MiLestov

e Project =
Paper Replicating with

Where can you get help?

paper_r

@ colab.research.google.com/git Y ke/pytorch-deey ling/blok (F reg h % O » O @

© 08_pytorch_paper_replicating.ipynb

@ share B Jy
File Edit View Insert Runtime Tools Help

/

08.P9T;rch Paper Replicating “ (-f LV\’ doubt/ VMV\/ the GOde

Welcome to Milestone Project 2: PyTorch Paper Replicating!

In this project, we're going to be replicating a machine learning research paper and creating a Vision Transformer (ViT) from scratch using

Follow along with the code »

+

. e o . o . e ¢ (& colab.research.google.com/gitt
Vision Transformer architecture FoodVision Mini € >& o
) 08_pytorch_paper replicating.ipynb
o File Edit View Insert Runtime Tools Help

For Milestone Project 2 we're going to focus on recreating the Vision Transformer (ViT) computer vision architecture and applying it to our
& Co

FoodVision Mini problem to classify different images of pizza, steak and sushi.

Tm36s completed at 16:03

Press SHIFT + CMD + SPACE to read the docstring . =

self.layer_norm = nn.La
nternal Module state, shared by both nn.Module and ScriptMedule.
4. Create the Mult Hea 7 CION(HSK Tayer
self.multihead attn B eadAttention(embed dim=embedding dim,
num_heads=num_heads,
ttn_dropout,

Get .
g Ecosystem Aobile Blog Tutorials
Starte:
yer_norm(x)

e a rC O r I I) cuts attn_output, = gelf.multihead_attn(query=x, #
A Sear PYTORCH DOCUMENTATION ? 3 :] need_weight

attn_output

PyTorch is an optimized tensor library for deep learning
1m36s completed at 16:03
Features described in this documentation are classified by release s

Stable: These feature |l be maintained long-term and there
e no major performance limitations or gaps in
to maintain backward
es can happen and notice

ea a because the API may
J ang o back, because the performance needs
o img ause coverage across operators is nol

complete. For Beta feature: are committiny eing the
fi through to the Stable classification. V
committing i3 mpatibility.

Prototy These features are typically not

binary ibutions like Conda, except sometimes behind

Issues
run-time ,and are at

-deep-learning Fubiic % Fork M Starred 76

A S k . I Pullreq () Discussions) Actions in) Security

all categories » Latest Ne) Unread (11) op <+ New Topic

Uncategorized RuntimeError: Error(s) in loading

New Top: All = Label ~ Filter ~ ha ! ¥ .
1 Y " in state_dic

Discussions o tad

mixed-precision Explaination of behavio

Why alwa 0 0] and never

a[0]=b[1]?

Welcome to pytorch-deep-learning Discussions!

ibourke a nceme

autograd
Handling GPU/CPU compute
fferenc

windows

How to compute the gradient of a
component of a vector-valued function?

torch.utils.d

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions e

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

“What is machine learning
research paper replicating?”

Turning research into usable code.

What is paper replicating?

Published as a conference paper at ICLR 2021

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy***, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn™,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby™
*equal technical contribution, Tequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.!

1 INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989;
Krizhevsky et al., 2012; He et al., 2016). Inspired by NLP successes, multiple works try combining
CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing
the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while
theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to
the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-
like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al.,
2020).

Source: https://arxiv.org/pdf/2010.11929.pdf (ViT paper)

Machine learning paper Cooking recipe

https://arxiv.org/pdf/2010.11929.pdf

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder

‘H’ def
Patch + Position __) Multi-Head
Embedding Attention
* Extra learnable
[class] embedding Linear P[’OjCCtiOI’l Of Flattened Patches -
SHE
;! . by, 7 w M E T
%Rﬁgﬁggg-_____*>é§§!silllll'%%%ﬁﬁmimha g&.!Eﬂ!
R Embedded
Patches
Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
1R 2R . N P?.C)xD N+1)xD
Zy = [Xclass, XpE, xpE, Ty Xy E] + Ep037 E e R() ’ Epos € R(+1)
Z’g = MSA(LN(Zg_l)) + Zp_1, {=1...L def

Zy = MLP(LN(ZIE)) + Z’g, {=1...L
y = LN(z2)

What is paper replicating?

import torch as nn

class ViT(nn.Module):
"""Creates a Vision Transformer architecture with ViT-Base hyperparameters by default."""

__init__(self,

img_size:int=224, # Training resolution from Table 3 in ViT paper
in_channels:int=3, # Number of channels in input image
patch_size:int=16, # Patch size

num_transformer_layers:int=12, # Layers from Table 1 for ViT-Base
embedding_dim:int=768, # Hidden size D from Table 1 for ViT-Base
mlp_size:int=3072, # MLP size from Table 1 for ViT-Base
num_heads:int=12, # Heads from Table 1 for ViT-Base
num_classes:int=1000): # Default for ImageNet but can customize this

super().__init__ ()

self.patch_embedding = PatchEmbedding(in_channels=in_channels,
patch_size=patch_size,
embedding_dim=embedding_dim)

self.transformer_enedoder = nn.Sequential(x[TransformerEncoderBlock(embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_size=mlp_size) for _ in range(num_transformer_layers)])

self.classifier = nn.Sequential(
nn.Linear(in_features=embedding_dim, out_features=num_classes)

)

forward(self, x):

x = self.patch_embedding(x)

X = self.transformer_enedoder(x)
return self.classifier(x[:, 0])

Create ViT

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before

every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

Source: Vil paper

Images + math + text

vit = ViT()

Usable code

https://arxiv.org/abs/2010.11929

Terminology

Vision Transformer (ViT) Transformer Encoder

Published as a conference paper at ICLR 2021

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Transformer Encoder
e Alexey Dosovitskiy* ', Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
» Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Paécr:; (:3?:1‘ ;m = % Georg Heigold, Sylvai.n Gelly, .!ak(?b Uszkoreit, I\IJe.il Houlsby™
*equal technical contribution, fequal advising
- Google Research, Brain Team

* Extra learnable

[class] embedding Linear Projection of Flattened Patches

SHE _
S I T A e

o Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

{adosovitskiy, neilhoulsby}@google.com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.!

