

O PyTorch

Where can you get help?

- Follow along with the code
- Try it for yourself
- Press SHIFT + CMD + SPACE to read the docstring
- Search for it
- Try again

https://www.github.com/mrdbourke/pytorch-deep-learning/discussions

•	•	8	07_pyto	vch_experiment_tracki × +		
← -	÷	C Ó		colab.research.google.com/github/mrdbourke/pytorch-deep-learning/blob/main/07_pytorch_experiment_tracking.ipyn) Ó	T.
C	2	0	07 p	ytorch experiment tracking.ipynb		
PR	0	File	Edit	View Insert Runtime Tools Help Cannot save changes		
≣		+ Cod	e +	Text 🔹 Copy to Drive 🗸	RAM Disk	1
Q	y Os	0	4 5 6	# Since we're creating a new layer with random weights (torch.nn.Linear), # let's set the seeds		
(22)			7	<pre>set_seeds()</pre>		
{A}			9	# Update the classifier head to suit our problem		
_			10	model.classifier = torch.nn.Sequential(
			11	nn.Dropout(p=0.2, inplac (class) Sequential		
			12	nn.Linear(in_features=12		
			13 14	out_features=1 A sequential container. bias=True).to(Modules will be added to it in the order they are passed in the		
		Base	e layer	s frozen, classifier head changed, passed in. The forward() method of Sequential accep input and forwards it to the first module it contains. It then "chaine" output to input sequentially for each subsequent	be ts any	
	~	[13]	1	from torchinfo import summar finally returning the output of the last module.	louule	9
	0s		2	The value a Sequential provides over manually calling a se	quen	ce
			3	# # Get a summary of the mod of modules is that it allows treating the whole container as a		
			4	# summary(model, single module, such that performing a transformation on the		
			5	<pre># input_size=(32, 3, <u>Sequential employ to each of the module it stores (which</u></pre>		5
			6	<pre># verbose=0,</pre>		
			7	<pre># col_names=["input_size", "output_size", "num_params", "trainable"]</pre>	,	
~			8	<pre># col_width=20,</pre>		
~			9	<pre># row_settings=["var_names"]</pre>		
			10	#) 	_	
>_				<pre>model = torchvision.models.efficientnet_bθ()</pre>		
				. / 0e completed at 13:31		
				v us completed at 13.51		

"What is experiment tracking?"

How do I know which of my models has done the best...?

How to approach this course

1 # 1. Construct a model class that subclasses nn.Module
<pre>2 class CircleModelV0(nn.Module):</pre>
<pre>3 definit(self):</pre>
4 super()init()
5 # 2. Create 2 nn.Linear layers
<pre>6 self.layer_1 = nn.Linear(in_features=2, out_features=5)</pre>
<pre>7 self.layer_2 = nn.Linear(in_features=5, out_features=1)</pre>
8
9 # 3. Define a forward method containing the forward pass computation
<pre>10 def forward(self, x):</pre>
11 # Pass the data through both layers
<pre>12 return self.layer_2(self.layer_1(x))</pre>
13
14 # 4. Create an instance of the model and send it to target device
15 model_0 = CircleModelV0().to(device)
16 model_0

1. Code along

Motto #1: if in doubt, run the code!

(including the "dumb" ones)

4. Ask questions

2. Explore and experiment

5. Do the exercises

Motto #3: visualize, visualize, visualize!

3. Visualize what you don't understand

6. Share your work

"Why track experiments?"

Experiment tracking can quickly get out of hand...

- **0** results
- 1 model 1 results
- 2 model 2 results
- **3** model 1 results v2
- 4 model 2 results v2
- **5** model 2 results v3
- 6 model 2 results v3
- **7** 2022-07-07-model 3 results v1
- **8** 2022-07-07-model_3_results_v1_experiment_5
- 9 2022-07-07-model 3 results v2 big model 25 epochs
- 10 2022-07-07-model 4 results v1 big model 25 epochs 20 percent data
- 11 2022-07-07-model_4_results_v1_big_model_25_epochs_20_percent_data_new_model

12 2022-07-07-model_4_results_v2_big_model_feature_extractor_30_epochs_20_percent_data_no_dro 13 2022-07-07-model_5_results_v1_bigger_model_feature_extractor_50_epochs_50_percent_data_no_

How do I know which one of my models performs the best?

