
Workflow

What we’re going to cover
A PyTorch workflow

(one of many)

Where can you get help?

• Follow along with the code

• Try it for yourself

• Press SHIFT + CMD + SPACE to read the docstring

• Search for it

• Try again

• Ask

Motto #1: “If in doubt, run the code”

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

Let’s code!

Machine learning: a game of two parts

[[116, 78, 15],
[117, 43, 96],
[125, 87, 23],
…,

[[0.983, 0.004, 0.013],
[0.110, 0.889, 0.001],
[0.023, 0.027, 0.985],
…,

Inputs
Numerical
encoding

Learns
representation

(patterns/features/
weights)

Representation
outputs Outputs

Ramen,
Spaghetti

Not spam

“Hey Siri, what’s
the weather

today?”

[[116, 78, 15],
[117, 43, 96],
[125, 87, 23],
…,

[[0.983, 0.004, 0.013],
[0.110, 0.889, 0.001],
[0.023, 0.027, 0.985],
…,

Inputs Numerical
encoding

Learns
representation

(patterns/features/weights)

Representation
outputs Outputs

Ramen,
Spaghetti

Not spam

“Hey Siri, what’s
the weather

today?”

Part 1: Turn data into numbers Part 2: Build model to learn patterns in numbers

Three datasets
(possibly the most important

concept in machine learning…)

Final exam
(test set)

Course materials
(training set)

Practice exam
(validation set)

Generalization
The ability for a machine learning model to perform well on data it hasn’t seen

before.

Model learns patterns from here

Tune model patterns See if the model is ready for the
wild

Subclass nn.Module
(this contains all the building blocks for neural networks)

Any subclass of nn.Module needs to override forward()
(this deLnes the forward computation of the model)

Initialise model parameters to be used in various
computations (these could be diMerent layers from
torch.nn, single parameters, hard-coded values or

functions)

requires_grad=True means PyTorch will track the
gradients of this speciLc parameter for use with
torch.autograd and gradient descent (for many

torch.nn modules, requires_grad=True is set by
default)

https://pytorch.org/docs/stable/autograd.html

PyTorch essential neural network building modules

PyTorch module What does it do?

torch.nn
Contains all of the building blocks for computational graphs (essentially a series of

computations executed in a particular way).

torch.nn.Module
The base class for all neural network modules, all the building blocks for neural

networks are subclasses. If you're building a neural network in PyTorch, your models
should subclass nn.Module. Requires a forward() method be implemented.

torch.optim
Contains various optimization algorithms (these tell the model parameters stored
in nn.Parameter how to best change to improve gradient descent and in turn

reduce the loss).

torch.utils.data.Dataset
Represents a map between key (label) and sample (features) pairs of your data.

Such as images and their associated labels.

torch.utils.data.DataLoader
Creates a Python iterable over a torch Dataset (allows you to iterate over your

data).

See more: https://pytorch.org/tutorials/beginner/ptcheat.html

https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html#parameter
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/stable/data.html
https://pytorch.org/tutorials/beginner/ptcheat.html

torch.optim torch.nn

torch.nn.Module

torchvision.models

torchmetrics

See more: https://pytorch.org/tutorials/beginner/ptcheat.html

torch.utils.data.Dataset

torch.utils.data.DataLoader

torchvision.transforms

torch.utils.tensorboard

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html
https://torchmetrics.readthedocs.io/en/latest/
https://pytorch.org/tutorials/beginner/ptcheat.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/stable/data.html
https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/docs/stable/tensorboard.html

DiMerence (y_pred[0] - y_test[0]) = 0.4618

MAE_loss = torch.mean(torch.abs(y_pred-y_test))
or

MAE_loss = torch.nn.L1Loss

Mean absolute error (MAE)

Mean absolute error (MAE) = Repeat for all and take the mean

See more: https://pytorch.org/tutorials/beginner/ptcheat.html#loss-functions

https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
https://pytorch.org/tutorials/beginner/ptcheat.html#loss-functions

Source: @mrdbourke Twitter & see the video version on YouTube.

https://twitter.com/mrdbourke/status/1450977868406673410?s=20&t=c2DLaj2lJQSwMgMEF25QKw
https://youtu.be/Nutpusq_AFw

PyTorch training loop
Pass the data through the model for a number of epochs

(e.g. 100 for 100 passes of the data)

