Workflow

What we’re going to cover
A PyTorch workflow

(one of many)

/

A AN)35)<<
) \7 X

g_\ ﬁ N @

2. Build or pick a 3. Fit the model to the 4. Evaluate the model 5. Improve through 6. Save and reload

1. Get data read ' . . .
. 4 pret.ralned model data and make a experimentation your trained model
(turn into tensors) (to suit your problem) L
prediction

I O

o 2.2 Build a training loop
2.1 Pick a loss function & optimizer

Where can you get help?

< 01. PyTorch Workflow Fundar

C 0 (& learnpytorch.io/01

= Zero to Mastery Learn PyTorch for Deep Learning Q Ssearch Trdbourkelpytorch-decp-..

Table of contents Il
What we're going to cover M otto #1 .
L]

Where can can you get help?

01. PyTorch Workflow Fundamentals 1. Data (preparing and oading)

Split data into training and test

sets
I I I W I n W I h h > The essence of machine learning and deep learning is to take some data from the past, build an algorithm (like a 2. Build model
neural network) to discover patterns in it and use the discoverd patterns to predict the future. PyTorch model building

If tn dowbt, rum the codle”

essentials
There are many ways to do this and many new ways are being discovered all the time. Checking the contents of a
PyTorch model

But let's start small. Making predictions using
torch.inference_mode()

i i ine?
How about we start with a straight line? 3. Train model

Creating a loss function and
optimizer in PyTorch

L
Creating a training loop in
PyTorch
| . 4. Making predictions with a
What were gOIng to co trained PyTorch model

And we see if we can build a model with PyTorch to that straight line.
01_pytorch_workflow.ipynb - ¢ X +

CcC 0 @& colab.research.google.com/drive/1ThbCRzRQh9n8qJ7akZgHn3go0Ubp08c2wiscrollTo=jhcUJBFue... h ¥ @ © M

& 01_pytorch_workflow.ipynb

nent an Share

(inference) size, *, generator: Generator | None,

In this module we're going to cover a standard PyTorch workflow (it can be chopped and changed as necessary but 5. Saving and loading a PyTorch

File Edit View Insert Runtime Tools Help Allch
Sequence[str | ellipsis | None] | None,

+ Code + Text _dtype | None = None, layout: _layout |

it covers the main outline of steps). model

None = strided, device: _device str | None =
We'll write the code first and then explain everythin¢ None, pin_memor bool = False, requires grad:

. . . . bool = Fals > T
Let's replicate a standard linear regression model u it alse) ensor

A kind of Tensor that is to be considered a module parameter. N o BB EE

© ! # create a Linear Regression model ¢ Parameters are ~torch.Tensor subclasses, that have a

. ; class LinearRegressionModel (nn.Modu] very special property when used with Module s - when they'| (think of this as neural
3 def _ init (self): ' assigned as Module attributes they are automatically added to
BrEEE() ofrlE_(() its.narameters_and willannear e a.in_~Module narameters
self.weights = nn.Parameterqltorch.randn(1, # <- start with random weights (this will get adjusted as th¢
6 requires_grad=True, # <- can we update this value with gradient descent?

dtype=torch.float # <- PyTorch loves float32 by default
))

self.bias = nn.Parameter(torch.randn(l, # <- start with random bias (this will get adjusted as the model
requires_grad=True, # <- can we update this value with gradient descent?
dtype=torch.float # <- PyTorch loves float32 by default

))

Forward defines the computation in the model

def forward(self, x: torch.Tensor) -> torch.Tensor: # <- "x" is the input data (e.g. training/testing feature
return self.weights * x + self.bias # <- this is the linear regression formula (y = m*x + b)

(16
S e a I C O I I t S ta (k Ove l f low = Alright there's a fair bit going on above but let's break it down bit by bit.
Resource: We'll be using Pyt classes to create bits and pieces for building neural networks. If you're unfamiliar with Pytl