I INTRODUCTION

Zo = [Xclass; le,E; xzz,E; cee s xi,vE] + Epos, E ¢ R(PQ'C)XD, E,.s € RN+1)xD
z'y = MSA(LN(z¢_1)) + 2¢_1, {=1...L

zy = MLP(LN(z'y)) + 2’4, ¢=1...L

y = LN(z2)

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989;
Krizhevsky et al., 2012; He et al., 2016). Inspired by NLP successes, multiple works try combining
CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing
the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while
theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to
the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-
like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al.,
2020).

Source: https://arxiv.org/pdf/2010.11929.pdf (ViT paper)

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

Source: Vil paper

Vision Transformer (ViT) architecture ViT paper

https://arxiv.org/abs/2010.11929
https://arxiv.org/pdf/2010.11929.pdf

“Why replicate machine
learning research papers?”

1. It’s fun... and...

59 Machine Learning Engineer®
60 ————

61

62 1. Download a paper

63 2. Implement it

64 @. Keep doing this until you have skills

- George Hotz, founder of comma.ai

*Machine Learning Engineering also involves building infrastructure around your models/
data preprocessing steps

https://comma.ai/

“What is a machine learning
research paper?”

Anatomy of a research paper*

(and many other kinds of sctentific papers)

Section

Abstract

Introduction

Method

Results
Conclusion
References

Appendix

Whatis it?

An overview/summary of the paper's main findings/contributions.

What's the paper's main problem? And details of previous methods used to try and solve it.

What steps did the researchers take when conducting their research? For example, what model(s), data
sources, training setups were used?

What are the outcomes of the paper? If a new type of model or training setup was used, how did the
results of findings compare to previous works? (this is where experiment tracking comes in handy)

What are the limitations of the suggested methods? What are some next steps for the research
community?

What resources/other papers did the researchers look at to build their own body of work?

Are there any extra resources/findings to look at that weren't included in any of the above sections?

*This structure is quite fluid. It’s more of a general guide than a required outline.

Anatomy of a research paper*

Section

Abstract

Introduction

Method

Results

Conclusion

References

Appendix

Whatis it?

An overview/summary of the paper's main findings/contributions.

What's the paper's main problem? And details of previous methods used to try
and solve it.

How did the researchers go about conducting their research? For example,
what model(s), data sources, training setups were used?

What are the outcomes of the paper? If a new type of model or training setup
was used, how did the results of findings compare to previous works? (this is
where experiment tracking comes in handy)

What are the limitations of the suggested methods? What are some next steps
for the research community?

What resources/other papers did the researchers look at to build their own
body of work?

Are there any extra resources/findings to look at that weren't included in any
of the above sections?

Published as a conference paper at ICLR 2021

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy* ', Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby™*'
*equal technical contribution, fequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@Rgoogle.com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.

1 INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (LeCun et al., 1989;
Krizhevsky et al., 2012; He et al., 2016). Inspired by NLP successes, multiple works try combining
CNN-like architectures with self-attention (Wang et al., 2018; Carion et al., 2020), some replacing
the convolutions entirely (Ramachandran et al., 2019; Wang et al., 2020a). The latter models, while
theoretically efficient, have not yet been scaled effectively on modern hardware accelerators due to
the use of specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-
like architectures are still state of the art (Mahajan et al., 2018; Xie et al., 2020; Kolesnikov et al.,

df/2010.11929.pdf (ViT paper)

ViT paper

https://arxiv.org/pdf/2010.11929.pdf

“Where can you find machine
learning research papers?”

ers

(and code)

Finding machine learning pap

(32) AK (@_akhaliq) / Twitter X 4

@ arxiv.org

cC 0 @ twitter.com/_akhaliq

AK
@ Cornell University We gratefully acknowledge support from

the Simons Foundation and member institutions.] 12.5K Tweets

Help | Advanced Search

arxiv s

arXiv is a free distribution service and an open-access archive for COVID-19 Quick Links
2,102,411 scholarly articles in the fields of physics, mathematics,)
computer science, quantitative biology, quantitative finance, statistics, See COVID-19 SARS-CoV-2 preprints from
electrical enaineerina and svstems science, and economics. Materials on e arXiv

Physics « medRxiv and bioRxiv

Mathematics

Following

Important: e-prints posted on arXiv are not peer-reviewed by

arXiv; they should not be relied upon without context to guide

v Computer Science Search || Form Interface clinical practice or health-related behavior and should not be
Quantitative Finance reported in news media as established information without
Statistics consulting multiple experts in the field.

Quantitative Biology

@_akhaliq
| Electrical Engineering and Systems Science paper tweets, dms are open, ML ¢

| Economics arXiv's blog. (View the former

"what's new" pages here). Read robots beware before attempting any
automated download.

B3 Science & Technology & linkedin.com/in/ahsenkhaliq Joined April 2014
1,503 Following 70.3K Followers

"“,\‘ Followed by Tanay Mehta, Al Fast Track, and 35 others you follow
Physics
. Tweets Tweets & li
» Astrophysics (astro-ph new, recent, search) w weets &replies
includes: Astrophysics of Galaxies; Cosmology and Nongalactic Astrophysics; Earth and Planetary Astrophysics; High Energy Astrophysical
Phenomena; Instrumentation and Methods for Astrophysics; Solar and Stellar Astrophysics

AK @ akhaliq - 13m
« Condensed Matter (cond-mat new, recent, search)

Error-Aware Spatial Ensembles for Video Frame Interpolation
abs: arxiv.org/abs/?

