Best-of Machine Learning with Python
Best-of Machine Learning with Python
π A ranked list of awesome machine learning Python libraries. Updated weekly.
This curated list contains 920 awesome open-source projects with a total of 4.8M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome!
π§ββοΈ Discover other best-of lists or create your own.
π« Subscribe to our newsletter for updates and trending projects.
Contents
- Machine Learning Frameworks 63 projects
- Data Visualization 55 projects
- Text Data & NLP 103 projects
- Image Data 64 projects
- Graph Data 36 projects
- Audio Data 29 projects
- Geospatial Data 22 projects
- Financial Data 25 projects
- Time Series Data 29 projects
- Medical Data 19 projects
- Tabular Data 5 projects
- Optical Character Recognition 12 projects
- Data Containers & Structures 1 projects
- Data Loading & Extraction 1 projects
- Web Scraping & Crawling 1 projects
- Data Pipelines & Streaming 2 projects
- Distributed Machine Learning 36 projects
- Hyperparameter Optimization & AutoML 52 projects
- Reinforcement Learning 23 projects
- Recommender Systems 17 projects
- Privacy Machine Learning 7 projects
- Workflow & Experiment Tracking 40 projects
- Model Serialization & Deployment 20 projects
- Model Interpretability 54 projects
- Vector Similarity Search (ANN) 13 projects
- Probabilistics & Statistics 24 projects
- Adversarial Robustness 9 projects
- GPU & Accelerator Utilities 20 projects
- Tensorflow Utilities 16 projects
- Jax Utilities 3 projects
- Sklearn Utilities 19 projects
- Pytorch Utilities 32 projects
- Database Clients 1 projects
- Others 66 projects
Explanation
- π₯π₯π₯ Combined project-quality score
- βοΈ Star count from GitHub
- π£ New project (less than 6 months old)
- π€ Inactive project (6 months no activity)
- π Dead project (12 months no activity)
- ππ Project is trending up or down
- β Project was recently added
- βοΈ Warning (e.g. missing/risky license)
- π¨βπ» Contributors count from GitHub
- π Fork count from GitHub
- π Issue count from GitHub
- β±οΈ Last update timestamp on package manager
- π₯ Download count from package manager
- π¦ Number of dependent projects
Tensorflow related project
Sklearn related project
PyTorch related project
MxNet related project
Apache Spark related project
Jupyter related project
PaddlePaddle related project
Pandas related project
Jax related project
Machine Learning Frameworks
General-purpose machine learning and deep learning frameworks.
Tensorflow (π₯55 Β· β 190K) - An Open Source Machine Learning Framework for Everyone. Apache-2

- [GitHub](https://github.com/tensorflow/tensorflow) (π¨βπ» 4.8K Β· π 74K Β· π¦ 460K Β· π 47K - 15% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/tensorflow) (π₯ 20M / month Β· π¦ 8.4K Β· β±οΈ 26.01.2025):
- [Conda](https://anaconda.org/conda-forge/tensorflow) (π₯ 5.3M Β· β±οΈ 17.10.2024):
- [Docker Hub](https://hub.docker.com/r/tensorflow/tensorflow) (π₯ 79M Β· β 2.7K Β· β±οΈ 06.02.2025):
PyTorch (π₯55 Β· β 87K) - Tensors and Dynamic neural networks in Python with strong GPU.. BSD-3

- [GitHub](https://github.com/pytorch/pytorch) (π¨βπ» 5.4K Β· π 23K Β· π₯ 74K Β· π¦ 640K Β· π 50K - 31% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/torch) (π₯ 36M / month Β· π¦ 22K Β· β±οΈ 29.01.2025):
- [Conda](https://anaconda.org/pytorch/pytorch) (π₯ 26M Β· β±οΈ 28.10.2024):
scikit-learn (π₯53 Β· β 61K) - scikit-learn: machine learning in Python. BSD-3

- [GitHub](https://github.com/scikit-learn/scikit-learn) (π¨βπ» 3.3K Β· π 26K Β· π₯ 1K Β· π¦ 1M Β· π 12K - 17% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/scikit-learn) (π₯ 77M / month Β· π¦ 27K Β· β±οΈ 10.01.2025):
- [Conda](https://anaconda.org/conda-forge/scikit-learn) (π₯ 34M Β· β±οΈ 10.01.2025):
Keras (π₯48 Β· β 62K) - Deep Learning for humans. Apache-2

- [GitHub](https://github.com/keras-team/keras) (π¨βπ» 1.4K Β· π 20K Β· π 12K - 1% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/keras) (π₯ 13M / month Β· π¦ 1.7K Β· β±οΈ 07.01.2025):
- [Conda](https://anaconda.org/conda-forge/keras) (π₯ 3.9M Β· β±οΈ 10.01.2025):
jax (π₯45 Β· β 31K) - Composable transformations of Python+NumPy programs: differentiate,.. Apache-2
- [GitHub](https://github.com/jax-ml/jax) (π¨βπ» 830 Β· π 2.9K Β· π¦ 37K Β· π 5.9K - 25% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/jax) (π₯ 6.3M / month Β· π¦ 2.1K Β· β±οΈ 17.01.2025):
- [Conda](https://anaconda.org/conda-forge/jaxlib) (π₯ 2.3M Β· β±οΈ 06.01.2025):
XGBoost (π₯45 Β· β 27K) - Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or.. Apache-2
- [GitHub](https://github.com/dmlc/xgboost) (π¨βπ» 660 Β· π 8.7K Β· π₯ 13K Β· π¦ 130K Β· π 5.4K - 8% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/xgboost) (π₯ 24M / month Β· π¦ 2.1K Β· β±οΈ 26.11.2024):
- [Conda](https://anaconda.org/conda-forge/xgboost) (π₯ 5.8M Β· β±οΈ 01.02.2025):
PaddlePaddle (π₯45 Β· β 22K) - PArallel Distributed Deep LEarning: Machine Learning.. Apache-2

- [GitHub](https://github.com/PaddlePaddle/Paddle) (π¨βπ» 1.3K Β· π 5.7K Β· π₯ 15K Β· π¦ 6.9K Β· π 19K - 9% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/paddlepaddle) (π₯ 310K / month Β· π¦ 210 Β· β±οΈ 23.01.2025):
StatsModels (π₯45 Β· β 10K) - Statsmodels: statistical modeling and econometrics in Python. BSD-3
- [GitHub](https://github.com/statsmodels/statsmodels) (π¨βπ» 450 Β· π 3.1K Β· π₯ 35 Β· π¦ 150K Β· π 5.7K - 50% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/statsmodels) (π₯ 16M / month Β· π¦ 4.5K Β· β±οΈ 03.10.2024):
- [Conda](https://anaconda.org/conda-forge/statsmodels) (π₯ 17M Β· β±οΈ 03.10.2024):
PySpark (π₯44 Β· β 40K) - Apache Spark Python API. Apache-2

- [GitHub](https://github.com/apache/spark) (π¨βπ» 3.2K Β· π 28K Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pyspark) (π₯ 32M / month Β· π¦ 1.7K Β· β±οΈ 20.12.2024):
- [Conda](https://anaconda.org/conda-forge/pyspark) (π₯ 3.7M Β· β±οΈ 21.12.2024):
pytorch-lightning (π₯43 Β· β 29K) - Pretrain, finetune ANY AI model of ANY size on.. Apache-2

- [GitHub](https://github.com/Lightning-AI/pytorch-lightning) (π¨βπ» 990 Β· π 3.4K Β· π₯ 11K Β· π¦ 42K Β· π 7.2K - 11% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/pytorch-lightning) (π₯ 7.2M / month Β· π¦ 1.5K Β· β±οΈ 21.12.2024):
- [Conda](https://anaconda.org/conda-forge/pytorch-lightning) (π₯ 1.4M Β· β±οΈ 22.12.2024):
LightGBM (π₯41 Β· β 17K) - A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT,.. MIT
- [GitHub](https://github.com/microsoft/LightGBM) (π¨βπ» 320 Β· π 3.8K Β· π₯ 280K Β· π¦ 44K Β· π 3.5K - 11% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/lightgbm) (π₯ 8.4M / month Β· π¦ 1.1K Β· β±οΈ 26.07.2024):
- [Conda](https://anaconda.org/conda-forge/lightgbm) (π₯ 3.1M Β· β±οΈ 26.01.2025):
Catboost (π₯41 Β· β 8.2K) - A fast, scalable, high performance Gradient Boosting on Decision.. Apache-2
- [GitHub](https://github.com/catboost/catboost) (π¨βπ» 1.3K Β· π 1.2K Β· π₯ 350K Β· π¦ 16 Β· π 2.4K - 24% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/catboost) (π₯ 3M / month Β· π¦ 540 Β· β±οΈ 07.09.2024):
- [Conda](https://anaconda.org/conda-forge/catboost) (π₯ 1.9M Β· β±οΈ 29.01.2025):
Fastai (π₯39 Β· β 27K) - The fastai deep learning library. Apache-2

- [GitHub](https://github.com/fastai/fastai) (π¨βπ» 670 Β· π 7.6K Β· π¦ 21K Β· π 1.8K - 12% open Β· β±οΈ 14.12.2024):
- [PyPi](https://pypi.org/project/fastai) (π₯ 410K / month Β· π¦ 310 Β· β±οΈ 19.10.2024):
PyFlink (π₯39 Β· β 24K) - Apache Flink Python API. Apache-2
- [GitHub](https://github.com/apache/flink) (π¨βπ» 2K Β· π 13K Β· π¦ 21 Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/apache-flink) (π₯ 19M / month Β· π¦ 35 Β· β±οΈ 01.08.2024):
Flax (π₯37 Β· β 6.3K) - Flax is a neural network library for JAX that is designed for.. Apache-2

- [GitHub](https://github.com/google/flax) (π¨βπ» 250 Β· π 650 Β· π₯ 59 Β· π¦ 12K Β· π 1.1K - 28% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/flax) (π₯ 1.2M / month Β· π¦ 490 Β· β±οΈ 19.11.2024):
- [Conda](https://anaconda.org/conda-forge/flax) (π₯ 88K Β· β±οΈ 20.11.2024):