- **0** results
- 1 model_1_results
- **2** model 2 results
- 3 model_1_results_v2
- 4 model_2_results_v2 ←
- 5 model_2_results_v3 ←
- 6 model 2 results v3

- **8** 2022-07-07-model_3_results_v1_experiment_5
- **9** 2022-07-07-model_3_results_v2_big_model_25_epochs
- 10 2022-07-07-model_4_results_v1_big_model_25_epochs_20_percent_data

- 13 2022-07-07-model_5_results_v1_bigger_model_feature_extractor_50_epochs_50_percent_data_no_

what should I try less of?

what should I try more of? 11 2022-07-07-model_4_results_v1_big_model_25_epochs_20_percent_data_new_model + 12 2022-07-07-model_4_results_v2_big_model_feature_extractor_30_epochs_20_percent_data_no_drc

Different ways to track experiments

Python dictionaries, CSV files, print outs.

Search: "track machine learning experiments"

Weights & Biases **Source:** <u>https://wandb.ai/site/experiment-tracking</u>

TensorBoard Source: https://www.tensorflow.org/tensorboard

MLfLow **Source:** <u>https://mlflow.org/docs/latest/tracking.html</u>

What we're going to build

FoodVision Mini Experiment Tracking

- •
- •

Results tracked in TensorBoard

What we're going to cover (broadly) Getting setup (importing previously written code)

- Introduce experiment tracking with PyTorch
- Building several modelling experiments for FoodVision Mini
- Evaluating modelling experiments with TensorBoard
- Making predictions with the best performing model on custom data

(we'll be cooking up lots of code!) How:

Let's code.

model = torchvision.models.efficientnet_b0(...) torchinfo.summary(model, input_size=(32, 3, 224, 224))

Layer (type (var_name))	Input Shape	Output Shape
Layer (type (var_name)) ===================================	Input Shape [32, 3, 224, 224] [32, 3, 224, 224] [32, 3, 224, 224] [32, 3, 224, 224] [32, 32, 112, 112] [32, 32, 112, 112] [32, 32, 112, 112] [32, 32, 112, 112] [32, 16, 112, 112] [32, 16, 112, 112] [32, 24, 56, 56] [32, 24, 56, 56] [32, 24, 56, 56] [32, 24, 56, 56] [32, 40, 28, 28] [32, 40, 28, 28] [32, 40, 28, 28] [32, 80, 14, 14]	Output Shape [32, 1280, 7, 7] [32, 32, 112, 112] [32, 32, 112, 112] [32, 32, 112, 112] [32, 32, 112, 112] [32, 32, 112, 112] [32, 16, 112, 112] [32, 16, 112, 112] [32, 24, 56, 56] [32, 24, 56, 56] [32, 24, 56, 56] [32, 24, 56, 56] [32, 24, 56, 56] [32, 40, 28, 28] [32, 40, 28, 28] [32, 40, 28, 28] [32, 40, 28, 28] [32, 40, 28, 28] [32, 80, 14, 14] [32, 80, 14, 14] [32, 80, 14, 14]
└─MBConv (1) └─MBConv (2) └─Sequential (5) └─MBConv (0) └─MBConv (1) └─MBConv (2) └─Sequential (6) └─MBConv (1) └─MBConv (2) └─MBConv (1) └─MBConv (2) └─MBConv (2) └─MBConv (2) └─MBConv (3) └─Sequential (7) └─MBConv (0) └─ConvNormActivation (8) └─Conv2d (0) └─BatchNorm2d (1) └─Sequential (classifier)	$\begin{bmatrix} 32, 80, 14, 14 \\ [32, 80, 14, 14] \\ [32, 80, 14, 14] \\ [32, 80, 14, 14] \\ [32, 112, 14, 14] \\ [32, 112, 14, 14] \\ [32, 112, 14, 14] \\ [32, 112, 14, 14] \\ [32, 112, 14, 14] \\ [32, 192, 7, 7] \\ [32, 192, 7, 7] \\ [32, 192, 7, 7] \\ [32, 192, 7, 7] \\ [32, 192, 7, 7] \\ [32, 192, 7, 7] \\ [32, 192, 7, 7] \\ [32, 320, 7, 7] \\ [32, 320, 7, 7] \\ [32, 1280] \\ \end{bmatrix}$	$\begin{bmatrix} 32, 80, 14, 14 \end{bmatrix}$ $\begin{bmatrix} 32, 80, 14, 14 \end{bmatrix}$ $\begin{bmatrix} 32, 112, 14, 14 \end{bmatrix}$ $\begin{bmatrix} 32, 192, 7, 7 \end{bmatrix}$ $\begin{bmatrix} 32, 1280, 1, 1 \end{bmatrix}$ $\begin{bmatrix} 32, 31 \end{bmatrix}$
Linear (1)	[32, 1280] [32, 1280] [32, 1280]	[32, 3] [32, 1280] [32, 3]
Total params: 4,011,391 Trainable params: 3,843 Non-trainable params: 4,007,548 Total mult-adds (G): 12.31 Input size (MB): 19.27 Forward/backward pass size (MB): 3452.09 Params size (MB): 16.05 Estimated Total Size (MB): 3487.41		