Zero the optimizer gradients (they accumulate every
epoch, zero them to start fresh each forward pass)

Pass the data through the model, this will perform the
forward() method located within the model object

Calculate the loss value (how wrong the model’s
predictions are)

Perform backpropagation on the loss function (compute
the gradient of every parameter with

requires_grad=True)

Step the optimizer to update the model’s parameters with
respect to the gradients calculated by loss.backward()

Note: all of this can be turned into a function

PyTorch testing loop
Create empty lists for storing useful values (helpful for

tracking model progress)

Pass the test data through the model (this will call the
model’s implemented forward() method)

Tell the model we want to evaluate rather than train (this
turns oM functionality used for training but not

evaluation)

Turn on torch.inference_mode() context manager to
disable functionality such as gradient tracking for

inference (gradient tracking not needed for inference)

Calculate the test loss value (how wrong the model’s
predictions are on the test dataset, lower is better)

Display information outputs for how the model is doing
during training/testing every ~10 epochs (note: what gets

printed out here can be adjusted for speciLc problems)

See more: https://discuss.pytorch.org/t/model-eval-vs-with-torch-no-grad/19615 & PyTorch Twitter announcement of torch.inference_mode()

Note: all of this can be turned into a function

(faster performance!)

https://discuss.pytorch.org/t/model-eval-vs-with-torch-no-grad/19615
https://twitter.com/PyTorch/status/1437838231505096708?s=20&t=QcKoztpNIIZsg6C6eIqLIA

Linear regression model with nn.Parameter

Linear regression model with nn.Linear

[[116, 78, 15],
[117, 43, 96],
[125, 87, 23],
…,

[[0.983, 0.004, 0.013],
[0.110, 0.889, 0.001],
[0.023, 0.027, 0.985],
…,

Inputs Numerical
encoding

Learns
representation

(patterns/features/weights)
Representation

outputs Outputs

Ramen,
Spaghetti

[[0.092, 0.210, 0.415],
[0.778, 0.929, 0.030],
[0.019, 0.182, 0.555],
…,

1. Initialise with random

weights (only at beginning)

2. Show examples

3. Update representation
outputs

4. Repeat with more
examples

Supervised
learning
(overview)

Neural Networks

[[116, 78, 15],
[117, 43, 96],
[125, 87, 23],
…,

[[0.983, 0.004, 0.013],
[0.110, 0.889, 0.001],
[0.023, 0.027, 0.985],
…,

Inputs Numerical
encoding

Learns
representation

(patterns/features/weights)
Representation

outputs Outputs

(a human can

understand these)

Ramen,
Spaghetti

Not spam

“Hey Siri, what’s
the weather

today?”

(choose the appropriate

neural network for your

problem)

(before data gets used
with an algorithm, it

needs to be turned into
numbers)

These are tensors!

[[116, 78, 15],
[117, 43, 96],
[125, 87, 23],
…,

[[0.983, 0.004, 0.013],
[0.110, 0.889, 0.001],
[0.023, 0.027, 0.985],
…,

Inputs Numerical
encoding

Learns
representation

(patterns/features/weights)
Representation

outputs Outputs

Ramen,
Spaghetti

These are tensors!

How to approach this course

1. Code along

Motto #1: if in doubt, run the code! 2. Explore and
experiment

Motto #2:

Experim
ent, experim

ent,

experim
ent!

3. Visualize what you
don’t understand

Motto #3:
Visualize, visualize, visualize!

4. Ask questions

🛠
5. Do the exercises

🤗
6. Share your work

(including the
“dumb” ones)

How not to approach this course

Avoid: 🧠🔥
🔥🔥 “I can’t learn

______”

Resources

https://www.github.com/mrdbourke/pytorch-deep-learning https://www.github.com/mrdbourke/pytorch-deep-learning/
discussions https://learnpytorch.io

Course materials Course Q&A Course online book

PyTorch website &
forums

This course

All things PyTorch

https://www.github.com/mrdbourke/pytorch-deep-learning
https://www.github.com/mrdbourke/pytorch-deep-learning/discussions
https://www.github.com/mrdbourke/pytorch-deep-learning/discussions
https://www.learnpytorch.io
https://pytorch.org
https://discuss.pytorch.org

DiMerence (y_pred[0] - y_test[0]) = 0.4618