0s completed at 08:35

@& pytorch.org/docs/stable/index.html

I I y a g a I n) PyTorch documentation —Pylc X 4

Get
Ecosystem Mobile Blog Tutorials Docs v Resources v GitHub
Started °
O Search or jump to... Pull r Issues Mar Explore A +- ev

& mrdbourke / pytorch-deep-learning public ® Unwatch 4 ~ % Fork 1 Starred 76
S <> Code (© lIssues 28 1% Pull requests) Discussions ® Actions [Projects 1 07 wiki @ Security |~ Insights

Announcements
Welcome to pytorch-deep-learning Discussions!

PyTorch documentation Edit on GitHub Shortcuts

PYTO R C H D O C U M E N TAT I O N PyTorch documentation

Indices and tables

mized tensor library for deep learning using GPUs and CPUs.
Notes [+]

- Features described in this documentation are classified by release status:
Language Bindings [+]

Stable: These features will be maintained long-term and there
should generally be no major performance limitations or gaps in
torch documentation. We also expect to maintain backwards
compatibility (although breaking changes can happen and notice
will be given one release ahead of time).

Py!

torch.nn

torch.nn.functional

torchTensor Beta: These features are tagged as Beta because the API may

Q Search all di i New Top: All ~ Label ~ Filter ~ New discussion

Tensor Attrib change based on user feedback, because the performance needs
Tensor Vi to improve, or because coverage across operators is not yet
complete. For Beta features, we are committing to seeing the
feature through to the Stable classification. We are not, however,
committing to backwards compatibility.

Categories ¢/ Discussions

ey i, Welcome to pytorch-deep-learning Discussions! [os
(& 2) &,

mrdbourke annou don 19 Oc 21 in Anno el

torch.au
torch.cuda
f;. Announcements to cu amp
torch.backends Prototype: These features are typically not available as part of
torch.distributed binary distributions like PyPI or Conda, except sometimes behind
run-time flags, and are at an early stage for feedback and testi

General

Ideas . q
torch.distributed.algorithms.join

A Qe

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

Let’s codel

Machine Iearnlng a game of two parts

ll
L 2 0 0

Daniel Bourke @mrdbourke - Nov
"How do | learn #machii 2"

What you want to hear:

1. Learn Python

2. Learn Math/Stats/Probability
3. Learn software engineering
4. Build

What you need to do:

1. Google it

2. Go down the rabbit hole
3. Resurface in 6-9 months and reassess

See you on the other side.

[116, 78, 15] .

117, 43, 96.
125, 87, 23.

o000 ,

Ramen,
Spaghetti

[0.983, 0.004, 0.013]
0.110, 0.889, 0.0011, i Notspam
0.023, 0.027, 0.985], :

o000 ,

[]
y g —>
[]

“Hey Siri, what’s
the weather
today?”

Learns

representation

i (patterns/features/ Representation ;
i weights) outputs i Outputs

. o .
--

Part 1: Turn data into numbers Part 2: Build model to learn patterns in numbers

Ramen,
Spaghetti

Daniel Bourke @mrdbourke - Nov
"How do | learn

What you want to hear: [116 , 78 . 15] ,

1. Learn Python -

2. Learn Math/Stats/Probability - "

3. Learn software engineering i]- 1 7 ’ 43 ’ 96] ’ :—:
|

4. Build (125, 87, 23],

[0.983, 0.004, 0.013], :

0.110, ©.889, 0.001], : — Not spam
0.023, 0.027, 0.985], -

What you need to do:

1. Google it

2. Go down the rabbit hole

3. Resurface in 6-9 months and reassess

See you on the other side.

“Hey Siri, what’s
the weather
today?”

) ¥ Learns
: Numerical :: representation
: encoding ! :(patterns/features/weights) ;

Representation
outputs : Outputs

Three datasets

(possibly the most Lmportant
concept tn machine learning...)