Source: https://arxiv.org/

Source: AK Twitter

O ucidrains/vit-

& github.com/lucidrains

est in Machine Learn

Cc 0 & paperswithcode.com

O Search or jump to... Pull requests Issues Marketplace Explore I: + - e'
Browse State-of-the-Art Datasets Methods More v

& lucidrains / vit-pytorch Public @ Sponsoring ®Watch 126 ~ ¥ Fork 18k Starred 10.9k

<> Code (©) Issues 90 11 Pullrequests 4 (® Actions [Projects [0 wiki (@ Security

F main ~ ¥ 2branches © 143 tags Go to file Add file ~ m About

Implementation of Vision Transformer, a
c lucidrains offer way for extractor to return latents without detaching them 29 s simple way to achieve SOTA in vision
classification with only a single
.github sponsor button 4 months ago transformer encoder, in Pytorch

Insights

2 Top O Social 2% New O Greatest

] Subscribe

Trending Research

Multiface: A Dataset for Neural Face Rendering * 144
examples fix tre nsiorv test process computer-vision transformers

O facel Kresearch/r tifac
) fa : mul 5.19stars / hour
images ac s\ ar ast, ar) "\ . 3 s aqo artificial-intelligence image-classificatior

attention-mechanism
tests

vit_pytorch offer w extractor to return latents without detaching thern

.gitignore

ked #1 on Novel View Synthesis on 10,000 People - Human Pose
LICENSE)
Recognition Data (using extra training dat

MANIFEST.in

- Novel View Synthesis

README.md make extractor flexible for layers that output multiple tensors, show.

setup.py off for extractc turn latents without detaching ther 9 days ago Releases 142

© v0.35.8 (Latest

README.md Hay

https://github.com/lucidrains/vit-g ch/releases/tag/v0.35.8

Source: https://github.com/lucidrains/vit-pytorch Source: https://paperswithcode.com/

https://arxiv.org/
https://twitter.com/_akhaliq
https://github.com/lucidrains/vit-pytorch
https://paperswithcode.com/

Replicating the
Vision Transformer
paper (ViT paper)

What we’re doing

2§ [2010.11929] An Image is Wor' X -

C O @ arxiv.org/abs/2010.11929

N
S

. . We gratefully acknowledge support from
Cornell UmVerSlty the Simons Foundation and member institutions.

: Search
d I'X]_V > ¢s > arXiv:2010.11929

Help | Advanced Search

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 22 Oct 2020 (v1), last revised 3 Jun 2021 (this version, v2)]

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, Neil Houlsby

While the Transformer architecture has become the de-facto standard for natural language processing
tasks, its applications to computer vision remain limited. In vision, attention is either applied in
conjunction with convolutional networks, or used to replace certain components of convolutional
networks while keeping their overall structure in place. We show that this reliance on CNNs is not
necessary and a pure transformer applied directly to sequences of image patches can perform very well
on image classification tasks. When pre-trained on large amounts of data and transferred to multiple
mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision
Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while
requiring substantially fewer computational resources to train.

Source: Vil paper

Download:

e PDF
e Other formats

(license)

Current browse context:
cs.CV

< prev | next>
new | recent | 2010

Change to browse by:

CS
cs.Al
cs.LG

References & Citations

o NASA ADS
e Google Scholar
e Semantic Scholar

16 blog IinkS (what is this?)
DBLP - CS Bibliography
listing | bibtex
Alexey Dosovitskiy

https://arxiv.org/abs/2010.11929

Machine Learning vs. Deep Learning

(common algorithms)

« Random forest
« Gradient boosted models
- Naive Bayes

» Nearest neighbour _-____Bg_gg__r_[g_nfg_ngpraI etwork
» Support vector machine « Transformer :
e ...Many more | e ...Mmany more

What we’re focused on building
(with PyTorch)

(depending how Yyou represent Your problem,
many algorithms can be used for both)

Structured data - ~ Unstructured data

Machine Learnlng vs. Deep Learning

(common algorithms)

« Recurrent neural etwork

lll
0

» " -
n - v = . .
- \ 1‘ ; (S =] - "
I : - 5
') _ — e :) .
v - L. - »
§ ..
P ¥ »
;f i “'::;\\
/ ' W
: \
. ' =3
w, y | e - =
\ . L 'O Ve -
s = gy . o & ',./
AN 1Y W .
. ! v L <
{3 |
\ ‘:.’) '," 3 . ‘ : .
H :‘ o 1§ - X
\ |) l ‘. :
i :1 ;') \ " g . !’
3 Y v M A\ P 8 esssssssssssssEEEEEEEEEEEEEEEEEEEEEEEEEEES
v/ ! 3
' < U o
L 4

What we’re focused on building
(with PyTorch)

Unstructured data

https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA

Machine Learning vs.(Deep Learnin
common algorithms)

Transformer Encoder

Patch + Position
Embedding

* Extra learnable
[class] embedding

W

N
L

« Recurrent neural\network

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
«classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al. (2017).

Source: Photo by John Tubelleza

Uy E EEEEER
EEEEEEEEEEEEEEEEEEEEEEEEEER
EEEEREN
>

« Transformer

4EpEEEEER

Tl]

EEEEEEEEEEEEEEEEEEEEEEEEEN
EEEEEER

e ...Many more

M BEEEE L

What we’re focused on building

(with PyTorch)

Unstructured data

https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA
https://unsplash.com/photos/jagiILTQ8pA

What we’re doing

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder

Patch + Position

A 8 - % g Multi-Head
Embedding Attention

* Extra learnable . . . R
[class] embedding Linear Projection of Flattened Patches

g H z ‘ 1 ™| T e B Norm
i 5 o ——~ D O
% % & Embedded

Patches

‘

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Vision Transformer architecture FoodVision Mini € > &

What we’re doing

FoodVision Mini €

Vision Transformer (ViT)

Transformer Encoder

Patch + Position
Embedding

* Extra learnable
[class] embedding

S ade 1 ERe L Purepe

]

Linear Projection of Flattened Patches

What we’re doing

Original VLT Avchitectpe

Transformer Encoder

Norm

Multi-Head
Attention

Norm

Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al. (2017).