Jina (π₯36 Β· β 21K) - Build multimodal AI applications with cloud-native stack. Apache-2
- [GitHub](https://github.com/jina-ai/serve) (π¨βπ» 180 Β· π 2.2K Β· π 1.9K - 0% open Β· β±οΈ 20.12.2024):
- [PyPi](https://pypi.org/project/jina) (π₯ 130K / month Β· π¦ 27 Β· β±οΈ 20.12.2024):
- [Conda](https://anaconda.org/conda-forge/jina-core) (π₯ 86K Β· β±οΈ 16.06.2023):
- [Docker Hub](https://hub.docker.com/r/jinaai/jina) (π₯ 1.8M Β· β 8 Β· β±οΈ 20.12.2024):
ivy (π₯36 Β· β 14K) - Convert Machine Learning Code Between Frameworks. Apache-2
- [GitHub](https://github.com/ivy-llc/ivy) (π¨βπ» 1.5K Β· π 5.7K Β· π 17K - 5% open Β· β±οΈ 02.02.2025):
- [PyPi](https://pypi.org/project/ivy) (π₯ 23K / month Β· π¦ 16 Β· β±οΈ 22.01.2025):
einops (π₯35 Β· β 8.7K) - Flexible and powerful tensor operations for readable and reliable code.. MIT
- [GitHub](https://github.com/arogozhnikov/einops) (π¨βπ» 33 Β· π 350 Β· π¦ 59K Β· π 190 - 17% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/einops) (π₯ 7.1M / month Β· π¦ 2K Β· β±οΈ 28.04.2024):
- [Conda](https://anaconda.org/conda-forge/einops) (π₯ 330K Β· β±οΈ 15.12.2024):
mlpack (π₯34 Β· β 5.2K) - mlpack: a fast, header-only C++ machine learning library. BSD-3
- [GitHub](https://github.com/mlpack/mlpack) (π¨βπ» 330 Β· π 1.6K Β· π 1.6K - 1% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/mlpack) (π₯ 9.1K / month Β· π¦ 6 Β· β±οΈ 11.12.2024):
- [Conda](https://anaconda.org/conda-forge/mlpack) (π₯ 320K Β· β±οΈ 22.09.2024):
Ignite (π₯34 Β· β 4.6K) - High-level library to help with training and evaluating neural.. BSD-3

- [GitHub](https://github.com/pytorch/ignite) (π¨βπ» 760 Β· π 630 Β· π¦ 3.5K Β· π 1.4K - 11% open Β· β±οΈ 04.01.2025):
- [PyPi](https://pypi.org/project/pytorch-ignite) (π₯ 160K / month Β· π¦ 100 Β· β±οΈ 06.02.2025):
- [Conda](https://anaconda.org/pytorch/ignite) (π₯ 220K Β· β±οΈ 13.08.2024):
Thinc (π₯34 Β· β 2.8K) - A refreshing functional take on deep learning, compatible with your favorite.. MIT
- [GitHub](https://github.com/explosion/thinc) (π¨βπ» 66 Β· π 280 Β· π₯ 800 Β· π¦ 60K Β· π 150 - 13% open Β· β±οΈ 11.12.2024):
- [PyPi](https://pypi.org/project/thinc) (π₯ 10M / month Β· π¦ 150 Β· β±οΈ 13.01.2025):
- [Conda](https://anaconda.org/conda-forge/thinc) (π₯ 3.4M Β· β±οΈ 03.12.2024):
skorch (π₯33 Β· β 6K) - A scikit-learn compatible neural network library that wraps.. BSD-3


- [GitHub](https://github.com/skorch-dev/skorch) (π¨βπ» 66 Β· π 390 Β· π¦ 1.5K Β· π 530 - 12% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/skorch) (π₯ 120K / month Β· π¦ 94 Β· β±οΈ 10.01.2025):
- [Conda](https://anaconda.org/conda-forge/skorch) (π₯ 790K Β· β±οΈ 11.01.2025):
Ludwig (π₯32 Β· β 11K) - Low-code framework for building custom LLMs, neural networks, and.. Apache-2

- [GitHub](https://github.com/ludwig-ai/ludwig) (π¨βπ» 160 Β· π 1.2K Β· π¦ 290 Β· π 1.1K - 4% open Β· β±οΈ 17.10.2024):
- [PyPi](https://pypi.org/project/ludwig) (π₯ 2.5K / month Β· π¦ 6 Β· β±οΈ 30.07.2024):
Vowpal Wabbit (π₯32 Β· β 8.5K Β· π) - Vowpal Wabbit is a machine learning system which pushes the.. BSD-3
- [GitHub](https://github.com/VowpalWabbit/vowpal_wabbit) (π¨βπ» 340 Β· π 1.9K Β· π¦ 1 Β· π 1.3K - 10% open Β· β±οΈ 01.08.2024):
- [PyPi](https://pypi.org/project/vowpalwabbit) (π₯ 35K / month Β· π¦ 40 Β· β±οΈ 08.08.2024):
- [Conda](https://anaconda.org/conda-forge/vowpalwabbit) (π₯ 320K Β· β±οΈ 27.11.2024):
Sonnet (π₯31 Β· β 9.8K) - TensorFlow-based neural network library. Apache-2

- [GitHub](https://github.com/google-deepmind/sonnet) (π¨βπ» 60 Β· π 1.3K Β· π¦ 1.4K Β· π 190 - 16% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/dm-sonnet) (π₯ 21K / month Β· π¦ 19 Β· β±οΈ 02.01.2024):
- [Conda](https://anaconda.org/conda-forge/sonnet) (π₯ 39K Β· β±οΈ 16.06.2023):
Haiku (π₯31 Β· β 3K) - JAX-based neural network library. Apache-2
- [GitHub](https://github.com/google-deepmind/dm-haiku) (π¨βπ» 85 Β· π 230 Β· π¦ 2.3K Β· π 250 - 28% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/dm-haiku) (π₯ 290K / month Β· π¦ 180 Β· β±οΈ 16.10.2024):
- [Conda](https://anaconda.org/conda-forge/dm-haiku) (π₯ 29K Β· β±οΈ 23.12.2024):
Geomstats (π₯31 Β· β 1.3K) - Computations and statistics on manifolds with geometric structures. MIT
- [GitHub](https://github.com/geomstats/geomstats) (π¨βπ» 94 Β· π 250 Β· π¦ 130 Β· π 570 - 36% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/geomstats) (π₯ 4K / month Β· π¦ 12 Β· β±οΈ 09.09.2024):
- [Conda](https://anaconda.org/conda-forge/geomstats) (π₯ 5.4K Β· β±οΈ 01.01.2025):
tensorflow-upstream (π₯31 Β· β 690) - TensorFlow ROCm port. Apache-2

- [GitHub](https://github.com/ROCm/tensorflow-upstream) (π¨βπ» 4.8K Β· π 97 Β· π₯ 27 Β· π 390 - 17% open Β· β±οΈ 31.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-rocm) (π₯ 7.3K / month Β· π¦ 9 Β· β±οΈ 10.01.2024):
Determined (π₯29 Β· β 3.1K) - Determined is an open-source machine learning platform.. Apache-2


- [GitHub](https://github.com/determined-ai/determined) (π¨βπ» 120 Β· π 360 Β· π₯ 12K Β· π 450 - 21% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/determined) (π₯ 28K / month Β· π¦ 4 Β· β±οΈ 22.11.2024):
NuPIC (π₯28 Β· β 6.3K) - Numenta Platform for Intelligent Computing is an implementation of.. MIT
- [GitHub](https://github.com/numenta/nupic-legacy) (π¨βπ» 120 Β· π 1.6K Β· π₯ 17 Β· π¦ 21 Β· π 1.8K - 25% open Β· β±οΈ 03.12.2024):
- [PyPi](https://pypi.org/project/nupic) (π₯ 2.3K / month Β· β±οΈ 01.09.2016):
ktrain (π₯27 Β· β 1.2K Β· π€) - ktrain is a Python library that makes deep learning and AI.. Apache-2

- [GitHub](https://github.com/amaiya/ktrain) (π¨βπ» 17 Β· π 270 Β· π¦ 560 Β· π 500 - 0% open Β· β±οΈ 09.07.2024):
- [PyPi](https://pypi.org/project/ktrain) (π₯ 8.7K / month Β· π¦ 4 Β· β±οΈ 19.06.2024):
pyRiemann (π₯27 Β· β 660) - Machine learning for multivariate data through the Riemannian.. BSD-3