-/ =/

Course materials Practice exam Final exam
(training set) (validation set) (test set)
Tune mooel patterns See if the model s ready for the
wild

Generalization

The ability for a machine learning model to perform well on data it hasn’t seen
before.

X X
Subclass nn.Module

------------------ : (this contains all the building blocks for neural networks)

def __init_ (self):
super().__init__ ()

Initialise model parameters to be used in various
Initialize model parameters | computations (these could be different layers from

: self.weights = nn.Parameter(torch. randn(1, torch.nn, single parameters, hard-coded values or
requires_grad=True, : functions)

dtype=torch. float

&
|
]
]

2)
: requires grad=True means PyTorch will track the

self.bias = nn.Parameter(torch.randn(1, : gradients of this specific parameter for use with
:requires_grad=True,: « H torch.autograd and gradient descent (for many

: dtype=torch. float : . 3 .

P y) : torch.nn modules, requires grad=True isset by

P et B B B B R B A v default)

g‘def forward(self, x: torch.Tensor) —> torch.Tensor: Any subclass of nn.Module needs to override forward ()
R T A Lt A T B v (th|s defines the forward Computation of the mode|)

https://pytorch.org/docs/stable/autograd.html

PyTorch essential neural network building modules

PyTorch module

torch.nn

torch.nn.Module

torch.optim

torch.utils.data.Dataset

torch.utils.data.Dataloader

What does it do?

Contains all of the building blocks for computational graphs (essentially a series of
computations executed in a particular way).

The base class for all neural network modules, all the building blocks for neural
networks are subclasses. If you're building a neural network in PyTorch, your models
should subclass nn.Module. Requiresa forward () method be implemented.

Contains various optimization algorithms (these tell the model parameters stored
innn.Parameter how to best change to improve gradient descent and in turn
reduce the loss).

Represents a map between key (label) and sample (features) pairs of your data.
Such as images and their associated labels.

Creates a Python iterable over a torch Dataset (allows you to iterate over your
data).

See more: https: . ' beqginner/ptcheat.html

https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html#parameter
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/stable/data.html
https://pytorch.org/tutorials/beginner/ptcheat.html

torchvision.transforms
torch.utils.data.Dataset

v
A/

3. Fit the model to the 4. Evaluate the model 5. Improve through 6. Save and reload
data and make a experimentation your trained model
prediction

‘ ":A.\
\
'@
- 2. Build or pick a

1. Get data ready pretrained model
(turn into tensors) ::(to suit your problem)

I O

. . LLL 2.2 Build a training loop
2.1 Pick a:loss function-& optimizer

torch.nn

torch.nn.Module

: torchvision.models :

See more: https:

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html
https://torchmetrics.readthedocs.io/en/latest/
https://pytorch.org/tutorials/beginner/ptcheat.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/stable/data.html
https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/docs/stable/tensorboard.html

Mean absolute error (MAE)

Training data
Testing data
Predictions

Difference (y pred[0] --+y test[0])=0.4618

Mean absolute error (MAE) = Repeat for all and take the mean

MAE loss = torch.mean(torch.abs(y pred-y test))
or
MAE loss = torch.nn.L1lLoss

See more: https://pytorch.org/tutorials/beginner/ptcheat.htmi#loss-functions

https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
https://pytorch.org/tutorials/beginner/ptcheat.html#loss-functions

&

U i Daniel Bourke
&xf @mrdbourke

Let's sing the @PyTorch optimization loop song

It's train time!

do the forward pass,
calculate the loss,
optimizer zero grad,
losssss backwards!

Optimizer step step step

Let's test now!

with torch no grad:

do the forward pass,
calculate the loss,

watch it go down down down!