FoodVision Mini

Source: Vil paper

\

IR

https://arxiv.org/abs/2010.11929

What we’re doing

Vision Transformer (ViT)

. Norm
Transformer Encoder

Patch + Position Multi-Head
Embedding = s Attention

* Extra learnable
[class] embedding

.I.id = E I - I Norm
PiTEFE 3 | -
QA‘ C:’ “. N
TN E Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Source: Vil paper

\

IR

FoodVision Mini

https://arxiv.org/abs/2010.11929

What we’re going to cover

(broadtg)
Getting setup (importing previously written code)

Introduce machine learning paper replicating with PyTorch
Replicating ViT for FoodVision Mini € &&
Training a custom VIT

Feature extraction with a pretrained ViT

(we'll be cooking up lots of code!) €8

How:

Let’s codel

Models Dataset

ViT-B/{16,32} JFT-300M

ViT-L/32 JFT-300M

ViT-L/16 JFT-300M

ViT-H/14 JFT-300M

R50x{1,2} JFT-300M

R101x1 JFT-300M

R152x{1,2} JFT-300M
R50+ViT-B/{16,32} JFT-300M
R50+ViT-L/32 JFT-300M 7
R50+ViT-L/16 JFT-300M 7/14
ViT-B/{16,32} ImageNet-21k 90
ViT-L/{16,32} ImageNet-21k ~ 30/90
ViT-x ImageNet 300

Base LR LR decay Weight decay Dropout

8104
6-10"4
4-104
3-1074
10~°
1074
104
1074
.10~4
1074
1073
10~ °
3-107°

linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear

cosine

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.03
0.03
0.3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1

Table 3: Hyperparameters for training. All models are trained with a batch size of 4096 :and learn-
ing rate warmup of 10k steps. For ImageNet we found it beneficial to additionally apply gradient
clipping at global norm 1. Training resolution is 224.

Image size = 224x224 (height=224, width=224)

Source: Vil paper

Image size and batch size

Batch size = 4096

https://arxiv.org/abs/2010.11929

Inputs, outputs, layers and blocks

Contains a function to
~ manipulate an input , for

—— Outputs example: (QKT> ;

Inputs
Attention(Q, K, V) = softmax

V di
Block = stgek of layers

Inputs — - Outputs

Model = stgepo of blocks

Inputs — Outputs

VIT Overview: Inputs and Outputs

Vision Transformer (ViT) Transformer Encoder

OUtpUtS Bird . MLP] MLP = Multilayer

Head perceptron

Transformer Encoder

"f‘é‘%ﬂﬁeﬁ’?ﬁf‘f?"*) @)) @5 Nenons |

* Extra learnable o
[class] embedding Linear Projection of Flattened Patches - A A A
1

"% n ‘ : Norm]
: = | A T mo
g % Embedded

|
Patches J

Figure 1: Model overview. We:split an image into fixed-size patches, linearly embed each of them.,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. :In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Source: Vil paper

https://arxiv.org/abs/2010.11929

VIT Overview: Inputs and Outputs

Vision Transformer (ViT) Transformer Encoder

OUtpUtS ‘ | MLP] MLP = Multilayer

Head perceptron

Transformer Encoder

FoodV|5|on Mini
PR P et £ 4 @ITJ @5 “&‘ﬁ?ﬁﬁﬁi\]ﬁ

* Extra learnable o
[class] embedding Linear Projection of Flattened Patches - A A A
1

L ﬂ E | - . Norm].

- S GEE . WE

g‘ (o u"\- >M£?A’ \ w t’* = dﬁ
T Embedded |
Patches J

Figure 1: Model overview. We split an:image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. :In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The 1illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Source: Vil paper

https://arxiv.org/abs/2010.11929

VIT Overview:

Four Equations

Vision Transformer (ViT) Transformer Encoder

[

I

l

l

l

l

| Z0 = 1Xclass, xlE' x2E' E ¢ R(PQ'C)XD, E,.s € RVAL*D
Patch + Position __ Jo¥, : sy) "} Tob) : . AV z'y = MSA{LN(z,_ 1)) —I— Zy_ 1.,‘ ¢{=1...L

I

I

)

I

I

* Extra learnable
[class] embedding ®emnnn

Embedding r‘ -"lll
—MLP{LN(Z' o)} ¥ 2/ ¢=1...L

M£F y = LN(ZL)

4 e = *\ ';’Muv‘,
w(tfi“ WS w i:bx .

=

Ql

Embedded 3 i The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
Patches attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, oy block, and i Eh-l?l connections, gf-tf: A -b-19 : k (Wang et al., 2019; Baevski & Auli, 2019).

add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al. (2017).

Source: ViT paper section 3.1

Source: Vil paper Figure 1

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

VIiT Overview: Workflow

vieuwalize, Vviewalize, visuallze!l

Original image

FoodVision Mini € &

Paper reading tip: math to text

@ Editing vit-paper-demo - Snip X -+

cC O @& snip.mathpix.com/danielbourke/notes/8b64581d-cdf5-4eaf-9257-1a4f04340ae8/edit

SNIPS —+ vit-paper-demo

Magic!

M . !
z Xetas; XoE; X2E xE| +E, EcRFOxD g, e RN+ 1)) q Ic
z MSA(LN(z T { 1 2) g .

it - . $$
\beginialigned

\mathbf{z; {0} &=\left|\mathbfi{x;_{\text {class };; 20 = [Xelass ; X B3 3B 3 % E] + By,

[q-, k’ V] — ZquU Z} - MSA(LN(Zg_l)) + Zg-1,

A — softmax (qkr/m> \mathbf{x;_{pM1; \mathbf{E} ; \mathbf{x;_{pi™{2 20 — MLP(LN(2))) + 7,

\mathbf{E} ; \cdots ; \mathbfix;_{p:*N y = LN(2)
\mathbf{E}\right|+\mathbf{E}_{p 0 s}, & & \mathbf{E} \in
\mathbb{R}*\left(PA{2} \cdot C\right) \times D},

\mathbf{E} {p o s} \in \mathbb{R}*(N+1) \times D W
\mathbf{z}_{\ell;*{\prime
&=\operatorname{MSA}\left(\operatorname{LN\left(\math
bf{z}_{\ell-1}\right)\right)+\mathbf{z} {\ell-1}, & & \ell=1
\ldots L \\

\mathbf{z; {\ell
&=\operatorname{MLP}\left(\operatorname{LN}\left(\math
bf{z}_{\ell}*\primej\right)\right)+\mathbf{z}_{\ell}{\prime
, & & \ell=1 \ldots L \\

\mathbf{y
&=\operatorname{LN\left(\mathbf{z;_{L;*O0j\right) & &
\end{aligned

¢

SA(z) = Av.