- [GitHub](https://github.com/pyRiemann/pyRiemann) (π¨βπ» 36 Β· π 160 Β· π¦ 420 Β· π 110 - 4% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/pyriemann) (π₯ 32K / month Β· π¦ 28 Β· β±οΈ 03.10.2024):
- [Conda](https://anaconda.org/conda-forge/pyriemann) (π₯ 10K Β· β±οΈ 26.12.2024):
Neural Network Libraries (π₯26 Β· β 2.7K Β· π) - Neural Network Libraries. Apache-2
- [GitHub](https://github.com/sony/nnabla) (π¨βπ» 76 Β· π 330 Β· π₯ 1K Β· π 95 - 36% open Β· β±οΈ 15.11.2024):
- [PyPi](https://pypi.org/project/nnabla) (π₯ 20K / month Β· π¦ 44 Β· β±οΈ 29.05.2024):
Towhee (π₯24 Β· β 3.3K) - Towhee is a framework that is dedicated to making neural data.. Apache-2
- [GitHub](https://github.com/towhee-io/towhee) (π¨βπ» 38 Β· π 250 Β· π₯ 2.7K Β· π 670 - 0% open Β· β±οΈ 18.10.2024):
- [PyPi](https://pypi.org/project/towhee) (π₯ 16K / month Β· β±οΈ 04.12.2023):
Neural Tangents (π₯24 Β· β 2.3K Β· π€) - Fast and Easy Infinite Neural Networks in Python. Apache-2
- [GitHub](https://github.com/google/neural-tangents) (π¨βπ» 30 Β· π 240 Β· π₯ 540 Β· π¦ 120 Β· π 160 - 38% open Β· β±οΈ 01.03.2024):
- [PyPi](https://pypi.org/project/neural-tangents) (π₯ 3.6K / month Β· π¦ 1 Β· β±οΈ 11.12.2023):
Runhouse (π₯24 Β· β 1K) - The Runhouse Python client. Distribute and run AI workloads magically.. Apache-2
- [GitHub](https://github.com/run-house/runhouse) (π¨βπ» 16 Β· π 37 Β· π₯ 69 Β· π 51 - 17% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/runhouse) (π₯ 38K / month Β· π¦ 1 Β· β±οΈ 05.02.2025):
fklearn (π₯23 Β· β 1.5K) - fklearn: Functional Machine Learning. Apache-2
- [GitHub](https://github.com/nubank/fklearn) (π¨βπ» 56 Β· π 170 Β· π¦ 16 Β· π 65 - 61% open Β· β±οΈ 14.08.2024):
- [PyPi](https://pypi.org/project/fklearn) (π₯ 3.2K / month Β· β±οΈ 14.08.2024):
ThunderSVM (π₯22 Β· β 1.6K Β· π€) - ThunderSVM: A Fast SVM Library on GPUs and CPUs. Apache-2
- [GitHub](https://github.com/Xtra-Computing/thundersvm) (π¨βπ» 37 Β· π 220 Β· π₯ 2.9K Β· π 230 - 35% open Β· β±οΈ 01.04.2024):
- [PyPi](https://pypi.org/project/thundersvm) (π₯ 1.4K / month Β· β±οΈ 13.03.2020):
mace (π₯21 Β· β 5K Β· π€) - MACE is a deep learning inference framework optimized for mobile.. Apache-2
- [GitHub](https://github.com/XiaoMi/mace) (π¨βπ» 69 Β· π 820 Β· π₯ 1.5K Β· π 680 - 8% open Β· β±οΈ 11.03.2024):
chefboost (π₯21 Β· β 470) - A Lightweight Decision Tree Framework supporting regular algorithms:.. MIT
- [GitHub](https://github.com/serengil/chefboost) (π¨βπ» 7 Β· π 100 Β· π¦ 66 Β· β±οΈ 30.10.2024):
- [PyPi](https://pypi.org/project/chefboost) (π₯ 6.5K / month Β· β±οΈ 30.10.2024):
NeoML (π₯20 Β· β 770) - Machine learning framework for both deep learning and traditional.. Apache-2
- [GitHub](https://github.com/neoml-lib/neoml) (π¨βπ» 40 Β· π 130 Β· π¦ 2 Β· π 91 - 40% open Β· β±οΈ 30.09.2024):
- [PyPi](https://pypi.org/project/neoml) (π₯ 1.5K / month Β· β±οΈ 26.12.2023):
Show 22 hidden projects...
- MXNet (π₯38 Β· β 21K Β· π) - Lightweight, Portable, Flexible Distributed/Mobile Deep..Apache-2

- dlib (π₯38 Β· β 14K) - A toolkit for making real world machine learning and data analysis.. βοΈBSL-1.0
- Theano (π₯37 Β· β 9.9K Β· π) - Theano was a Python library that allows you to define, optimize, and.. BSD-3
- MindsDB (π₯33 Β· β 27K) - AGIs query engine - Platform for building AI that can.. βοΈMulanPSL-1.0

- Turi Create (π₯33 Β· β 11K Β· π) - Turi Create simplifies the development of custom machine.. BSD-3
- tensorpack (π₯33 Β· β 6.3K Β· π) - A Neural Net Training Interface on TensorFlow, with.. Apache-2

- Chainer (π₯33 Β· β 5.9K Β· π) - A flexible framework of neural networks for deep learning. MIT
- TFlearn (π₯31 Β· β 9.6K Β· π) - Deep learning library featuring a higher-level API for TensorFlow. MIT

- dyNET (π₯31 Β· β 3.4K Β· π) - DyNet: The Dynamic Neural Network Toolkit. Apache-2
- CNTK (π₯30 Β· β 18K Β· π) - Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit. MIT
- Lasagne (π₯28 Β· β 3.8K Β· π) - Lightweight library to build and train neural networks in Theano. MIT
- EvaDB (π₯27 Β· β 2.7K Β· π) - Database system for AI-powered apps. Apache-2

- SHOGUN (π₯26 Β· β 3K Β· π) - Unified and efficient Machine Learning. BSD-3
- xLearn (π₯24 Β· β 3.1K Β· π) - High performance, easy-to-use, and scalable machine learning (ML).. Apache-2
- NeuPy (π₯24 Β· β 740 Β· π) - NeuPy is a Tensorflow based python library for prototyping and building.. MIT
- neon (π₯23 Β· β 3.9K Β· π) - Intel Nervana reference deep learning framework committed to best.. Apache-2
- Objax (π₯21 Β· β 770 Β· π) - Objax is a machine learning framework that provides an Object.. Apache-2

- Torchbearer (π₯21 Β· β 640 Β· π) - torchbearer: A model fitting library for PyTorch. MIT

- elegy (π₯20 Β· β 470 Β· π) - A High Level API for Deep Learning in JAX. MIT


- ThunderGBM (π₯18 Β· β 690 Β· π) - ThunderGBM: Fast GBDTs and Random Forests on GPUs. Apache-2
- StarSpace (π₯16 Β· β 4K Β· π) - Learning embeddings for classification, retrieval and ranking. MIT
- nanodl (π₯14 Β· β 280) - A Jax-based library for designing and training transformer models from.. MIT

Data Visualization
General-purpose and task-specific data visualization libraries.
Matplotlib (π₯49 Β· β 21K) - matplotlib: plotting with Python. βUnlicensed
- [GitHub](https://github.com/matplotlib/matplotlib) (π¨βπ» 1.8K Β· π 7.7K Β· π¦ 1.5M Β· π 11K - 14% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/matplotlib) (π₯ 69M / month Β· π¦ 53K Β· β±οΈ 14.12.2024):
- [Conda](https://anaconda.org/conda-forge/matplotlib) (π₯ 28M Β· β±οΈ 16.12.2024):
Plotly (π₯46 Β· β 17K) - The interactive graphing library for Python This project now includes.. MIT
- [GitHub](https://github.com/plotly/plotly.py) (π¨βπ» 280 Β· π 2.6K Β· π₯ 19 Β· π¦ 360K Β· π 3.1K - 19% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/plotly) (π₯ 19M / month Β· π¦ 7.3K Β· β±οΈ 28.01.2025):
- [Conda](https://anaconda.org/conda-forge/plotly) (π₯ 8.3M Β· β±οΈ 31.01.2025):
- [npm](https://www.npmjs.com/package/plotlywidget) (π₯ 59K / month Β· π¦ 9 Β· β±οΈ 12.01.2021):
Bokeh (π₯45 Β· β 20K Β· π) - Interactive Data Visualization in the browser, from Python. BSD-3
- [GitHub](https://github.com/bokeh/bokeh) (π¨βπ» 710 Β· π 4.2K Β· π¦ 98K Β· π 7.9K - 10% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/bokeh) (π₯ 4.1M / month Β· π¦ 1.9K Β· β±οΈ 05.02.2025):
- [Conda](https://anaconda.org/conda-forge/bokeh) (π₯ 16M Β· β±οΈ 06.02.2025):
dash (π₯43 Β· β 22K) - Data Apps & Dashboards for Python. No JavaScript Required. MIT
- [GitHub](https://github.com/plotly/dash) (π¨βπ» 170 Β· π 2.1K Β· π₯ 88 Β· π¦ 77K Β· π 1.9K - 27% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/dash) (π₯ 4.8M / month Β· π¦ 1.5K Β· β±οΈ 28.01.2025):
- [Conda](https://anaconda.org/conda-forge/dash) (π₯ 1.7M Β· β±οΈ 24.01.2025):
Altair (π₯43 Β· β 9.6K) - Declarative visualization library for Python. BSD-3
- [GitHub](https://github.com/vega/altair) (π¨βπ» 170 Β· π 800 Β· π₯ 220 Β· π¦ 200K Β· π 2.1K - 6% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/altair) (π₯ 25M / month Β· π¦ 920 Β· β±οΈ 23.11.2024):
- [Conda](https://anaconda.org/conda-forge/altair) (π₯ 2.6M Β· β±οΈ 15.12.2024):
Seaborn (π₯42 Β· β 13K) - Statistical data visualization in Python. BSD-3
- [GitHub](https://github.com/mwaskom/seaborn) (π¨βπ» 220 Β· π 1.9K Β· π₯ 460 Β· π¦ 560K Β· π 2.6K - 6% open Β· β±οΈ 26.01.2025):
- [PyPi](https://pypi.org/project/seaborn) (π₯ 21M / month Β· π¦ 11K Β· β±οΈ 25.01.2024):
- [Conda](https://anaconda.org/conda-forge/seaborn) (π₯ 12M Β· β±οΈ 09.12.2024):
FiftyOne (π₯38 Β· β 9.1K) - Visualize, create, and debug image and video datasets.. Apache-2



- [GitHub](https://github.com/voxel51/fiftyone) (π¨βπ» 150 Β· π 590 Β· π¦ 810 Β· π 1.6K - 32% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/fiftyone) (π₯ 68K / month Β· π¦ 25 Β· β±οΈ 24.01.2025):
PyVista (π₯38 Β· β 2.9K) - 3D plotting and mesh analysis through a streamlined interface for.. MIT

- [GitHub](https://github.com/pyvista/pyvista) (π¨βπ» 170 Β· π 520 Β· π₯ 870 Β· π¦ 4K Β· π 1.8K - 36% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pyvista) (π₯ 410K / month Β· π¦ 580 Β· β±οΈ 27.11.2024):
- [Conda](https://anaconda.org/conda-forge/pyvista) (π₯ 620K Β· β±οΈ 15.12.2024):
pandas-profiling (π₯37 Β· β 13K Β· π) - 1 Line of code data quality profiling & exploratory.. MIT


- [GitHub](https://github.com/ydataai/ydata-profiling) (π¨βπ» 130 Β· π 1.7K Β· π₯ 250 Β· π¦ 5.3K Β· π 820 - 29% open Β· β±οΈ 24.01.2025):
- [PyPi](https://pypi.org/project/pandas-profiling) (π₯ 430K / month Β· π¦ 180 Β· β±οΈ 03.02.2023):
- [Conda](https://anaconda.org/conda-forge/pandas-profiling) (π₯ 490K Β· β±οΈ 16.06.2023):
HoloViews (π₯37 Β· β 2.7K Β· π) - With Holoviews, your data visualizes itself. BSD-3