Sovurce: @mrdbourke Twitter & see the video version on YouTube.

https://twitter.com/mrdbourke/status/1450977868406673410?s=20&t=c2DLaj2lJQSwMgMEF25QKw
https://youtu.be/Nutpusq_AFw

PyTorch training loop

Pass the data through the model for a number of epochs

S (e.g. 100 for 100 passes of the data)
f;t..l;a.;;.’;;\;.:j;:c;.:c;;r.o.u.g.h"t.h.e"m.odel for a number of epochs (e.q. 1@0).5

e,for_epoch in range(epochs): . Pass the data through the model, this will perform the

*a
Put model in training mode (this is the default state of a model)
model.train()

/ forward () method located within the model object
©# 1. Forward pass on train data using the forward() method inside %

.Z-.E::S'.'._'.':n:':jf'.l'.('.)('.'.i':.il'.r:.)'.:E Calculate the loss value (how wrong the model’s
'ifozs Ea{ggla;ccﬁ(;c/hgr;gssy(:g\ge()ilfferent are the model's predictions to the true values):/ predictions are)
2% 3. 7210 the gradiente of the optimiser (they ccumilate by defanlf)s - '
optimizer.zerograd() L eeeeseeesseesseesnens i Zerothe optimizer gradients (they accumulate every
:"%'5.' .E:el.’i(.);r.n;%%::I(;).r.o.p.a.g.a.t.i.o.n. on the Loss & epoch, zero them to start fresh each forward pass)
= loss.backwar .

= # 5. Progress/step the optimizer (gradient descent)'
= optimizer.step()

Perform backpropagation on the loss function (compute
the gradient of every parameter with

Note: all of this can be turned tnto a function requires_grad=True)

Step the optimizer to update the model’s parameters with
respect to the gradients calculated by 1oss.backward ()

PyTorch testing loop

Create empty lists for storing useful values (helpful for

ettt . tracking model progress)
= 1 # Setup empty lists to keep track of model progress
= 2 epoch_count = [] :

train_loss_values = []

{3 train_loss_values = | : Tell the model we want to evaluate rather than train (this
. — _values = : . . .« .
® o m W N N N RN RN W N RN RN RN NN RN RN RN N RN RN . turns off fUnct|ona||ty used for tra|n|ng but not
Pass the data through the model for a number of epochs (e.g. 100) pochs): .
for epoch in range(epochs): evaluatIOH)
Training loop code here ### . (faSter PCVfOVmawce!)
_ Turnon torch.inference mode () context manager to
Testing starts ### . . . — . .
.................................. . disable functionality such as gradient tracking for
Put the model in evaluation mode

109 2L, s ssssesnenans inference (gradient tracking not needed for inference)

Turn on inference mode context manager =
w1th torch.inference mode()

g e S e, : Pass the test data through the model (this will call the
— l < - o
il e : model’simplemented forward () method)
2. Caculate loss on test data E:
test loss = loss_fn(test_pred, y_ test)"‘
A A o — : Calculate the test loss value (how wrong the model’s
s # Print out what's happening every 10 epochs . . 4 .
" if epoch % 10 == 0: : predictions are on the test dataset, lower is better)
E epoch_count.append(epoch) i

train_loss_values.append(loss)

test_loss_values.append(test_loss) : «—— Display information outputs for how the model is doing
print(f"Epoch: {epoch} | MAE Train Loss: {loss} | MAE Test Loss: {test_loss} ") . . .
during training/testing every ~10 epochs (note: what gets

Note: all of this can be turned into a function printed out here can be adjusted for specific problems)

See more: https://discuss.pytorch.org/t/model-eval-vs-with-torch-no-grad/19615 & PyTorch Twitter announcement of torch.inference mode()

https://discuss.pytorch.org/t/model-eval-vs-with-torch-no-grad/19615
https://twitter.com/PyTorch/status/1437838231505096708?s=20&t=QcKoztpNIIZsg6C6eIqLIA

1 # Setup optimization loop(s) # Train function
2 epochs = 10000 def train_step(model, loss_fn, optimizer, data, labels):

3 # Turn on train mode (this is default but we turn it on anyway)
4 ### Train time! model.train()