Source: mathpix.com, see a live demo

http://mathpix.com
https://twitter.com/mrdbourke/status/1552100692273180672?s=20&t=mNIHUht08xNbRtWdsxQeJw

Equation 1: The Patch Embedding

20 = [Xetass; XL E; X2E; -+ 5 xXVE]+ By, (E € REOXDEE e RNFDXD

Z/g = MSA(LN(Zg_l)) + Zyp_1, ¢=1...L

i~ 00 @)) @) @) 60 @) @) €

* Extra learnable) . i
[class] embedding Linear Projection of Flattened Patches

zy = MLP(LN(z'))) + 2’4, {=1...L
y = LN(z])

‘ ’ g , i *

‘ 5@ oA o »

- _- n""‘ ._;'3: : ~o 4 4 "‘h. v ﬂ A ‘

v e -rop ‘ , y - } g 5 o

W¢ .‘:h~ L —_— m e o -~ q 3.1 VISION TRANSFORMER (VIT)

-, A
Se et A

) SR e
T . = -
< ﬂi An overyview, of the model is depicted in Figure, 1. The standard Transformer receives as input a1
sequence of token embeddings. To handle 2D images, we reshape the image x € R7”*WXC into a

Figure 1: Model overview. =We split an image into fixed-size patches, linearly embed each of them; sequence Qf flattened 2D patches x, € RY .><(P 0), th?re (H, W).is the resolution of the origina21
add position embeddings, and feed the resulfing sequence of vectors to a standard Transformer image, C is the number of channels, (P, P) is the resolution of each image patch, and N = HW/P

encoder. In order to perform classification, we use the standard approach of adding an extra learnable 1s the resulting number of patches, which also serves as the effective input sequence length for the

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by Transformer. The Transformer uses constant latent vector size) through all of its layers, so we

Vaswani et al. (2017). flatten the patches and map o) dimensions with a trainable linear projection (Bg; 1).:We refer to

the output of this projection as the patch embeddings.

Image size= (H, W, C) -> (N Patches, (P2« C)) Embedding size (D) = 763(ViT-Base)

For example, patch size =16 (ViT-Base) :
(224, 224, 3) -> (196,)

Equation 1: The Patch Embedding

1. Create a class which subclasses nn.Module
class PatchEmbedding(nn.Module):
"""Turns a 2D input image into a 1D sequence learnable embedding vector.

Args:
in_channels (int): Number of color channels for the input images. Defaults to 3.

ot ge paEch_size (int): Size of patches to convert input image into. Defaults to 16.
Paétlg;egg::éon —- @ .I.I.I'I.I@.I.Ig.lg‘ embedding_dim (int): Size of embedding to turn image into. Defaults to 768.

* Extra learnable i i i # 2. Initialize the class with appropriate variables
[class] embedding Linear Projection of Flattened Patches def __init_ (self,

in_channels:int=3,

| gags'~x patch_size:int=16,

LT .\ "" |5 e embedding_dim:int=768): # same as ViT-Base

I sy | 2505 o€
GER il SRR NE
. Q"’ e ‘ | S | # 3. Create a layer to turn an image into patch embeddings

. iﬁL_ self.patcher = nn.Conv2d(in_channels=in_channels,

out_channels=embedding_dim,
kernel_size=patch_size,
stride=patch_size,
padding=0)

Zo = [Xetass;XLE; X2E; -+ 3 XVE] o Epos, (E € REVOXD IR e RVHDXD

z'y = MSA(LN(zp_1)) + z¢_1, ¢=1...L
, , # 4. Create a layer to flatten the patch feature maps into a single dimension
Zy = MLP(LN(Z e)) + Z g, ¢=1...L self.flatten = nn.Flatten(start_dim=2, # only flatten the feature map dimensions

y = LN(Z%) end_dim=3)

5. Define the forward method

def forward(self, x):
x_patched = self.patcher(x)
x_flattened = self.flatten(x_patched)

6. Make sure the output shape has the right order
return x_flattened.permute(@, 2, 1) # [batch_size, P~2+C, N] —> [batch_size, N, P"2(]

Patch + Position
Embedding

* Extra learnable
[class] embedding

~ 86 00 B0 B0 BDED 6D BUE) 6

Linear Projection of Flattened Patches

mﬁ’?
i el B | | 4
iy > 4

h

‘-«g

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Equation 1: The Class Token

xVE] + Epos, EeREOXD g e RNV+HDUXD
z'y = MSA(LN(zy_1)) + z¢_1, ¢=1...L
= MLP(LN(z'y)) + 2's, {=1...L
y = LN(z})

o LColm. 21,)
Z) = [Xclass; XpE, XPE, Tt

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z8 = Xclass), Whose state at the output of the Transformer encoder (z%) serves as the
image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z{ . The classification head is implemented by a MLP with one hidden layer at pre-training
time and by a single linear layer at fine-tuning time.

Prepend a learnable class embedding token to
the 0 index of the patch embedding

Sequence of patch embeddings

Create learnable class token and
prepend it to patch embeddings

Patch embeddings with
learnable class token

Equation 1: The Class Token

(XX

tensor([[[-0.3714, 0.0556, -0.1053, ..., 0.2598, -0.1740, 0.1473],
[-0.4294, 0.0788, -0.1078, ..., 0.2671, -0.1797, 0.1644],
[-0.4774, ©0.0965, -0.1198, ..., 0.3465, -0.1918, 0.1432],
[-0.1749, 0.0247, -0.0610, ..., 0.1185, -0.0448, 0.0451],
[-0.1679, 0.0264, -0.0745, ..., 0.1182, -0.0693, 0.0623],
[-0.0631, -0.0043, -0.0612, ..., 0.0553, -0.0460, 0.083711],

grad_fn=<PermuteBackwardo>)

Shape: [1, 196, 786], [batch size, number of patches, embedding dimension]

l

Create the class token embedding
class_token = nn.Parameter(torch.ones(batch_size, 1, embedding_dimension),

requires_grad=True) # make embedding learnable

Add the class token embedding to the front of the patch embedding
patch_embedded_image_with_class_embedding = torch.cat((class_token, patch_embedded_image),

Shape:

dim=1) # concat on first dimension

l

Ces Learnable class token,

tensor([[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000l 13V1q38vx£ieci
2037145 " "3 "don6," =B 1053, " " " 0. 2588 "1F. M4 " "0 1473,