- [GitHub](https://github.com/holoviz/holoviews) (π¨βπ» 150 Β· π 400 Β· π¦ 14K Β· π 3.4K - 33% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/holoviews) (π₯ 420K / month Β· π¦ 400 Β· β±οΈ 11.11.2024):
- [Conda](https://anaconda.org/conda-forge/holoviews) (π₯ 2M Β· β±οΈ 13.12.2024):
- [npm](https://www.npmjs.com/package/@pyviz/jupyterlab_pyviz) (π₯ 340 / month Β· π¦ 5 Β· β±οΈ 14.01.2025):
pyecharts (π₯36 Β· β 15K) - Python Echarts Plotting Library. MIT

- [GitHub](https://github.com/pyecharts/pyecharts) (π¨βπ» 45 Β· π 2.9K Β· π₯ 72 Β· π¦ 4.9K Β· β±οΈ 26.01.2025):
- [PyPi](https://pypi.org/project/pyecharts) (π₯ 200K / month Β· π¦ 220 Β· β±οΈ 24.01.2025):
PyQtGraph (π₯36 Β· β 4K) - Fast data visualization and GUI tools for scientific / engineering.. MIT
- [GitHub](https://github.com/pyqtgraph/pyqtgraph) (π¨βπ» 300 Β· π 1.1K Β· π¦ 11K Β· π 1.3K - 32% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pyqtgraph) (π₯ 340K / month Β· π¦ 1K Β· β±οΈ 29.04.2024):
- [Conda](https://anaconda.org/conda-forge/pyqtgraph) (π₯ 640K Β· β±οΈ 11.12.2024):
plotnine (π₯35 Β· β 4.1K) - A Grammar of Graphics for Python. MIT
- [GitHub](https://github.com/has2k1/plotnine) (π¨βπ» 110 Β· π 230 Β· π¦ 10K Β· π 700 - 11% open Β· β±οΈ 02.01.2025):
- [PyPi](https://pypi.org/project/plotnine) (π₯ 3M / month Β· π¦ 340 Β· β±οΈ 02.01.2025):
- [Conda](https://anaconda.org/conda-forge/plotnine) (π₯ 440K Β· β±οΈ 02.01.2025):
Graphviz (π₯35 Β· β 1.7K Β· π€) - Simple Python interface for Graphviz. MIT
- [GitHub](https://github.com/xflr6/graphviz) (π¨βπ» 23 Β· π 210 Β· π¦ 81K Β· π 180 - 6% open Β· β±οΈ 13.05.2024):
- [PyPi](https://pypi.org/project/graphviz) (π₯ 15M / month Β· π¦ 2.6K Β· β±οΈ 21.03.2024):
- [Conda](https://anaconda.org/anaconda/python-graphviz) (π₯ 52K Β· β±οΈ 08.04.2024):
cartopy (π₯35 Β· β 1.5K) - Cartopy - a cartographic python library with matplotlib support. BSD-3
- [GitHub](https://github.com/SciTools/cartopy) (π¨βπ» 130 Β· π 360 Β· π¦ 6.5K Β· π 1.3K - 23% open Β· β±οΈ 24.01.2025):
- [PyPi](https://pypi.org/project/cartopy) (π₯ 410K / month Β· π¦ 720 Β· β±οΈ 08.10.2024):
- [Conda](https://anaconda.org/conda-forge/cartopy) (π₯ 4.5M Β· β±οΈ 07.10.2024):
Perspective (π₯34 Β· β 8.8K) - A data visualization and analytics component, especially.. Apache-2

- [GitHub](https://github.com/finos/perspective) (π¨βπ» 98 Β· π 1.2K Β· π₯ 8.5K Β· π¦ 160 Β· π 860 - 12% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/perspective-python) (π₯ 23K / month Β· π¦ 28 Β· β±οΈ 05.02.2025):
- [Conda](https://anaconda.org/conda-forge/perspective) (π₯ 1.8M Β· β±οΈ 05.02.2025):
- [npm](https://www.npmjs.com/package/@finos/perspective-jupyterlab) (π₯ 470 / month Β· π¦ 6 Β· β±οΈ 14.01.2025):
datashader (π₯34 Β· β 3.4K) - Quickly and accurately render even the largest data. BSD-3
- [GitHub](https://github.com/holoviz/datashader) (π¨βπ» 60 Β· π 370 Β· π¦ 5.4K Β· π 600 - 23% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/datashader) (π₯ 150K / month Β· π¦ 230 Β· β±οΈ 29.01.2025):
- [Conda](https://anaconda.org/conda-forge/datashader) (π₯ 1.3M Β· β±οΈ 30.01.2025):
wordcloud (π₯33 Β· β 10K) - A little word cloud generator in Python. MIT
- [GitHub](https://github.com/amueller/word_cloud) (π¨βπ» 72 Β· π 2.3K Β· π¦ 21 Β· π 550 - 23% open Β· β±οΈ 10.11.2024):
- [PyPi](https://pypi.org/project/wordcloud) (π₯ 1.7M / month Β· π¦ 550 Β· β±οΈ 10.11.2024):
- [Conda](https://anaconda.org/conda-forge/wordcloud) (π₯ 620K Β· β±οΈ 02.12.2024):
VisPy (π₯33 Β· β 3.4K) - High-performance interactive 2D/3D data visualization library. BSD-3

- [GitHub](https://github.com/vispy/vispy) (π¨βπ» 200 Β· π 620 Β· π¦ 1.8K Β· π 1.5K - 24% open Β· β±οΈ 22.01.2025):
- [PyPi](https://pypi.org/project/vispy) (π₯ 120K / month Β· π¦ 170 Β· β±οΈ 17.06.2024):
- [Conda](https://anaconda.org/conda-forge/vispy) (π₯ 740K Β· β±οΈ 04.09.2024):
- [npm](https://www.npmjs.com/package/vispy) (π₯ 33 / month Β· π¦ 3 Β· β±οΈ 15.03.2020):
UMAP (π₯32 Β· β 7.6K Β· π) - Uniform Manifold Approximation and Projection. BSD-3
- [GitHub](https://github.com/lmcinnes/umap) (π¨βπ» 140 Β· π 820 Β· π¦ 1 Β· π 830 - 58% open Β· β±οΈ 29.11.2024):
- [PyPi](https://pypi.org/project/umap-learn) (π₯ 1.7M / month Β· π¦ 1.1K Β· β±οΈ 28.10.2024):
- [Conda](https://anaconda.org/conda-forge/umap-learn) (π₯ 2.8M Β· β±οΈ 29.10.2024):
hvPlot (π₯32 Β· β 1.2K) - A high-level plotting API for pandas, dask, xarray, and networkx built.. BSD-3
- [GitHub](https://github.com/holoviz/hvplot) (π¨βπ» 51 Β· π 110 Β· π¦ 6.5K Β· π 830 - 44% open Β· β±οΈ 24.01.2025):
- [PyPi](https://pypi.org/project/hvplot) (π₯ 190K / month Β· π¦ 220 Β· β±οΈ 16.12.2024):
- [Conda](https://anaconda.org/conda-forge/hvplot) (π₯ 710K Β· β±οΈ 16.12.2024):
mpld3 (π₯31 Β· β 2.4K) - An interactive data visualization tool which brings matplotlib graphics to.. BSD-3
- [GitHub](https://github.com/mpld3/mpld3) (π¨βπ» 53 Β· π 360 Β· π¦ 6.9K Β· π 370 - 59% open Β· β±οΈ 30.10.2024):
- [PyPi](https://pypi.org/project/mpld3) (π₯ 330K / month Β· π¦ 150 Β· β±οΈ 23.12.2023):
- [Conda](https://anaconda.org/conda-forge/mpld3) (π₯ 220K Β· β±οΈ 19.12.2024):
- [npm](https://www.npmjs.com/package/mpld3) (π₯ 760 / month Β· π¦ 9 Β· β±οΈ 23.12.2023):
lets-plot (π₯31 Β· β 1.6K) - Multiplatform plotting library based on the Grammar of Graphics. MIT
- [GitHub](https://github.com/JetBrains/lets-plot) (π¨βπ» 21 Β· π 53 Β· π₯ 3.2K Β· π¦ 160 Β· π 670 - 24% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/lets-plot) (π₯ 37K / month Β· π¦ 15 Β· β±οΈ 17.12.2024):
D-Tale (π₯30 Β· β 4.8K) - Visualizer for pandas data structures. βοΈLGPL-2.1


- [GitHub](https://github.com/man-group/dtale) (π¨βπ» 30 Β· π 410 Β· π¦ 1.3K Β· π 600 - 10% open Β· β±οΈ 13.12.2024):
- [PyPi](https://pypi.org/project/dtale) (π₯ 100K / month Β· π¦ 48 Β· β±οΈ 13.12.2024):
- [Conda](https://anaconda.org/conda-forge/dtale) (π₯ 380K Β· β±οΈ 13.12.2024):
bqplot (π₯30 Β· β 3.6K) - Plotting library for IPython/Jupyter notebooks. Apache-2

