequence of patch embeddings

Create learnable class token and
prepend it to patch embeddings

Patch embeddings with
learnable class token

Equation 1: The Class Token

(XX

tensor([[[-0.3714, 0.0556, -0.1053, ..., 0.2598, -0.1740, 0.1473],
[-0.4294, 0.0788, -0.1078, ..., 0.2671, -0.1797, 0.1644],
[-0.4774, ©0.0965, -0.1198, ..., 0.3465, -0.1918, 0.1432],
[-0.1749, 0.0247, -0.0610, ..., 0.1185, -0.0448, 0.0451],
[-0.1679, 0.0264, -0.0745, ..., 0.1182, -0.0693, 0.0623],
[-0.0631, -0.0043, -0.0612, ..., 0.0553, -0.0460, 0.083711],

grad_fn=<PermuteBackwardo>)

Shape: [1, 196, 786], [batch size, number of patches, embedding dimension]

l

# Create the class token embedding
class_token = nn.Parameter(torch.ones(batch_size, 1, embedding_dimension),

requires_grad=True) # make embedding learnable

# Add the class token embedding to the front of the patch embedding
patch_embedded_image_with_class_embedding = torch.cat((class_token, patch_embedded_image),

Shape:

dim=1) # concat on first dimension

l

Ces Learnable class token,

tensor([ [ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000l 13V1q38vx£ieci
2037145 " "3 "don6," =B 1053, " " " 0. 2588 "1F. M4 " "0 1473,

[-0.4294, 0.0788, -0.1078, ..., 0.2671, -0.1797, 0.1644],
e,

[-0.1749, 0.0247, -0.0610, ..., ©.1185, -0.0448, 0.0451],
[-0.1679, 0.0264, -0.0745, ..., ©0.1182, -0.0693, 0.0623],

[-0.0631, -0.0043, -0.0612, ..., 0.0553, -0.0460, 0.0837]11,
grad_fn=<CatBackwardo>)

[1, 197, 786], [batch size, number of patches + class token, embedding dimension]



Equation 1: The Position Embedding

Position Embeddings Shape:

Patch + Position [num patches+1, embedding dimension]
emvedding > O () €U B BU G 6 @ B @l (*1 is for the class token

. ‘IIIIII- IIIIIIIIIIIIIIIIID
* Extra learnable

_ vl 2T, . N - (P?.C)xD = (N+1)><D'
: : - 7o = |Xelass; Xo By XoE; -+ s x ) E| +=E, s, E€R ,.E s €ER
[class] embedding Linear Projection of Flattened Patches 0 = [Xaassi X, X, w.? po

Z,g = MSA(LN(Zg_l)) + Zyp_1, ¢=1...L
— MLP(LN(2',)) + s, ¢=1...L
P‘d"‘

ity B @ 18 hL ] y = LN(zL)
e T ‘t". ;-f' .‘q :

Position embeddings are added to the patch embeddings to retain positional information. * We use

standard learnable 1D position embeddings, since we have not observed significant performance

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, g4ins fromfusntg (Ilgqre advtanced 2D—aw§1re Iﬁsntlﬁ) N embgddmgs (Appendix D.4). The resulting
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer SEQUENCE OF CIDHECCEINS VECLOTS SEIVES a5 IMpUt 10 the ENCOcer.

encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

1
Add alearnable 1D set of position embeddings
to [class_token, patch embedding]



osition Embeddin

Learnable class token,

tensor([ [ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000] Prepem,oleal
2037145 " "3 "don6," =B 1053, " " " 0. 2588 "1F. M4 " "0 1473,

quation1: The P

PatCh embeddings With [-0.4294, 0.0788, -0.1078, ..., 0.2671, —-0.1797, 0.1644],
[-0.1749, ©.0247, -0.0610, ..., 0.1185, -0.0448, 0.0451],
learnable class token S G S ) G e Gl

[-0.0631, -0.0043, -0.0612, ..., 0.0553, -0.0460, 0.0837111,
grad_fn=<CatBackwardo>)

Shape: [1, 197, 786], [batch size, number of patches + class token, embedding dimension]

l

Create pOSition embeddings and # Create the learnable 1D position embedding

position_embedding = nn.Parameter(torch.ones(1, number_of_patches+1l, embedding_dimension),

add to patCh embeddings With requires_grad=True) # make sure it's learnable
Iearnable Class tOken # Add the position embedding to the patch and class token embedding
patch_and_position_embedding = patch_embedded_image_with_class_embedding + position_embedding
l values all changed thankes to
00 ‘PDSLtLOV\' CVWbeddiwgs

o o tensor([[[2.0000, 2.0000, 2.0000, ..., 2.0000, 2.0000, 2.0000],

Patch embedd"]gs W|th Iearnable [0.6286, 1.0556, 0.8947, ..., 1.2598, 0.8260, 1.1473],