[-0.4294, 0.0788, -0.1078, ..., 0.2671, -0.1797, 0.1644],
e,

[-0.1749, 0.0247, -0.0610, ..., ©.1185, -0.0448, 0.0451],
[-0.1679, 0.0264, -0.0745, ..., ©0.1182, -0.0693, 0.0623],

[-0.0631, -0.0043, -0.0612, ..., 0.0553, -0.0460, 0.0837]11,
grad_fn=<CatBackwardo>)

[1, 197, 786], [batch size, number of patches + class token, embedding dimension]

Equation 1: The Position Embedding

Position Embeddings Shape:

Patch + Position [num patches+1, embedding dimension]
emvedding > O () €U B BU G 6 @ B @l (*1 is for the class token

. ‘IIIIII- IIIIIIIIIIIIIIIIID
* Extra learnable

_ vl 2T, . N - (P?.C)xD = (N+1)><D'
: : - 7o = |Xelass; Xo By XoE; -+ s x) E| +=E, s, E€R ,.E s €ER
[class] embedding Linear Projection of Flattened Patches 0 = [Xaassi X, X, w.? po

Z,g = MSA(LN(Zg_l)) + Zyp_1, ¢=1...L
— MLP(LN(2',)) + s, ¢=1...L
P‘d"‘

ity B @ 18 hL] y = LN(zL)
e T ‘t". ;-f' .‘q :

Position embeddings are added to the patch embeddings to retain positional information. * We use

standard learnable 1D position embeddings, since we have not observed significant performance

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, g4ins fromfusntg (Ilgqre advtanced 2D—aw§1re Iﬁsntlﬁ) N embgddmgs (Appendix D.4). The resulting
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer SEQUENCE OF CIDHECCEINS VECLOTS SEIVES a5 IMpUt 10 the ENCOcer.

encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

1
Add alearnable 1D set of position embeddings
to [class_token, patch embedding]

osition Embeddin

Learnable class token,

tensor([[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000] Prepem,oleal
2037145 " "3 "don6," =B 1053, " " " 0. 2588 "1F. M4 " "0 1473,

quation1: The P

PatCh embeddings With [-0.4294, 0.0788, -0.1078, ..., 0.2671, —-0.1797, 0.1644],
[-0.1749, ©.0247, -0.0610, ..., 0.1185, -0.0448, 0.0451],
learnable class token S G S) G e Gl

[-0.0631, -0.0043, -0.0612, ..., 0.0553, -0.0460, 0.0837111,
grad_fn=<CatBackwardo>)

Shape: [1, 197, 786], [batch size, number of patches + class token, embedding dimension]

l

Create pOSition embeddings and # Create the learnable 1D position embedding

position_embedding = nn.Parameter(torch.ones(1, number_of_patches+1l, embedding_dimension),

add to patCh embeddings With requires_grad=True) # make sure it's learnable
Iearnable Class tOken # Add the position embedding to the patch and class token embedding
patch_and_position_embedding = patch_embedded_image_with_class_embedding + position_embedding
l values all changed thankes to
00 ‘PDSLtLOV\' CVWbeddiwgs

o o tensor([[[2.0000, 2.0000, 2.0000, ..., 2.0000, 2.0000, 2.0000],

Patch embedd"]gs W|th Iearnable [0.6286, 1.0556, 0.8947, ..., 1.2598, 0.8260, 1.1473],

I t k d .t, [0.5706, 1.0788, 0.8922, ..., 1.2671, 0.8203, 1.1644],

C ass o ebn grd‘, pOSI |On -[6:;3251, 1.0247, 0.9390, ..., 1.1185, 0.9552, 1.0451],

[0.8321, 1.0264, 0.9255, ..., 1.1182, 0.9307, 1.06231,

em e Ings [0.9369, 0.9957, ©0.9388, ..., 1.0553, 0.9540, 1.0837111,

grad_fn=<AddBackwardo>)

Shape: [1, 197, 786], [batch size, number of patches + class token, embedding dimension]

Equation 1: Putting it all together

a# 1. Set patch size

Epatch_size = 16

E# 2. Print shape of original image tensor and get the image dimensions
=print(f"Image tensor shape: {image.shape}")

=height, width = image.shape[l], image.shape[2]

"# 3. Get image tensor and add batch dimension
=X = image.unsqueeze(0)

"print(f"Input image with batch dimension shape: {x.shape}")

-# 4. Create patch embedding layer

=~ patch_embedding_layer = PatchEmbedding(in_channels=3, # number of color channels in image
patch_size=patch_size,

embedding_dim=768) # from Table 1 for ViT-Base

<Gl EEEEEENDM AN EEEEEEEEEEEEEEEED

Zo = [Xclass; XI];E’ x;)")E, cee] Xi)VE]é_F Epos’E E ¢ R(PQ.C)XDEEPOS c R(N-i—l)XDE

Z,g = MSA(LN(Zg_l)) + Zyp_1, ¢{=1...L

=# 5. Pass image through patch embedding layer
= patch_embedding = patch_embedding_layer(x)
= print(f"Patching embedding shape: {patch_embedding.shape}")

'II
‘-II.

s # 6. Create class token embedding

= batch_size = patch_embedding.shapel[0]

= embedding_dimension = patch_embedding.shape[-1]

= class_token = nn.Parameter(torch.ones(batch_size, 1, embedding_dimension),
requires_grad=True) # make sure it's learnable

print(f"Class token embedding shape: {class_token.shape}")

 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

zy = MLP(LN(z'))) + 2’4, (=1...L
y = LN(z})

7. Prepend class token embedding to patch embedding
patch_embedding_class_token = torch.cat((class_token, patch_embedding), dim=1)
print(f"Patch embedding with class token shape: {patch_embedding_class_token.shape}")

4EEEEEEEEEEEEEEEEEEEERP

8. Create position embedding

number_of_patches = int((height * width) / patch_sizexx2)

position_embedding = nn.Parameter(torch.ones(1l, number_of_patches+1l, embedding_dimension),
requires_grad=True) # make sure it's learnable

9. Add position embedding to patch embedding with class token
patch_and_position_embedding = patch_embedding_class_token + position_embedding
print(f"Patch and position embedding shape: {patch_and_position_embedding.shape}")

Equation 2: The MSA Block

MSA = Multi-Head Self Attention

Vision Transformer (ViT) Transformer Encoder

Equation 2 = “MSA block”

‘lllll.

| Zg—MSALN(Zg 1))-—|—Zg 1o ¢=1...L

20 = MLP(LN(2',)) + 2 s, ¢=1...L

Patch + Position
Embedding

* Extra learnable
[class] embedding

m;ﬁéfﬁ
w‘i:h t.“
‘b&—. .