- [GitHub](https://github.com/bqplot/bqplot) (π¨βπ» 65 Β· π 470 Β· π¦ 61 Β· π 640 - 42% open Β· β±οΈ 22.10.2024):
- [PyPi](https://pypi.org/project/bqplot) (π₯ 170K / month Β· π¦ 110 Β· β±οΈ 24.12.2024):
- [Conda](https://anaconda.org/conda-forge/bqplot) (π₯ 1.5M Β· β±οΈ 16.12.2024):
- [npm](https://www.npmjs.com/package/bqplot) (π₯ 2.1K / month Β· π¦ 21 Β· β±οΈ 24.12.2024):
AutoViz (π₯26 Β· β 1.8K Β· π€) - Automatically Visualize any dataset, any size with a single line.. Apache-2
- [GitHub](https://github.com/AutoViML/AutoViz) (π¨βπ» 17 Β· π 200 Β· π¦ 820 Β· π 98 - 2% open Β· β±οΈ 10.06.2024):
- [PyPi](https://pypi.org/project/autoviz) (π₯ 17K / month Β· π¦ 11 Β· β±οΈ 10.06.2024):
- [Conda](https://anaconda.org/conda-forge/autoviz) (π₯ 76K Β· β±οΈ 17.01.2025):
openTSNE (π₯26 Β· β 1.5K Β· π) - Extensible, parallel implementations of t-SNE. BSD-3
- [GitHub](https://github.com/pavlin-policar/openTSNE) (π¨βπ» 13 Β· π 170 Β· π¦ 970 Β· π 140 - 7% open Β· β±οΈ 24.10.2024):
- [PyPi](https://pypi.org/project/opentsne) (π₯ 44K / month Β· π¦ 47 Β· β±οΈ 13.08.2024):
- [Conda](https://anaconda.org/conda-forge/opentsne) (π₯ 400K Β· β±οΈ 16.11.2024):
data-validation (π₯26 Β· β 770) - Library for exploring and validating machine learning.. Apache-2


- [GitHub](https://github.com/tensorflow/data-validation) (π¨βπ» 27 Β· π 170 Β· π₯ 950 Β· π 180 - 21% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-data-validation) (π₯ 160K / month Β· π¦ 31 Β· β±οΈ 15.10.2024):
Chartify (π₯25 Β· β 3.6K) - Python library that makes it easy for data scientists to create.. Apache-2
- [GitHub](https://github.com/spotify/chartify) (π¨βπ» 27 Β· π 320 Β· π¦ 80 Β· π 83 - 61% open Β· β±οΈ 16.10.2024):
- [PyPi](https://pypi.org/project/chartify) (π₯ 2.1K / month Β· π¦ 9 Β· β±οΈ 16.10.2024):
- [Conda](https://anaconda.org/conda-forge/chartify) (π₯ 35K Β· β±οΈ 16.06.2023):
HyperTools (π₯25 Β· β 1.8K Β· π€) - A Python toolbox for gaining geometric insights into high-.. MIT
- [GitHub](https://github.com/ContextLab/hypertools) (π¨βπ» 22 Β· π 160 Β· π₯ 68 Β· π¦ 500 Β· π 200 - 34% open Β· β±οΈ 19.03.2024):
- [PyPi](https://pypi.org/project/hypertools) (π₯ 710 / month Β· π¦ 2 Β· β±οΈ 12.02.2022):
Plotly-Resampler (π₯25 Β· β 1.1K) - Visualize large time series data with plotly.py. MIT
- [GitHub](https://github.com/predict-idlab/plotly-resampler) (π¨βπ» 14 Β· π 70 Β· π¦ 1.7K Β· π 180 - 32% open Β· β±οΈ 15.12.2024):
- [PyPi](https://pypi.org/project/plotly-resampler) (π₯ 400K / month Β· π¦ 24 Β· β±οΈ 27.03.2024):
- [Conda](https://anaconda.org/conda-forge/plotly-resampler) (π₯ 93K Β· β±οΈ 05.12.2024):
python-ternary (π₯25 Β· β 750 Β· π€) - Ternary plotting library for python with matplotlib. MIT
- [GitHub](https://github.com/marcharper/python-ternary) (π¨βπ» 28 Β· π 160 Β· π₯ 35 Β· π¦ 200 Β· π 140 - 24% open Β· β±οΈ 12.06.2024):
- [PyPi](https://pypi.org/project/python-ternary) (π₯ 18K / month Β· π¦ 32 Β· β±οΈ 17.02.2021):
- [Conda](https://anaconda.org/conda-forge/python-ternary) (π₯ 97K Β· β±οΈ 03.01.2025):
Multicore-TSNE (π₯23 Β· β 1.9K Β· π€) - Parallel t-SNE implementation with Python and Torch.. BSD-3

- [GitHub](https://github.com/DmitryUlyanov/Multicore-TSNE) (π¨βπ» 18 Β· π 230 Β· π¦ 480 Β· π 69 - 65% open Β· β±οΈ 06.02.2024):
- [PyPi](https://pypi.org/project/MulticoreTSNE) (π₯ 1.4K / month Β· π¦ 22 Β· β±οΈ 09.01.2019):
- [Conda](https://anaconda.org/conda-forge/multicore-tsne) (π₯ 67K Β· β±οΈ 11.10.2023):
vega (π₯23 Β· β 380) - IPython/Jupyter notebook module for Vega and Vega-Lite. BSD-3

- [GitHub](https://github.com/vega/ipyvega) (π¨βπ» 15 Β· π 65 Β· π¦ 4 Β· π 110 - 14% open Β· β±οΈ 01.01.2025):
- [PyPi](https://pypi.org/project/vega) (π₯ 12K / month Β· π¦ 17 Β· β±οΈ 25.09.2024):
- [Conda](https://anaconda.org/conda-forge/vega) (π₯ 700K Β· β±οΈ 25.09.2024):
PyWaffle (π₯22 Β· β 590 Β· π€) - Make Waffle Charts in Python. MIT
- [GitHub](https://github.com/gyli/PyWaffle) (π¨βπ» 6 Β· π 110 Β· π¦ 460 Β· π 22 - 27% open Β· β±οΈ 16.06.2024):
- [PyPi](https://pypi.org/project/pywaffle) (π₯ 12K / month Β· π¦ 6 Β· β±οΈ 16.06.2024):
- [Conda](https://anaconda.org/conda-forge/pywaffle) (π₯ 15K Β· β±οΈ 16.01.2025):
Popmon (π₯22 Β· β 500) - Monitor the stability of a Pandas or Spark dataframe. MIT


- [GitHub](https://github.com/ing-bank/popmon) (π¨βπ» 19 Β· π 36 Β· π₯ 260 Β· π¦ 22 Β· π 57 - 28% open Β· β±οΈ 24.01.2025):
- [PyPi](https://pypi.org/project/popmon) (π₯ 9.3K / month Β· π¦ 4 Β· β±οΈ 24.01.2025):
vegafusion (π₯22 Β· β 340) - Serverside scaling for Vega and Altair visualizations. BSD-3
- [GitHub](https://github.com/vega/vegafusion) (π¨βπ» 5 Β· π 18 Β· π₯ 9.8K Β· π 140 - 36% open Β· β±οΈ 25.11.2024):
- [PyPi](https://pypi.org/project/vegafusion-jupyter) (π₯ 3.5K / month Β· π¦ 2 Β· β±οΈ 09.05.2024):
- [Conda](https://anaconda.org/conda-forge/vegafusion-python-embed) (π₯ 380K Β· β±οΈ 31.10.2024):
- [npm](https://www.npmjs.com/package/vegafusion-jupyter) (π₯ 150 / month Β· π¦ 3 Β· β±οΈ 09.05.2024):
ivis (π₯19 Β· β 330) - Dimensionality reduction in very large datasets using Siamese.. Apache-2

- [GitHub](https://github.com/beringresearch/ivis) (π¨βπ» 10 Β· π 43 Β· π¦ 36 Β· π 60 - 5% open Β· β±οΈ 29.09.2024):
- [PyPi](https://pypi.org/project/ivis) (π₯ 1.8K / month Β· π¦ 2 Β· β±οΈ 13.06.2024):
animatplot (π₯18 Β· β 410) - A python package for animating plots build on matplotlib. MIT
- [GitHub](https://github.com/t-makaro/animatplot) (π¨βπ» 6 Β· π 38 Β· π¦ 72 Β· π 37 - 45% open Β· β±οΈ 29.08.2024):
- [PyPi](https://pypi.org/project/animatplot) (π₯ 390 / month Β· π¦ 4 Β· β±οΈ 29.08.2024):
- [Conda](https://anaconda.org/conda-forge/animatplot) (π₯ 16K Β· β±οΈ 01.09.2024):
Show 16 hidden projects...
- missingno (π₯29 Β· β 4K Β· π) - Missing data visualization module for Python.MIT
- Cufflinks (π₯29 Β· β 3K Β· π) - Productivity Tools for Plotly + Pandas. MIT

- Facets Overview (π₯27 Β· β 7.4K Β· π) - Visualizations for machine learning datasets. Apache-2

- Sweetviz (π₯27 Β· β 3K Β· π) - Visualize and compare datasets, target values and associations, with.. MIT
- pythreejs (π₯27 Β· β 960 Β· π) - A Jupyter - Three.js bridge. BSD-3

- HiPlot (π₯24 Β· β 2.8K Β· π) - HiPlot makes understanding high dimensional data easy. MIT
- ridgeplot (π₯24 Β· β 220) - Beautiful ridgeline plots in Python. MIT
- PandasGUI (π₯23 Β· β 3.2K Β· π) - A GUI for Pandas DataFrames. βοΈMIT-0

- Pandas-Bokeh (π₯23 Β· β 880 Β· π) - Bokeh Plotting Backend for Pandas and GeoPandas. MIT

- pivottablejs (π₯23 Β· β 690 Β· π) - Dragndrop Pivot Tables and Charts for Jupyter/IPython.. MIT

- joypy (π₯22 Β· β 580 Β· π) - Joyplots in Python with matplotlib & pandas. MIT
- PDPbox (π₯21 Β· β 850 Β· π) - python partial dependence plot toolbox. MIT
- pdvega (π₯16 Β· β 340 Β· π) - Interactive plotting for Pandas using Vega-Lite. MIT
- data-describe (π₯15 Β· β 300 Β· π) - datadescribe: Pythonic EDA Accelerator for Data Science. Apache-2
- nx-altair (π₯15 Β· β 220 Β· π) - Draw interactive NetworkX graphs with Altair. MIT

- nptsne (π₯13 Β· β 33 Β· π) - nptsne is a numpy compatible python binary package that offers a.. Apache-2
Text Data & NLP
Libraries for processing, cleaning, manipulating, and analyzing text data as well as libraries for NLP tasks such as language detection, fuzzy matching, classification, seq2seq learning, conversational AI, keyword extraction, and translation.
transformers (π₯52 Β· β 140K) - Transformers: State-of-the-art Machine Learning for.. Apache-2