I t k d .t, [0.5706, 1.0788, 0.8922, ..., 1.2671, 0.8203, 1.1644],

C ass o ebn grd‘, pOSI |On -[6:;3251, 1.0247, 0.9390, ..., 1.1185, 0.9552, 1.0451],

[0.8321, 1.0264, 0.9255, ..., 1.1182, 0.9307, 1.06231,

em e Ings [0.9369, 0.9957, ©0.9388, ..., 1.0553, 0.9540, 1.0837111,

grad_fn=<AddBackwardo>)

Shape: [1, 197, 786], [batch size, number of patches + class token, embedding dimension]



Equation 1: Putting it all together

a# 1. Set patch size

Epatch_size = 16

E# 2. Print shape of original image tensor and get the image dimensions
=print(f"Image tensor shape: {image.shape}")

=height, width = image.shape[l], image.shape[2]

"# 3. Get image tensor and add batch dimension
=X = image.unsqueeze(0)

"print(f"Input image with batch dimension shape: {x.shape}")

-# 4. Create patch embedding layer

=~ patch_embedding_layer = PatchEmbedding(in_channels=3, # number of color channels in image
patch_size=patch_size,

embedding_dim=768) # from Table 1 for ViT-Base

<Gl EEEEEENDM AN EEEEEEEEEEEEEEEED

Zo = [Xclass; XI];E’ x;)")E, cee ] Xi)VE]é_F Epos’E E ¢ R(PQ.C)XDEEPOS c R(N-i—l)XDE

Z,g = MSA(LN(Zg_l)) + Zyp_1, ¢{=1...L

=# 5. Pass image through patch embedding layer
= patch_embedding = patch_embedding_layer(x)
= print(f"Patching embedding shape: {patch_embedding.shape}")

'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
‘-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

s # 6. Create class token embedding

= batch_size = patch_embedding.shapel[0]

= embedding_dimension = patch_embedding.shape[-1]

= class_token = nn.Parameter(torch.ones(batch_size, 1, embedding_dimension),
requires_grad=True) # make sure it's learnable

print(f"Class token embedding shape: {class_token.shape}")

 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

zy = MLP(LN(z'))) + 2’4, (=1...L
y = LN(z})

# 7. Prepend class token embedding to patch embedding
patch_embedding_class_token = torch.cat((class_token, patch_embedding), dim=1)
print(f"Patch embedding with class token shape: {patch_embedding_class_token.shape}")

4EEEEEEEEEEEEEEEEEEEERP

# 8. Create position embedding

number_of_patches = int((height * width) / patch_sizexx2)

position_embedding = nn.Parameter(torch.ones(1l, number_of_patches+1l, embedding_dimension),
requires_grad=True) # make sure it's learnable

# 9. Add position embedding to patch embedding with class token
patch_and_position_embedding = patch_embedding_class_token + position_embedding
print(f"Patch and position embedding shape: {patch_and_position_embedding.shape}")



Equation 2: The MSA Block

MSA = Multi-Head Self Attention

Vision Transformer (ViT) Transformer Encoder

Equation 2 = “MSA block”

‘lllll.

| Zg—MSALN(Zg 1))-—|—Zg 1o ¢=1...L

20 = MLP(LN(2',)) + 2 s, ¢=1...L
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' . Z0 = [Xclass’ X1E° x2E X E] + Epos, E e RP 'C)><D, Ep0s € R(N+1)xD
]
|
l 0
T ot = LN
| (o] y = LN(=L)
|
]

The Transformer encoder (Vaswani et al., 2017) consists of-alternating layers of multiheaded self-
Patches attention (MSA, see Appendix A) and MLP blocks (Eq 2, 3). Layernorm (LN) is applied before

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, every block, andsr -e §1.d.‘£a.1.‘2‘2f.“.‘?‘3t.‘ o _a_f ter every, '."1‘3915 {Wang et al., 2019; Baevski & Auli, 2019).

add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).



Equation 2: The MSA Block

MSA = Multi-Head Self Attention

. . . 2.
Vision Transformer (ViT) Transformer Encoder Zo = [Xclass; x1E° x2E <V E] 4+ Epos, Ec ]R(P C)xD, Epos c R(N+1)x D

’-ﬁ MLP
Head
Pizza —

‘Illll.