5 # Loop through the epochs | Forward pass

6 for epoch in range(epochs): _

7 # Set the model to train mode (this is the default) y_pred = model(data)

8 model.train() # 2. Calculate the loss

9 loss = loss_fn(y_pred, labels)
10| # 1. Do the forward pass # 3. Zero optimizer gradients
11 y pred = model(X train) optimizer Zero grad()

12 .
13 # 2. Calculate the loss (how wrong the model is) # 4. Perform baCkprOpagatlon

14 loss = loss fn(y pred, y train) loss.backward()

15 # 5. Perform gradient descent
16 # 3. Zero the optimizer gradients (they accumulate by default) optimizer. step()

17 optimizer.zero grad()

18

19 # 4. Perform backpropagation (with respect to the model's parameters)
20 loss.backward()

21

22 # 5. Step the optimizer (gradient descent)

23 optimizer.step() 900

return loss

Test time!
26 # Set the model to eval mode (this turns off settings not needed for testing)
27 model.eval()
28 # Turn on inference mode context manager (removes even more things not needed for inference)

Test function
def test_step(model, loss_fn, data, labels):
Turn on evaluation mode
model.eval()
Setup inference mode context manager
with torch.inference_mode():
;31 feié_iii:uiaiis::iini:::t pred, y test) # 1' FO F'wa rd paSS
§5---------------------------_-------T--' tESt_pFEd — model(data)
36 # Print out what's happenin'! # 2. Calculate -the -LOSS
37 print(f"Epoch: {epoch} | Train loss: {loss:.4f} | Test loss: {test loss:.4f}") tESt_.LOSS — loss_fn(test_pred, labe.LS)
return test_loss

29 with torch.inference mode():

30 # 1. Do the forward pass
31 test _pred = model(X test)
32

.IIIIIIIIIIIIIIIIIII'

Create a linear regression model in PyTorch
class LinearRegressionModel(nn.Module):
def __init_ (self):

super().__init__ () o000

‘- II .‘

* # Initialize model parameters : # Create a linear regression model in PyTorch with nn.Linear

self.weights = nn.Parameter(torch.randn(1,: class Li"e?rBEQFESSiOHModel(nn.Module):
requires_grad=True, def __init_ (self):

: _ E super(). init_ ()

s dtypestorch. float : S Uee m T T} For et IRG The Reds T pa e etar Y
:) > _self linear_layer = nn.Linear(in_features=1,

: _ : : out_features=1) :
- self.bias = nn.Parameter(torch.randn(1, E IR Ia eI I = Ia I I=Ie == 1= eI = 1= [= I = L=l el E L= === 1= [= (== 1= [e R I Ie T = L | R e R e e e e e e e e = =T a = a?
: requires_grad=True, : # forward() defines the computation in the model

: S5 PR e : def forward(self, x:,torch.Tensor) -> torch.Tensor:

E)) E :return self.linear_layer(x) :

forward() defines the computation in the model
def forward(self x torch.Tensor) —> torch Te

Linear regression model with nn.Linear

Linear regression model with nn.Parameter

2. Show examples

Su pervised L nixialise wikh ranaon ”)

LW
o " e (onlY at beguiw
Iearnmg welgh 10.092, 0.210, 0.415],
(overview) 0.778, 0.929, 0.030],
0.019, 0.182, 0.555],
:
[116, 78, 15], [0.983, 0.004, 0.013],
_,[117, 43, 96], _. _.[0.110, 0.889, 0.001], _, Ramen,
125, 87, 23]. 0.023, 0.027, 0.985], opaghetti

see 9 eee H

3. Update represewtatiow
out‘P uts

4. Repeat witth more
exa mpLes — .

Learns
Numerical representation Representation

encoding (patterns/features/weights) outputs

Inputs

Outputs

Neural Networks

Ramen,
Spaghetti

(before data gets used
with an algorithm, it
needs to be turned Linto

numbers)

Daniel Bourke @mi
“How do | learn

What you want to hear:

1. Learn Python

2. Learn Math/Stats/Probability
3. Learn software engineering N t p I ' I
4. Build O S a
What you need to do:

1. Google it

2. Go down the rabbit hole

3. Resurface in 6-9 months and reassess

See you on the other side.

che approPYAe

(cho0Se @ for Yo “Hey Siri, what’s
newral V\"’"‘{;"”D‘CZW the weather
Y today?”
Learns
Numerical representation Representation

encoding (patterns/features/weights) outputs Outputs

Thege

/

\

orsl!