- [GitHub](https://github.com/huggingface/transformers) (π¨βπ» 3.1K Β· π 28K Β· π¦ 280K Β· π 17K - 9% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/transformers) (π₯ 41M / month Β· π¦ 7.5K Β· β±οΈ 30.01.2025):
- [Conda](https://anaconda.org/conda-forge/transformers) (π₯ 2.5M Β· β±οΈ 30.01.2025):
spaCy (π₯44 Β· β 31K) - Industrial-strength Natural Language Processing (NLP) in Python. MIT
- [GitHub](https://github.com/explosion/spaCy) (π¨βπ» 760 Β· π 4.4K Β· π₯ 1.4K Β· π¦ 110K Β· π 5.7K - 3% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/spacy) (π₯ 11M / month Β· π¦ 2.9K Β· β±οΈ 14.01.2025):
- [Conda](https://anaconda.org/conda-forge/spacy) (π₯ 5.2M Β· β±οΈ 24.11.2024):
litellm (π₯44 Β· β 17K) - Python SDK, Proxy Server (LLM Gateway) to call 100+.. MIT
o
t
h
e
r
s
- [GitHub](https://github.com/BerriAI/litellm) (π¨βπ» 390 Β· π 2K Β· π₯ 450 Β· π¦ 7K Β· π 4.5K - 26% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/litellm) (π₯ 5.4M / month Β· π¦ 770 Β· β±οΈ 06.02.2025):
nltk (π₯43 Β· β 14K) - Suite of libraries and programs for symbolic and statistical natural.. Apache-2
- [GitHub](https://github.com/nltk/nltk) (π¨βπ» 460 Β· π 2.9K Β· π¦ 350K Β· π 1.8K - 14% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/nltk) (π₯ 25M / month Β· π¦ 4.7K Β· β±οΈ 18.08.2024):
- [Conda](https://anaconda.org/conda-forge/nltk) (π₯ 3M Β· β±οΈ 16.12.2024):
sentence-transformers (π₯42 Β· β 16K) - State-of-the-Art Text Embeddings. Apache-2

- [GitHub](https://github.com/UKPLab/sentence-transformers) (π¨βπ» 210 Β· π 2.5K Β· π¦ 69K Β· π 2.3K - 52% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/sentence-transformers) (π₯ 7.7M / month Β· π¦ 2.1K Β· β±οΈ 29.01.2025):
- [Conda](https://anaconda.org/conda-forge/sentence-transformers) (π₯ 540K Β· β±οΈ 30.01.2025):
flair (π₯41 Β· β 14K Β· π) - A very simple framework for state-of-the-art Natural Language.. MIT

- [GitHub](https://github.com/flairNLP/flair) (π¨βπ» 280 Β· π 2.1K Β· π¦ 3.8K Β· π 2.4K - 4% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/flair) (π₯ 130K / month Β· π¦ 150 Β· β±οΈ 05.02.2025):
- [Conda](https://anaconda.org/conda-forge/python-flair) (π₯ 38K Β· β±οΈ 26.12.2024):
Tokenizers (π₯40 Β· β 9.3K Β· π) - Fast State-of-the-Art Tokenizers optimized for Research and.. Apache-2
- [GitHub](https://github.com/huggingface/tokenizers) (π¨βπ» 100 Β· π 820 Β· π₯ 73 Β· π¦ 130K Β· π 1K - 5% open Β· β±οΈ 28.01.2025):
- [PyPi](https://pypi.org/project/tokenizers) (π₯ 36M / month Β· π¦ 1.1K Β· β±οΈ 27.11.2024):
- [Conda](https://anaconda.org/conda-forge/tokenizers) (π₯ 2.6M Β· β±οΈ 27.11.2024):
Rasa (π₯39 Β· β 19K Β· π) - Open source machine learning framework to automate text- and.. Apache-2

- [GitHub](https://github.com/RasaHQ/rasa) (π¨βπ» 590 Β· π 4.7K Β· π¦ 4.8K Β· π 6.8K - 2% open Β· β±οΈ 14.01.2025):
- [PyPi](https://pypi.org/project/rasa) (π₯ 280K / month Β· π¦ 60 Β· β±οΈ 14.01.2025):
gensim (π₯38 Β· β 16K) - Topic Modelling for Humans. βοΈLGPL-2.1
- [GitHub](https://github.com/piskvorky/gensim) (π¨βπ» 460 Β· π 4.4K Β· π₯ 5.8K Β· π¦ 70K Β· π 1.9K - 20% open Β· β±οΈ 05.12.2024):
- [PyPi](https://pypi.org/project/gensim) (π₯ 4.5M / month Β· π¦ 1.4K Β· β±οΈ 19.07.2024):
- [Conda](https://anaconda.org/conda-forge/gensim) (π₯ 1.5M Β· β±οΈ 03.09.2024):
TextBlob (π₯38 Β· β 9.2K) - Simple, Pythonic, text processing--Sentiment analysis, part-of-speech.. MIT
- [GitHub](https://github.com/sloria/TextBlob) (π¨βπ» 37 Β· π 1.2K Β· π₯ 120 Β· π¦ 49K Β· π 280 - 34% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/textblob) (π₯ 1.2M / month Β· π¦ 400 Β· β±οΈ 13.01.2025):
- [Conda](https://anaconda.org/conda-forge/textblob) (π₯ 280K Β· β±οΈ 16.06.2023):
fairseq (π₯37 Β· β 31K Β· π) - Facebook AI Research Sequence-to-Sequence Toolkit written in.. MIT

- [GitHub](https://github.com/facebookresearch/fairseq) (π¨βπ» 430 Β· π 6.4K Β· π₯ 380 Β· π¦ 3.9K Β· π 4.3K - 29% open Β· β±οΈ 18.10.2024):
- [PyPi](https://pypi.org/project/fairseq) (π₯ 120K / month Β· π¦ 120 Β· β±οΈ 27.06.2022):
- [Conda](https://anaconda.org/conda-forge/fairseq) (π₯ 130K Β· β±οΈ 24.11.2024):
NeMo (π₯37 Β· β 13K) - A scalable generative AI framework built for researchers and.. Apache-2

- [GitHub](https://github.com/NVIDIA/NeMo) (π¨βπ» 380 Β· π 2.7K Β· π₯ 320K Β· π¦ 21 Β· π 2.5K - 5% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/nemo-toolkit) (π₯ 95K / month Β· π¦ 14 Β· β±οΈ 04.02.2025):
sentencepiece (π₯37 Β· β 11K) - Unsupervised text tokenizer for Neural Network-based text.. Apache-2
- [GitHub](https://github.com/google/sentencepiece) (π¨βπ» 89 Β· π 1.2K Β· π₯ 50K Β· π¦ 93K Β· π 760 - 5% open Β· β±οΈ 18.08.2024):
- [PyPi](https://pypi.org/project/sentencepiece) (π₯ 21M / month Β· π¦ 1.7K Β· β±οΈ 19.02.2024):
- [Conda](https://anaconda.org/conda-forge/sentencepiece) (π₯ 1.4M Β· β±οΈ 31.12.2024):
ChatterBot (π₯36 Β· β 14K) - ChatterBot is a machine learning, conversational dialog engine for.. BSD-3
- [GitHub](https://github.com/gunthercox/ChatterBot) (π¨βπ» 110 Β· π 4.4K Β· π¦ 6.1K Β· π 1.7K - 24% open Β· β±οΈ 17.01.2025):
- [PyPi](https://pypi.org/project/chatterbot) (π₯ 29K / month Β· π¦ 18 Β· β±οΈ 22.08.2020):
TensorFlow Text (π₯36 Β· β 1.2K) - Making text a first-class citizen in TensorFlow. Apache-2

- [GitHub](https://github.com/tensorflow/text) (π¨βπ» 170 Β· π 350 Β· π¦ 7.9K Β· π 360 - 52% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-text) (π₯ 6.9M / month Β· π¦ 220 Β· β±οΈ 16.12.2024):
haystack (π₯35 Β· β 19K) - AI orchestration framework to build customizable, production-ready.. Apache-2
- [GitHub](https://github.com/deepset-ai/haystack) (π¨βπ» 270 Β· π 2K Β· π¦ 830 Β· π 3.7K - 3% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/haystack) (π₯ 6.5K / month Β· π¦ 5 Β· β±οΈ 15.12.2021):
spark-nlp (π₯35 Β· β 3.9K) - State of the Art Natural Language Processing. Apache-2

- [GitHub](https://github.com/JohnSnowLabs/spark-nlp) (π¨βπ» 110 Β· π 720 Β· π¦ 550 Β· π 910 - 4% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/spark-nlp) (π₯ 4.3M / month Β· π¦ 37 Β· β±οΈ 30.01.2025):
fastText (π₯34 Β· β 26K Β· π€) - Library for fast text representation and classification. MIT
- [GitHub](https://github.com/facebookresearch/fastText) (π¨βπ» 68 Β· π 4.7K Β· π¦ 7.2K Β· π 1.2K - 47% open Β· β±οΈ 13.03.2024):
- [PyPi](https://pypi.org/project/fasttext) (π₯ 1.4M / month Β· π¦ 250 Β· β±οΈ 12.06.2024):
- [Conda](https://anaconda.org/conda-forge/fasttext) (π₯ 120K Β· β±οΈ 19.05.2024):
stanza (π₯34 Β· β 7.4K) - Stanford NLP Python library for tokenization, sentence segmentation,.. Apache-2
- [GitHub](https://github.com/stanfordnlp/stanza) (π¨βπ» 69 Β· π 900 Β· π¦ 3.5K Β· π 920 - 10% open Β· β±οΈ 24.12.2024):
- [PyPi](https://pypi.org/project/stanza) (π₯ 280K / month Β· π¦ 200 Β· β±οΈ 24.12.2024):
- [Conda](https://anaconda.org/stanfordnlp/stanza) (π₯ 8.4K Β· β±οΈ 16.06.2023):
qdrant (π₯33 Β· β 22K) - Qdrant - High-performance, massive-scale Vector Database and Vector.. Apache-2
- [GitHub](https://github.com/qdrant/qdrant) (π¨βπ» 130 Β· π 1.5K Β· π₯ 310K Β· π¦ 120 Β· π 1.4K - 24% open Β· β±οΈ 03.02.2025):
OpenNMT (π₯33 Β· β 6.8K Β· π€) - Open Source Neural Machine Translation and (Large) Language.. MIT