ZQ—MSALN(Zg 1))-—|-Zg 1o ¢=1...L

lllll’

20 = MLP(LN(2'y)) + 7'y, ¢=1...L
y=LN(Z%)

Transformer Encoder

The Transformer encoder (Vaswani et al., 2017) consists of-alternating layers of multiheaded self-

i
[
[
l
I
l
l
I
é : attention (MSA, , €8, 4 Appendix A) and MLP blocks gEq 2, 3). Layernorm (LN) is applied before
Paécl?l;egg?:ltéon » [0 (i @3] @ | Multi-Head every block, and.r.e§1_d_u_a_l_c_(zrzr_1§c_t_1c_>r_1§ _a_fEe_r_?\_/czr_y_ bloclf ‘(Wang et al., 2019; Baevski & Auli, 2019).
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A MULTIHEAD SELF-ATTENTION From “Attentlon Ls all You neeo” paper

[ Embedded ] N Standard qkv self-attention (SA, Vaswani et al. (2017)) is a popular building block for neural archi-
Patches

tectures. For each element in an input sequence z € RV X, we compute a welghted sum over all
1€s-vin the sequence. The attention weights A;; are based on the pairwise similarity between

two eléments_of-the sequence and their respective query q* and key k’ representations.

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,

add position embeddings, and feed the resulting sequence of vectors to a standard Transformer

encoder. In order to perform classification, we use the standard approach of adding an extra learnable {q: ksvE= zU Ui, € RP*3D (5)

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by ) T NxN

Vaswani et al. (2017). A = softmax (‘lk /v D ) AR, 6)
SA(z) = Av. (7)

i Multihead self-attention (MSA) is an extension of SA in which we run £ self-attention operations,
— q Uery called “heads”, in parallel, and project their concatenated outputs. To keep compute and number of
k — key parameters constant when changing k, D}, (Eq. 5) is typically set to D /k.

v = value MSA(z) = [SA1(2);SA2(2); - - 5 SAk(2)] Unnsa Unnsa € RFDrXD @®)
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¢=1...L
(=1...L

Z,g = MSA':LN(Zg_l)) + Zyp_1,

Zy = MLP(LN(Z,g)) -+ Z’g,
y = LN(z})

Equation 2: The MSA Block

MSA = Multi-Head Self Attention

from torch import nn

# 1. Create a class that inherits from nn.Module
class MultiheadSelfAttentionBlock(nn.Module):
"""Creates a multi-head self-attention block ("MSA block" for short).
# 2. Initialize the class with hyperparameters from Table 1
def __init__ (self,
embedding_dim:int=768, # Hidden size D from Table 1 for ViT-Base
num_heads:int=12, # Heads from Table 1 for ViT-Base

attn_dropout:int=0): # doesn't look like the paper uses any dropout in MSABlocks

super().__init__ ()
‘-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘
" # 3. Create the Norm layer (LN) -
s self.layer_norm = nn.LayerNorm(norma1ized_shape=embedding_dim):

 E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERS®

¢S I EFEEFEEEEEFEEFEEEEE N EEFEEEEEEEEFEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEENEEEEEEEEEEEEEEEESR

" # 4. Create the Multi-Head Attention (MSA) layer

self.multihead_attn = nn.MultiheadAttention(embed_dim=embedding_dim,
num_heads=num_heads,
dropout=attn_dropout,

4 I EEEEEERN

# 5. Create a forward() method to pass the data through the layers
def forward(self, x):
x = self.layer_norm(x)
attn_output, _ = self.multihead_attn(query=x, # query embeddings
key=x, # key embeddings
value=x, # value embeddings

need_weights=False) # only get layer outputs

return attn_output

batch_first=True) # batch dimension first?

AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERY



Equation 3: The MLP Block
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

MLP = Multila Yer Perceptron

Equation 2 = “MLP block”

[Xcla337 .;J, 2E ;)VE] 4 Ep037 E ¢ R(P2'C)XD, Epos = R(N+1)XD
gA(LN(Ze l\)—FZg 1, ¢=1...L

.