Ramen,
Spaghetti
. Learns . .
Inputs Numerical representation Representation Outputs

encoding (patterns/features/weights) outputs

How to approach this course

1. Construct a model class that subclasses nn.Module

class CircleModelV@(nn.Module) : 7" . ’\/\c>1:t:c> ié&:g;:

def __init__(self):

super().__init__() \ 4 ’ ’ ’ ’ ’ ’
2. Create 2 nn.Linear layers VLS(ILa LLZC, \/LSl/(—a LLZC, \/LSM.a LLZC!
self.layer_1 = nn.Linear(in_features=2, out_features=5))('

self.layer_2 = nn.Linear(in_features=5, out_features=1)

3. Define a forward method containing the forward pass computation
def forward(self, x):

Pass the data through both layers

return self.layer_2(self.layer_1(x))

4. Create an instance of the model and send it to target device
model_0 = CircleModelVe().to(device)
model_0

1. Code along

Motto #41: L tn doulbt, run the code! 2. Explore and 3. Visualize what you

experiment don’t understand

? AL
(tncluding the /

e “dumb” ones) >

4. Ask questions 5. Do the exercises 6. Share your work

How not to approach this course

“l can’t learn
b b

Avoid:

“‘-II.....
. 4

Resources

‘--llII....

Course materials Course Q Course online book

.
‘O
*

L 4

L 4

® ®©® 0 B github.com ¢ ([0) github.com) learnpytorch.io

mrdbourke/pytorch_deep_le...
w76 ¥ 1

O Search or jump to... /| Pullrequests Issues Marketplace Explore 8 +- @~ O Search or jump to... /|| Pullrequests Issues Marketplace Explore o +- @- Zero to Mastery Learn PyTorch for Deep Learning Q Search ©

[m] mrdbourke/pytorch-deep-leaming Public ® Unwatch 4 ~ % Fork M Starred 76 [m] mrdbourke/pytorch-deep-leaming Public ® Unwatch 4 ~ % Fork 11 Starred 76 ‘ .
Welcome to the Learn PyTorch for Deep Learning book (work in

progress)

<> Code (@ Issues 28 1 Pull requests) Discussions (® Actions 3 Projects 1 07 Wiki @ Security |~ Insights <> Code (@ Issues 28 19 Pull requests) Discussions (® Actions 3 Projects 1 07 wiki © Security [~ Insights

¥ main ~ ¥ 3branches 0 tags Go to file Add file » m About o

Materials for upcoming beginner-friendly

This will be the homepage for the online book version of the Zero to Mastery Learn PyTorch for Deep Learning course.

% mrdbourke update exercises v 4a92ab9 2 daysago O 140 commits PyTorch course (work in progress). This course will teach you foundations of deep learning and PyTorch (a deep learning framework written in Python).

Announcements

Wel to pytorch-d | ing Di . . The course is video based. However, the videos are based on the contents of this online book.
elcome 1o pytorch-deep-iearning Discussions:

.github/workflows Update make_docs.yml 19 days ago @ learnpytorch.io

docs update readme and docs homepage 9 days ago machine-learning deep-learning @ GELETE For full code and resources see the course GitHub.

pytorch

extras add exercises and solutions for 01 12 days ago Expected release date: Early 2022.

going_modular update datasetup 2 months ago 00 Readme Q Search all discussions New Top: All » Label ~ Filter ~

MIT License

Get updates: Follow the pytorch-deep-learning repo log or sign up for emails.

images add ztm and pytorch logo 14 days ago . . .
9 Py N veas 76 stars Categories ¢/ Discussions

I i | 4 i . . .
models add folder for trained models months ago 4 watching /ﬁ 7 'S Welcome to pytorch-deep-learning Discussions!