- [GitHub](https://github.com/OpenNMT/OpenNMT-py) (π¨βπ» 190 Β· π 2.2K Β· π¦ 310 Β· π 1.5K - 1% open Β· β±οΈ 27.06.2024):
- [PyPi](https://pypi.org/project/OpenNMT-py) (π₯ 14K / month Β· π¦ 23 Β· β±οΈ 18.03.2024):
rubrix (π₯33 Β· β 4.3K) - Argilla is a collaboration tool for AI engineers and domain experts.. Apache-2
- [GitHub](https://github.com/argilla-io/argilla) (π¨βπ» 110 Β· π 400 Β· π¦ 2.9K Β· π 2.2K - 2% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/rubrix) (π₯ 6.9K / month Β· β±οΈ 24.10.2022):
- [Conda](https://anaconda.org/conda-forge/rubrix) (π₯ 41K Β· β±οΈ 16.06.2023):
torchtext (π₯33 Β· β 3.5K) - Models, data loaders and abstractions for language processing,.. BSD-3

- [GitHub](https://github.com/pytorch/text) (π¨βπ» 160 Β· π 810 Β· π 850 - 39% open Β· β±οΈ 14.08.2024):
- [PyPi](https://pypi.org/project/torchtext) (π₯ 670K / month Β· π¦ 280 Β· β±οΈ 24.04.2024):
jellyfish (π₯33 Β· β 2.1K) - a python library for doing approximate and phonetic matching of strings. MIT
- [GitHub](https://github.com/jamesturk/jellyfish) (π¨βπ» 34 Β· π 160 Β· π¦ 13K Β· π 140 - 4% open Β· β±οΈ 31.12.2024):
- [PyPi](https://pypi.org/project/jellyfish) (π₯ 6.6M / month Β· π¦ 280 Β· β±οΈ 14.12.2024):
- [Conda](https://anaconda.org/conda-forge/jellyfish) (π₯ 1.2M Β· β±οΈ 17.12.2024):
ftfy (π₯32 Β· β 3.8K) - Fixes mojibake and other glitches in Unicode text, after the fact. Apache-2
- [GitHub](https://github.com/rspeer/python-ftfy) (π¨βπ» 20 Β· π 120 Β· π₯ 33 Β· π¦ 27K Β· π 150 - 6% open Β· β±οΈ 30.10.2024):
- [PyPi](https://pypi.org/project/ftfy) (π₯ 5.3M / month Β· π¦ 570 Β· β±οΈ 26.10.2024):
- [Conda](https://anaconda.org/conda-forge/ftfy) (π₯ 320K Β· β±οΈ 23.12.2024):
snowballstemmer (π₯31 Β· β 770) - Snowball compiler and stemming algorithms. BSD-3
- [GitHub](https://github.com/snowballstem/snowball) (π¨βπ» 35 Β· π 170 Β· π¦ 10 Β· π 91 - 27% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/snowballstemmer) (π₯ 16M / month Β· π¦ 450 Β· β±οΈ 16.11.2021):
- [Conda](https://anaconda.org/conda-forge/snowballstemmer) (π₯ 9.2M Β· β±οΈ 16.06.2023):
DeepPavlov (π₯29 Β· β 6.8K Β· π) - An open source library for deep learning end-to-end.. Apache-2

- [GitHub](https://github.com/deeppavlov/DeepPavlov) (π¨βπ» 77 Β· π 1.2K Β· π¦ 420 Β· π 640 - 4% open Β· β±οΈ 26.11.2024):
- [PyPi](https://pypi.org/project/deeppavlov) (π₯ 12K / month Β· π¦ 4 Β· β±οΈ 12.08.2024):
Dedupe (π₯29 Β· β 4.2K) - A python library for accurate and scalable fuzzy matching, record.. MIT
- [GitHub](https://github.com/dedupeio/dedupe) (π¨βπ» 72 Β· π 550 Β· π¦ 350 Β· π 820 - 9% open Β· β±οΈ 01.11.2024):
- [PyPi](https://pypi.org/project/dedupe) (π₯ 96K / month Β· π¦ 19 Β· β±οΈ 15.08.2024):
- [Conda](https://anaconda.org/conda-forge/dedupe) (π₯ 95K Β· β±οΈ 16.06.2023):
Sumy (π₯29 Β· β 3.5K Β· π€) - Module for automatic summarization of text documents and HTML pages. Apache-2
- [GitHub](https://github.com/miso-belica/sumy) (π¨βπ» 32 Β· π 530 Β· π¦ 3.5K Β· π 120 - 18% open Β· β±οΈ 16.05.2024):
- [PyPi](https://pypi.org/project/sumy) (π₯ 140K / month Β· π¦ 31 Β· β±οΈ 23.10.2022):
- [Conda](https://anaconda.org/conda-forge/sumy) (π₯ 11K Β· β±οΈ 03.01.2025):
TextDistance (π₯29 Β· β 3.4K) - Compute distance between sequences. 30+ algorithms, pure python.. MIT
- [GitHub](https://github.com/life4/textdistance) (π¨βπ» 17 Β· π 250 Β· π₯ 1.1K Β· π¦ 7.8K Β· β±οΈ 09.09.2024):
- [PyPi](https://pypi.org/project/textdistance) (π₯ 870K / month Β· π¦ 99 Β· β±οΈ 16.07.2024):
- [Conda](https://anaconda.org/conda-forge/textdistance) (π₯ 720K Β· β±οΈ 05.01.2025):
spacy-transformers (π₯29 Β· β 1.4K) - Use pretrained transformers like BERT, XLNet and GPT-2.. MIT
spacy
- [GitHub](https://github.com/explosion/spacy-transformers) (π¨βπ» 23 Β· π 170 Β· π₯ 97 Β· π¦ 2K Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/spacy-transformers) (π₯ 230K / month Β· π¦ 98 Β· β±οΈ 06.02.2025):
- [Conda](https://anaconda.org/conda-forge/spacy-transformers) (π₯ 100K Β· β±οΈ 11.12.2024):
Opik (π₯28 Β· β 4.9K) - Debug, evaluate, and monitor your LLM applications, RAG systems, and.. Apache-2
- [GitHub](https://github.com/comet-ml/opik) (π¨βπ» 35 Β· π 320 Β· π 170 - 30% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/opik) (π₯ 30K / month Β· π¦ 4 Β· β±οΈ 05.02.2025):
SciSpacy (π₯28 Β· β 1.7K) - A full spaCy pipeline and models for scientific/biomedical documents. Apache-2
- [GitHub](https://github.com/allenai/scispacy) (π¨βπ» 37 Β· π 230 Β· π¦ 1K Β· π 320 - 9% open Β· β±οΈ 23.11.2024):
- [PyPi](https://pypi.org/project/scispacy) (π₯ 32K / month Β· π¦ 34 Β· β±οΈ 27.10.2024):
CLTK (π₯28 Β· β 840) - The Classical Language Toolkit. MIT
- [GitHub](https://github.com/cltk/cltk) (π¨βπ» 120 Β· π 330 Β· π₯ 110 Β· π¦ 280 Β· π 580 - 6% open Β· β±οΈ 01.12.2024):
- [PyPi](https://pypi.org/project/cltk) (π₯ 6K / month Β· π¦ 17 Β· β±οΈ 01.12.2024):
english-words (π₯27 Β· β 11K) - A text file containing 479k English words for all your.. Unlicense
- [GitHub](https://github.com/dwyl/english-words) (π¨βπ» 34 Β· π 1.9K Β· π¦ 2 Β· π 150 - 73% open Β· β±οΈ 06.01.2025):
- [PyPi](https://pypi.org/project/english-words) (π₯ 31K / month Β· π¦ 14 Β· β±οΈ 24.05.2023):
DeepKE (π₯27 Β· β 3.7K) - [EMNLP 2022] An Open Toolkit for Knowledge Graph Extraction and.. MIT

- [GitHub](https://github.com/zjunlp/DeepKE) (π¨βπ» 33 Β· π 690 Β· π¦ 24 Β· π 590 - 1% open Β· β±οΈ 11.01.2025):
- [PyPi](https://pypi.org/project/deepke) (π₯ 2.3K / month Β· β±οΈ 21.09.2023):
scattertext (π₯26 Β· β 2.3K) - Beautiful visualizations of how language differs among document.. Apache-2
- [GitHub](https://github.com/JasonKessler/scattertext) (π¨βπ» 14 Β· π 290 Β· π¦ 650 Β· π 100 - 21% open Β· β±οΈ 23.09.2024):
- [PyPi](https://pypi.org/project/scattertext) (π₯ 15K / month Β· π¦ 5 Β· β±οΈ 23.09.2024):
- [Conda](https://anaconda.org/conda-forge/scattertext) (π₯ 110K Β· β±οΈ 16.06.2023):
PyTextRank (π₯26 Β· β 2.2K Β· π€) - Python implementation of TextRank algorithms (textgraphs) for.. MIT
- [GitHub](https://github.com/DerwenAI/pytextrank) (π¨βπ» 19 Β· π 340 Β· π¦ 800 Β· π 100 - 12% open Β· β±οΈ 21.05.2024):
- [PyPi](https://pypi.org/project/pytextrank) (π₯ 69K / month Β· π¦ 19 Β· β±οΈ 21.02.2024):
detoxify (π₯24 Β· β 1K) - Trained models & code to predict toxic comments on all 3 Jigsaw Toxic.. Apache-2
- [GitHub](https://github.com/unitaryai/detoxify) (π¨βπ» 14 Β· π 120 Β· π₯ 860K Β· π¦ 780 Β· π 66 - 56% open Β· β±οΈ 21.01.2025):
- [PyPi](https://pypi.org/project/detoxify) (π₯ 27K / month Β· π¦ 30 Β· β±οΈ 01.02.2024):
T5 (π₯23 Β· β 6.3K Β· π€) - Code for the paper Exploring the Limits of Transfer Learning with.. Apache-2