J !

""" 3«'

]
]
]
|
]
]
I 2
' . Z0 = [Xclass’ X1E° x2E X E] + Epos, E e RP 'C)><D, Ep0s € R(N+1)xD
]
|
l 0
T ot = LN
| (o] y = LN(=L)
|
]

The Transformer encoder (Vaswani et al., 2017) consists of-alternating layers of multiheaded self-
Patches attention (MSA, see Appendix A) and MLP blocks (Eq 2, 3). Layernorm (LN) is applied before

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, every block, andsr -e §1.d.‘£a.1.‘2‘2f.“.‘?‘3t.‘ o _a_f ter every, '."1‘3915 {Wang et al., 2019; Baevski & Auli, 2019).

add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Equation 2: The MSA Block

MSA = Multi-Head Self Attention

. . . 2.
Vision Transformer (ViT) Transformer Encoder Zo = [Xclass; x1E° x2E <V E] 4+ Epos, Ec]R(P C)xD, Epos c R(N+1)x D

’-ﬁ MLP
Head
Pizza —

‘Illll.

ZQ—MSALN(Zg 1))-—|-Zg 1o ¢=1...L

lllll’

20 = MLP(LN(2'y)) + 7'y, ¢=1...L
y=LN(Z%)

Transformer Encoder

The Transformer encoder (Vaswani et al., 2017) consists of-alternating layers of multiheaded self-

i
[
[
l
I
l
l
I
é : attention (MSA, , €8, 4 Appendix A) and MLP blocks gEq 2, 3). Layernorm (LN) is applied before
Paécl?l;egg?:ltéon » [0 (i @3] @ | Multi-Head every block, and.r.e§1_d_u_a_l_c_(zrzr_1§c_t_1c_>r_1§ _a_fEe_r_?_/czr_y_ bloclf ‘(Wang et al., 2019; Baevski & Auli, 2019).
!
I
!
l
[
I

Attentlon

* Extra learnable
[class] embedding Linear Projection of Flattened Patches

1 11 | | .- ,‘J.

- “ra , * ‘;" ‘*’..ﬂ‘
it ’mﬁn’? if*'iﬁ ol 9
g

11

A MULTIHEAD SELF-ATTENTION From “Attentlon Ls all You neeo” paper

[Embedded] N Standard qkv self-attention (SA, Vaswani et al. (2017)) is a popular building block for neural archi-
Patches

tectures. For each element in an input sequence z € RV X, we compute a welghted sum over all
1€s-vin the sequence. The attention weights A;; are based on the pairwise similarity between

two eléments_of-the sequence and their respective query q* and key k’ representations.

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,

add position embeddings, and feed the resulting sequence of vectors to a standard Transformer

encoder. In order to perform classification, we use the standard approach of adding an extra learnable {q: ksvE= zU Ui, € RP*3D (5)

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by) T NxN

Vaswani et al. (2017). A = softmax (‘lk /v D) AR, 6)
SA(z) = Av. (7)

i Multihead self-attention (MSA) is an extension of SA in which we run £ self-attention operations,
— q Uery called “heads”, in parallel, and project their concatenated outputs. To keep compute and number of
k — key parameters constant when changing k, D}, (Eq. 5) is typically set to D /k.

v = value MSA(z) = [SA1(2);SA2(2); - - 5 SAk(2)] Unnsa Unnsa € RFDrXD @®)

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

st - G0 01 @) 60 @) 60 @) B)E) @

* Extra learnable

[class] embedding Linear Projection of Flattened Patches

| i B
o 1 SN N R B O
W R E | Wt*f.ﬁ‘ | “‘?.,;.k

‘Illlllllll.

L)
Bl

Transformer Encoder

Multi-Head
Attention

Embedded
Patches

70 = [Xetass; X0B; 32E; -+ ; XVE] + Epos, E € RFOXD e RVFDXD

¢=1...L
(=1...L

Z,g = MSA':LN(Zg_l)) + Zyp_1,

Zy = MLP(LN(Z,g)) -+ Z’g,
y = LN(z})

Equation 2: The MSA Block

MSA = Multi-Head Self Attention

from torch import nn

1. Create a class that inherits from nn.Module
class MultiheadSelfAttentionBlock(nn.Module):
"""Creates a multi-head self-attention block ("MSA block" for short).
2. Initialize the class with hyperparameters from Table 1
def __init__ (self,
embedding_dim:int=768, # Hidden size D from Table 1 for ViT-Base
num_heads:int=12, # Heads from Table 1 for ViT-Base

attn_dropout:int=0): # doesn't look like the paper uses any dropout in MSABlocks

super().__init__ ()
‘-II‘
" # 3. Create the Norm layer (LN) -
s self.layer_norm = nn.LayerNorm(norma1ized_shape=embedding_dim):

 E EEERS®

¢S I EFEEFEEEEEFEEFEEEEE N EEFEEEEEEEEFEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEENEEEEEEEEEEEEEEEESR

" # 4. Create the Multi-Head Attention (MSA) layer

self.multihead_attn = nn.MultiheadAttention(embed_dim=embedding_dim,
num_heads=num_heads,
dropout=attn_dropout,

4 I EEEEEERN

5. Create a forward() method to pass the data through the layers
def forward(self, x):
x = self.layer_norm(x)
attn_output, _ = self.multihead_attn(query=x, # query embeddings
key=x, # key embeddings
value=x, # value embeddings

need_weights=False) # only get layer outputs

return attn_output

batch_first=True) # batch dimension first?