What experiments should you try?

torch.nn.Linear(in features=256, out features=512) torch.nn.Linear(in features=512, out features=1024)

Model architecture

+ any hyperparameter you can think of...

Number of layers/ hidden units

Data augmentation

Amount of data

torch.optim.Adam(lr=0.001) torch.optim.Adam(lr=0.0003) torch.optim.lr schedular()

Learning rate

Experiments we're running

Experiment number	Training data	Testing data	Model architecture	Number of epochs
1	Pizza, Steak Sushi 10% training data	Pizza, Steak Sushi 10% testing data	EffNetB0	5
2	Pizza, Steak Sushi 10% training data	Same as 1	EffNetB2	5
3	Pizza, Steak Sushi 10% training data	Same as 1	EffNetB0	10
4	Pizza, Steak Sushi 10% training data	Same as 1	EffNetB2	10
5	Pizza, Steak Sushi 20% training data	Same as 1	EffNetB0	5
6	Pizza, Steak Sushi 20% training data	Same as 1	EffNetB2	5
7	Pizza, Steak Sushi 20% training data	Same as 1	EffNetB0	10
8	Pizza, Steak Sushi 20% training data	Same as 1	EffNetB2	10

Note: All experiments use the same testing data (to keep evaluation consistent). Also notice how the first experiment is the smallest, and each consecutive experiment increases data, training time and model size.

Inspecting test loss

TensorBoard	SCALARS	GRAPHS	TIME SERIES	
 Show data downl Ignore outliers in Tooltip sorting method 	oad links chart scaling : default	-	Accuracy Accuracy tag: Accuracy	
Smoothing		0	0.95 0.85 0.75	
Horizontal Axis STEP RELATIVE	WALL		Name 2022-06-05/ 2022-06-05/ 2022-06-05/	data_10_per data_10_per 2 3 data_10_per
Runs test_			2022-06-05/ 2022-06-05/ 2022-06-05/	data_10_per data_20_per data_20_per
	u0y_1001_400		2022-06-05/	data_20_per
2022-06-05/dat _epochs/Loss_	ta_20_percent/ test_loss	effnetb2/5	Loss 2022-06-05/0	data_20_per
2022-06-05/dat _epochs/Accur	ta_20_percent/ acy_test_acc	effnetb2/5	0.7	-
2022-06-05/dat 0_epochs/Loss	ta_20_percent/ s_test_loss	effnetb0/1	0.6	
2022-06-05/da 0_epochs/Accu	ta_20_percent/ iracy_test_acc	effnetb0/1	0.5	
2022-06-05/da 0_epochs/Loss	ta_20_percent/ s_test_loss	effnetb2/1	0.4	
2022-06-05/dat 0_epochs/Accu	ta_20_percent/ uracy_test_acc	effnetb2/1	0.3	
TOGGLE	ALL RUNS			4 5
runs				