.gitignore update gitignore 23 days ago 11 forks mrdbourke announced on 19 Oct 2021 in Announcements

l'.\,. Announcements
00_pytorch_fundamentals.i... cleanup annotations, add exercises and solutions links 20 days ago
General Next
Releases 00. PyTorch Fundamentals ->

Ideas

01_pytorch_workflow.ipynb fix typo 2 days ago

02_pytorch_classification.ip... update exercises 2 days ago No releases published
Create a new release

03_pytorch_computer_visio... update 03 3 months ago Ja Q8A Material for MkDocs ¥y O O

.

*

https://learnpytorch.io

. https://www.github.com/mrdbourke/pytorch-deep-learning https:// WWW‘g'thUb‘comé?;g?’g;gﬂ?/ pytorch-deep-learning/

4 »*
..........:"‘l||ll|l||l||llillillillillillillillil||l||l||l||l||l||l||l||l||l||l||l||l||llillillillillillillillil||l||l||l||l||l||l||l||l||l||l||l||l||llillillillillillillillil||ll‘ll‘ll"l"l"“l":"""""".'-
. v

L] L 4
0‘ .0
" pytorch.org D ® discuss.pytorch.org “
4 .

4 . .
] .
. O PyTorch .
[] n
(]]

[[
: ‘ all categories » Latest Top :
| |
| |
| |
| |
: ° vision Model train, val, test workflow verification in :
u Topics related to either pytorch/vision or vision research related @iﬁ PyTorch |
. topics - vision n
| |
] B kornia m
: & Input, output must be on the current device :
' orums MNOIDIVIGIRIGLN i :
: Topics related to Natural Language Processing :
n Top 2 accuracy ValueError: Number of m
: An open source machine learning framework that accelerates Uncategorized @ classes in ‘y_true’ (10) not equal to the :
m the path from research prototyping to production deployment. Topics that don't need a category, or don't it into any other ~ number of classes in ‘y_score’ (11) -
u existing category. u
| |
] Calculate differential of a tensor before loss [
: |nSta” > aUtOQrad autograd :
[A category of posts relating to the autograd engine itself. -
[] p |
u . . . : i i

. mixed-precision a The loss is not decreasing :
]]
| C++ []
L . . . How to only sample data from a dataloader [|

“ PyTorch 1.10 Release, including CUDA Graphs APIs, TorchScript improvements Topics related to the C++ Frontend, C++ API or C++ Extensions with target == class :
* L 4

“... Allthings PyTorch i ——

.....IlIIIIIII@llIIIIllIIIIIIIIIIIIIllIIIIIIIIIIIIIIIIIIIllIIIIIIIIIIIIIIIIIIIllIIIIIIIIIIIIIllIIIIllIIIIIIIIIIIIIllIIIIllIIIIIIIIIIIIIllIIIIllIIIIIIIIIIIIIllIIIIllIIII@"“

e)
.. I‘
S EER

https://www.github.com/mrdbourke/pytorch-deep-learning
https://www.github.com/mrdbourke/pytorch-deep-learning/discussions
https://www.github.com/mrdbourke/pytorch-deep-learning/discussions
https://www.learnpytorch.io
https://pytorch.org
https://discuss.pytorch.org

Daniel Bourke

&
&? @mrdbourke

Let's sing the @PyTorch optimization loop song <

It's train time!

do the forward pass,
calculate the loss,
optimizer zero grad,
losssss backwards!

Optimizer step step step

Let's test now!

with torch no grad:

do the forward pass,
calculate the loss,

watch it go down down down!