MLPLNZg))-—i-Zg,' ¢{=1...L
}’:LN(ZL)

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A_) and MLP blocks (Eq 2, 3). Layernorm (LN) is applied before

'-II EEEEER H E NN NAGEENE ey

every block, and. residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).
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70 = [Xetass; X0B; 32E; -+ ; XVE] + Epos, E € RFOXD e RVFDXD

Z,g = MSA(LN(Zg_l)) + Zyp_1, ¢=1...L

zy =-MLP{LN(z'y)} + 2'¢, ¢=1...L
y = LN(z})

MLP = Multila Yyer perceptron

from torch import nn

# 1. Create a class that inherits from nn.Module
class MLPBlock(nn.Module):
"""Creates a layer normalized multilayer perceptron block ("MLP block" for short)."""
# 2. Initialize the class with hyperparameters from Table 1 and Table 3
def __init__ (self,
embedding_dim: int=768, # Hidden Size D from Table 1 for ViT-Base
mlp_size:int=3072, # MLP size from Table 1 for ViT-Base
dropout:int=0.1): # Dropout from Table 3 for ViT-Base
super().__init__ ()

‘lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

a# 3. Create the Norm layer (LN) -

=self.layer_norm = nn.LayerNorm(normalized_shape=embedding_dim) *

|
'lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

.-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

=# 4. Create the Multilayer perceptron (MLP) layer(s)
self.mlp = nn.Sequential(
nn.Linear(in_features=embedding_dim,
out_features=mlp_size),
nn.GELU(), # "The MLP contains two layers with a GELU non-linearity (section 3.1)."
nn.Dropout (p=dropout),
nn.Linear(in_features=mlp_size, # same in_features as out_features of layer above
out_features=embedding_dim), # take back to embedding_dim
nn.Dropout(p=dropout) # "Dropout, when used, is applied after every dense layer..."

)

4 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

.-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

"# 5. Create a forward() method to pass the data through the layerss

"def forward(self, x): .
- x = self.layer_norm(x) =
. x = self.mlp(x) .
. return X a
..............................................................l.
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The Transformer Encoder
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Transformer Encoder = Alternating layers of equation 2 and =

Zo = [Xclass; XII’E’ XI27E’ R X;)VE] -4 Epo.s7 E ¢ R(PQ.C')XD, Epos c R(N+1)XD (1)

4l B E B EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEENEEENEEEEEEERNEEEDM®D

:z’y = MSA(LN(z¢_1)) + 241, ¢=1...L )

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY

z; = MLP(LN(z'y)) + 2/, {=1...L (3)
y = LN(z) )

4 EEEEEEEEEEEEEDR

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eqg. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).




The Transformer Encoder

from torch import nn

# 1. Create a class that inherits from nn.Module

Vision Transformer (ViT) Transformer Encoder class TransformerEncoderBlock(nn.Module):

"""Creates a Transformer Encoder block."""

# 2. Initialize the class with hyperparameters from Table 1 and Table 3

def __init__ (self,
embedding_dim:int=768, # Hidden size D from Table 1 for ViT-Base
num_heads:int=12, # Heads from Table 1 for ViT-Base
mlp_size:int=3072, # MLP size from Table 1 for ViT-Base
mlp_dropout:int=0.1, # Dropout for dense layers from Table 3 for ViT-Base
attn_dropout:int=0): # Dropout for attention layers

super().__init__ ()

Transformer Encoder

Patch + Position : i-He # 3. Create MSA block (equation 2)
*Ewﬁwdéng ' self.msa_block = MultiheadSelfAttentionBlock(embedding_dim=embedding_dim,
[ﬁiifﬁﬁﬁﬁmg num_heads=num_heads,

attn_dropout=attn_dropout)

|
mm:". v’l": ‘-;i:‘ = I i i I E E E E EEFEEFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEPN

] TR W = WL S LY “d o2 : .
W‘ = 2 _>.M@.?3.\ dir & | & # 4. Create MLP block (equation 3)

N Eself.mlp_block = MLPBlock(embedding_dim=embedding_dim,
Bl E'ﬁlﬁfﬁgfd " mlp_size=mlp_size,

dropout=mlp_dropout)

4 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEED®

2 E IS NSNS NSNS NN SN NS NN NN NS NN SN SN NN NN SN NSNS NSNS NN NN NN EEEEEEEEEEEEEENEN,
Zy) — [xc]ass; xlE; X}Z)E;. » xNE] +Ep03, E (S R(P C)XD) EpOs € R(N+1)XD (1) # 5. Create a forward() method
A I BB EEEEEEENEDN E B EEEEEEEEENEDN EEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEEEENYN def forward(self' X):

TS MSANC ) 2y b L )

# 6. Create residual connection for MSA block (add the input to the output
X = self.msa_block(x)- + X

z; = MLP(LN(z,)) + 7', (=1...L 3)
y = LN(z) )

# 7. Create residual connection for MLP block (add the input to the output
x = self.mlp_block(x)- + x

EEEEEEENEEEEENEEEEENEENEN,
EEEEEEENEEEEENEEEEEEER

return Xx
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