AN EEERY

Equation 3: The MLP Block

Vision Transformer (ViT) Transformer Encoder

* Extra learnable
[class] embedding

adh .
: ”b .;;" ‘ "] -‘.“ .}-.

?t Fh t.“

Patch + Position ___ (oY, Multi-Head
Embedding - . Attention

EasN e b AN ' : A | . 'Y
M ﬁ&\ Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

MLP = Multila Yer Perceptron

Equation 2 = “MLP block”

[Xcla337 .;J, 2E ;)VE] 4 Ep037 E ¢ R(P2'C)XD, Epos = R(N+1)XD
gA(LN(Ze l\)—FZg 1, ¢=1...L

.

MLPLNZg))-—i-Zg,' ¢{=1...L
}’:LN(ZL)

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A_) and MLP blocks (Eq 2, 3). Layernorm (LN) is applied before

'-II EEEEER H E NN NAGEENE ey

every block, and. residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

* Extra learnable
[class] embedding

i B

] T W iy B :
GER i N

AL 18
N

Equation 3: The MLP Block

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

+
P > 02 00 80 61 €) € €0 @) &) 6
.

Linear Projection of Flattened Patches

5 #3 ?E t‘: L |
Embedded
Patches

dis | &

70 = [Xetass; X0B; 32E; -+ ; XVE] + Epos, E € RFOXD e RVFDXD

Z,g = MSA(LN(Zg_l)) + Zyp_1, ¢=1...L

zy =-MLP{LN(z'y)} + 2'¢, ¢=1...L
y = LN(z})

MLP = Multila Yyer perceptron

from torch import nn

1. Create a class that inherits from nn.Module
class MLPBlock(nn.Module):
"""Creates a layer normalized multilayer perceptron block ("MLP block" for short)."""
2. Initialize the class with hyperparameters from Table 1 and Table 3
def __init__ (self,
embedding_dim: int=768, # Hidden Size D from Table 1 for ViT-Base
mlp_size:int=3072, # MLP size from Table 1 for ViT-Base
dropout:int=0.1): # Dropout from Table 3 for ViT-Base
super().__init__ ()

‘lII‘

a# 3. Create the Norm layer (LN) -

=self.layer_norm = nn.LayerNorm(normalized_shape=embedding_dim) *

|
'lII.

.-III

=# 4. Create the Multilayer perceptron (MLP) layer(s)
self.mlp = nn.Sequential(
nn.Linear(in_features=embedding_dim,
out_features=mlp_size),
nn.GELU(), # "The MLP contains two layers with a GELU non-linearity (section 3.1)."
nn.Dropout (p=dropout),
nn.Linear(in_features=mlp_size, # same in_features as out_features of layer above
out_features=embedding_dim), # take back to embedding_dim
nn.Dropout(p=dropout) # "Dropout, when used, is applied after every dense layer..."

)

4 EES

.-III‘

"# 5. Create a forward() method to pass the data through the layerss

"def forward(self, x): .
- x = self.layer_norm(x) =
. x = self.mlp(x) .
. return X a
..l.

4N EEEEEEEEEEEEEEEEEED

The Transformer Encoder

Vision Transformer (ViT) Transformer Encoder

Patch + Position
Embedding

* Extra learnable
[class] embedding

TR A
e(e E‘\
R

"'

Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Transformer Encoder = Alternating layers of equation 2 and =

Zo = [Xclass; XII’E’ XI27E’ R X;)VE] -4 Epo.s7 E ¢ R(PQ.C')XD, Epos c R(N+1)XD (1)

4l B E B EENEEEEEEEEEENEEENEEEEEEERNEEEDM®D

:z’y = MSA(LN(z¢_1)) + 241, ¢=1...L)

EEEY

z; = MLP(LN(z'y)) + 2/, {=1...L (3)
y = LN(z))

4 EEEEEEEEEEEEEDR

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eqg. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

The Transformer Encoder

from torch import nn

1. Create a class that inherits from nn.Module

Vision Transformer (ViT) Transformer Encoder class TransformerEncoderBlock(nn.Module):

"""Creates a Transformer Encoder block."""

2. Initialize the class with hyperparameters from Table 1 and Table 3

def __init__ (self,
embedding_dim:int=768, # Hidden size D from Table 1 for ViT-Base
num_heads:int=12, # Heads from Table 1 for ViT-Base
mlp_size:int=3072, # MLP size from Table 1 for ViT-Base
mlp_dropout:int=0.1, # Dropout for dense layers from Table 3 for ViT-Base
attn_dropout:int=0): # Dropout for attention layers

super().__init__ ()

Transformer Encoder

Patch + Position : i-He # 3. Create MSA block (equation 2)
*Ewﬁwdéng ' self.msa_block = MultiheadSelfAttentionBlock(embedding_dim=embedding_dim,
[ﬁiifﬁﬁﬁﬁmg num_heads=num_heads,

attn_dropout=attn_dropout)

|
mm:". v’l": ‘-;i:‘ = I i i I E E E E EEFEEFEEPN

] TR W = WL S LY “d o2 : .
W‘ = 2 _>.M@.?3.\ dir & | & # 4. Create MLP block (equation 3)

N Eself.mlp_block = MLPBlock(embedding_dim=embedding_dim,
Bl E'ﬁlﬁfﬁgfd " mlp_size=mlp_size,

dropout=mlp_dropout)

4 EED®

2 E IS NSNS NSNS NN SN NS NN NN NS NN SN SN NN NN SN NSNS NSNS NN NN NN EEEEEEEEEEEEEENEN,
Zy) — [xc]ass; xlE; X}Z)E;. » xNE] +Ep03, E (S R(P C)XD) EpOs € R(N+1)XD (1) # 5. Create a forward() method
A I BB EEEEEEENEDN E B EEEEEEEEENEDN EEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEEEENYN def forward(self' X):

TS MSANC) 2y b L)

6. Create residual connection for MSA block (add the input to the output
X = self.msa_block(x)- + X

z; = MLP(LN(z,)) + 7', (=1...L 3)
y = LN(z))

7. Create residual connection for MLP block (add the input to the output
x = self.mlp_block(x)- + x

EEEEEEENEEEEENEEEEENEENEN,
EEEEEEENEEEEENEEEEEEER

return Xx

4 EEER®