	Smoothed	Value	Step	Time	Relative
cent/effnetb0/10_epochs/Loss_test_loss	0.465	0.465	9	Mon Jun 6, 09:29:50	21s
cent/effnetb0/5_epochs/Loss_test_loss	0.5689	0.5689	4	Mon Jun 6, 09:29:12	8s
cent/effnetb2/10_epochs/Loss_test_loss	0.5879	0.5879	9	Mon Jun 6, 09:30:16	22s
cent/effnetb2/5_epochs/Loss_test_loss	0.7087	0.7087	4	Mon Jun 6, 09:29:26	10s
cent/effnetb0/10_epochs/Loss_test_loss	0.2771	0.2771	9	Mon Jun 6, 09:31:27	30s
cent/effnetb0/5_epochs/Loss_test_loss	0.3913	0.3913	4	Mon Jun 6, 09:30:36	15s
cent/effnetb2/10_epochs/Loss_test_loss	0.3909	0.3909	9	Mon Jun 6, 09:32:02	31s
cent/effnetb2/5_epochs/Loss_test_loss	0.447	0.447	4	Mon Jun 6, 09:30:53	13s

Inspecting test accuracy

TensorBoard	SCALARS	GRAPHS	TIME SERIES
Show data down	load links		Q Filter tags (regular expressions supported)
Ignore outliers in Tooltip sorting method	chart scaling d: default	▼	Accuracy
Smoothing			tag: Accuracy
•		0	0.9
Horizontal Axis STEP RELATIV	e wall		0.8 0.7 0.6
Runs			
test_acc			
Jun05_23-03-2 y_test_acc	28_f652c984d31	4/Accurac	Name 2022-06-05/data_10_percent/effnetb0/10_epochs
2022-06-05/da _epochs/Accu	ata_10_percent/ racy_test_acc	effnetb0/5	 2022-06-05/data_10_percent/effnetb0/5_epochs/ 2022-06-05/data_10_percent/effnetb2/10_epochs
2022-06-05/da _epochs/Accu	ata_10_percent/ racy_test_acc	effnetb2/5	2022-06-05/data_10_percent/effnetb2/5_epochs/
2022-06-05/da 0_epochs/Acc	ata_10_percent/c uracy_test_acc	effnetb0/1	2022-06-05/data_20_percent/effnetb0/5_epochs/
2022-06-05/da 0_epochs/Acc	ata_10_percent/ suracy_test_acc	effnetb2/1	⁵ 2022-06-05/data_20_percent/effnetb2/70_epochs/
2022-06-05/da _epochs/Accu	ata_20_percent/ racy_test_acc	effnetb0/5	0.55

ssions supported)

	Smoothed	Value	Step	Time	Relative
rcent/effnetb0/10_epochs/Accuracy_test_acc	0.9072	0.9072	9	Mon Jun 6, 09:04:43	18s
rcent/effnetb0/5_epochs/Accuracy_test_acc	0.8864	0.8864	4	Mon Jun 6, 09:04:11	8s
rcent/effnetb2/10_epochs/Accuracy_test_acc	0.8873	0.8873	9	Mon Jun 6, 09:05:05	19s
rcent/effnetb2/5_epochs/Accuracy_test_acc	0.8873	0.8873	4	Mon Jun 6, 09:04:22	8s
rcent/effnetb0/10_epochs/Accuracy_test_acc	0.9072	0.9072	9	Mon Jun 6, 09:06:13	30s
rcent/effnetb0/5_epochs/Accuracy_test_acc	0.9176	0.9176	4	Mon Jun 6, 09:05:22	13s
rcent/effnetb2/10_epochs/Accuracy_test_acc	0.9384	0.9384	9	Mon Jun 6, 09:06:48	30s
rcent/effnetb2/5_epochs/Accuracy_test_acc	0.9384	0.9384	4	Mon Jun 6, 09:05:39	13s

Inspecting the model architecture

Tenso	orBoard	SCALARS	GRAPHS	TIME SEI	RIES
Search nd Search nd Image: Comparison of the search nd	orBoard odes (regex) t to screen ownload PNG pload file Jun05_23-14-39 Default	SCALARS	GRAPHS	TIME SEI	RIES
Orephology	o graph onceptual graph ofile ions Trace inputs				Adaptiv
Legend			~		
colors	same substructur unique substructur (* = expandable) Namespace* <u>?</u> OpNode <u>?</u> Unconnected series Connected series Constant <u>?</u> Summary <u>?</u> Dataflow edge <u>?</u> Control dependen Reference edge <u>?</u>	e ire es* <u>?</u> * <u>?</u> cy edge <u>?</u>			Sequ