- [GitHub](https://github.com/google-research/text-to-text-transfer-transformer) (π¨βπ» 59 Β· π 760 Β· π 450 - 23% open Β· β±οΈ 28.06.2024):
- [PyPi](https://pypi.org/project/t5) (π₯ 41K / month Β· π¦ 2 Β· β±οΈ 18.10.2021):
Sockeye (π₯22 Β· β 1.2K) - Sequence-to-sequence framework with a focus on Neural Machine.. Apache-2

- [GitHub](https://github.com/awslabs/sockeye) (π¨βπ» 60 Β· π 320 Β· π₯ 21 Β· π 310 - 3% open Β· β±οΈ 24.10.2024):
- [PyPi](https://pypi.org/project/sockeye) (π₯ 3.1K / month Β· β±οΈ 03.03.2023):
small-text (π₯22 Β· β 600) - Active Learning for Text Classification in Python. MIT


- [GitHub](https://github.com/webis-de/small-text) (π¨βπ» 9 Β· π 66 Β· π¦ 33 Β· π 64 - 25% open Β· β±οΈ 21.01.2025):
- [PyPi](https://pypi.org/project/small-text) (π₯ 1.2K / month Β· β±οΈ 24.11.2024):
- [Conda](https://anaconda.org/conda-forge/small-text) (π₯ 13K Β· β±οΈ 05.01.2025):
happy-transformer (π₯22 Β· β 530 Β· π€) - Happy Transformer makes it easy to fine-tune and.. Apache-2
huggingface
- [GitHub](https://github.com/EricFillion/happy-transformer) (π¨βπ» 14 Β· π 68 Β· π¦ 300 Β· π 130 - 16% open Β· β±οΈ 19.03.2024):
- [PyPi](https://pypi.org/project/happytransformer) (π₯ 2.8K / month Β· π¦ 5 Β· β±οΈ 05.08.2023):
fast-bert (π₯21 Β· β 1.9K) - Super easy library for BERT based NLP models. Apache-2
- [GitHub](https://github.com/utterworks/fast-bert) (π¨βπ» 37 Β· π 340 Β· π 260 - 63% open Β· β±οΈ 19.08.2024):
- [PyPi](https://pypi.org/project/fast-bert) (π₯ 3.2K / month Β· β±οΈ 19.08.2024):
finetune (π₯21 Β· β 710) - Scikit-learn style model finetuning for NLP. MPL-2.0


- [GitHub](https://github.com/IndicoDataSolutions/finetune) (π¨βπ» 23 Β· π 79 Β· π¦ 14 Β· π 140 - 15% open Β· β±οΈ 03.01.2025):
- [PyPi](https://pypi.org/project/finetune) (π₯ 980 / month Β· π¦ 2 Β· β±οΈ 29.09.2023):
UForm (π₯20 Β· β 1.1K) - Pocket-Sized Multimodal AI for content understanding and.. Apache-2

- [GitHub](https://github.com/unum-cloud/uform) (π¨βπ» 19 Β· π 63 Β· π₯ 540 Β· π¦ 6 Β· π 32 - 31% open Β· β±οΈ 03.01.2025):
- [PyPi](https://pypi.org/project/uform) (π₯ 1.6K / month Β· π¦ 2 Β· β±οΈ 03.01.2025):
VizSeq (π₯16 Β· β 440) - An Analysis Toolkit for Natural Language Generation (Translation,.. MIT
- [GitHub](https://github.com/facebookresearch/vizseq) (π¨βπ» 4 Β· π 61 Β· π¦ 12 Β· π 16 - 43% open Β· β±οΈ 28.09.2024):
- [PyPi](https://pypi.org/project/vizseq) (π₯ 330 / month Β· β±οΈ 07.08.2020):
Show 56 hidden projects...
- AllenNLP (π₯36 Β· β 12K Β· π) - An open-source NLP research library, built on PyTorch.Apache-2

- ParlAI (π₯32 Β· β 10K Β· π) - A framework for training and evaluating AI models on a variety of.. MIT

- fuzzywuzzy (π₯32 Β· β 9.2K Β· π) - Fuzzy String Matching in Python. βοΈGPL-2.0
- nlpaug (π₯30 Β· β 4.5K Β· π) - Data augmentation for NLP. MIT
- GluonNLP (π₯29 Β· β 2.6K Β· π) - Toolkit that enables easy text preprocessing, datasets.. Apache-2

- vaderSentiment (π₯28 Β· β 4.6K Β· π) - VADER Sentiment Analysis. VADER (Valence Aware Dictionary.. MIT
- fastNLP (π₯28 Β· β 3.1K Β· π) - fastNLP: A Modularized and Extensible NLP Framework. Currently.. Apache-2
- langid (π₯28 Β· β 2.3K Β· π) - Stand-alone language identification system. BSD-3
- Ciphey (π₯27 Β· β 19K Β· π) - Automatically decrypt encryptions without knowing the key or cipher,.. MIT
- textacy (π₯27 Β· β 2.2K Β· π) - NLP, before and after spaCy. βUnlicensed
- FARM (π₯27 Β· β 1.8K Β· π) - Fast & easy transfer learning for NLP. Harvesting language.. Apache-2

- pySBD (π₯27 Β· β 830 Β· π) - pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence.. MIT
- flashtext (π₯26 Β· β 5.6K Β· π) - Extract Keywords from sentence or Replace keywords in sentences. MIT
- polyglot (π₯26 Β· β 2.3K Β· π) - Multilingual text (NLP) processing toolkit. βοΈGPL-3.0
- underthesea (π₯26 Β· β 1.5K) - Underthesea - Vietnamese NLP Toolkit. βοΈGPL-3.0
- PyText (π₯25 Β· β 6.3K Β· π) - A natural language modeling framework based on PyTorch. BSD-3

- OpenPrompt (π₯25 Β· β 4.5K Β· π) - An Open-Source Framework for Prompt-Learning. Apache-2
- Snips NLU (π₯25 Β· β 3.9K Β· π) - Snips Python library to extract meaning from text. Apache-2
- neuralcoref (π₯25 Β· β 2.9K Β· π) - Fast Coreference Resolution in spaCy with Neural Networks. MIT
- pytorch-nlp (π₯25 Β· β 2.2K Β· π) - Basic Utilities for PyTorch Natural Language Processing.. BSD-3

- textgenrnn (π₯24 Β· β 4.9K Β· π) - Easily train your own text-generating neural network of any.. MIT

- MatchZoo (π₯24 Β· β 3.8K Β· π) - Facilitating the design, comparison and sharing of deep.. Apache-2

- promptsource (π₯24 Β· β 2.8K Β· π) - Toolkit for creating, sharing and using natural language.. Apache-2
- Kashgari (π₯24 Β· β 2.4K Β· π) - Kashgari is a production-level NLP Transfer learning.. Apache-2

- sense2vec (π₯24 Β· β 1.6K Β· π) - Contextually-keyed word vectors. MIT
- Texar (π₯23 Β· β 2.4K Β· π) - Toolkit for Machine Learning, Natural Language Processing, and.. Apache-2

- jiant (π₯23 Β· β 1.7K Β· π) - jiant is an nlp toolkit. MIT
- whoosh (π₯23 Β· β 600 Β· π) - Pure-Python full-text search library. βοΈBSD-1-Clause
- gpt-2-simple (π₯22 Β· β 3.4K Β· π) - Python package to easily retrain OpenAIs GPT-2 text-.. MIT

- NLP Architect (π₯22 Β· β 2.9K Β· π) - A model library for exploring state-of-the-art deep.. Apache-2
- Texthero (π₯22 Β· β 2.9K Β· π) - Text preprocessing, representation and visualization from zero to.. MIT
- YouTokenToMe (π₯22 Β· β 960 Β· π) - Unsupervised text tokenizer focused on computational efficiency. MIT
- stop-words (π₯22 Β· β 160 Β· π) - Get list of common stop words in various languages in Python. BSD-3
- anaGo (π₯21 Β· β 1.5K Β· π) - Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition,.. MIT

- DeepMatcher (π₯20 Β· β 5.2K Β· π) - Python package for performing Entity and Text Matching using.. BSD-3
- lightseq (π₯20 Β· β 3.2K Β· π) - LightSeq: A High Performance Library for Sequence Processing.. Apache-2
- DELTA (π₯20 Β· β 1.6K Β· π) - DELTA is a deep learning based natural language and speech.. Apache-2

- textpipe (π₯20 Β· β 300 Β· π) - Textpipe: clean and extract metadata from text. MIT
- numerizer (π₯20 Β· β 220) - A Python module to convert natural language numerics into ints and.. MIT
- Camphr (π₯19 Β· β 340 Β· π) - Camphr - NLP libary for creating pipeline components. Apache-2
spacy
- pyfasttext (π₯19 Β· β 230 Β· π) - Yet another Python binding for fastText. βοΈGPL-3.0
- NeuroNER (π₯18 Β· β 1.7K Β· π) - Named-entity recognition using neural networks. Easy-to-use and.. MIT
- nboost (π₯18 Β· β 680 Β· π) - NBoost is a scalable, search-api-boosting platform for deploying.. Apache-2
- fastT5 (π₯18 Β· β 570 Β· π) - boost inference speed of T5 models by 5x & reduce the model size.. Apache-2
- textaugment (π₯18 Β· β 410 Β· π) - TextAugment: Text Augmentation Library. MIT
- skift (π₯17 Β· β 240 Β· π) - scikit-learn wrappers for Python fastText. MIT

- OpenNRE (π₯16 Β· β 4.4K Β· π) - An Open-Source Package for Neural Relation Extraction (NRE). MIT
- Translate (π₯16 Β· β 830 Β· π) - Translate - a PyTorch Language Library. BSD-3

- Headliner (π₯16 Β· β 230 Β· π) - Easy training and deployment of seq2seq models. MIT
- BLINK (π₯15 Β· β 1.2K Β· π) - Entity Linker solution. MIT
- TextBox (π₯15 Β· β 1.1K Β· π) - TextBox 2.0 is a text generation library with pre-trained language.. MIT
- ONNX-T5 (π₯15 Β· β 250 Β· π) - Summarization, translation, sentiment-analysis, text-generation.. Apache-2
- NeuralQA (π₯15 Β· β 230 Β· π) - NeuralQA: A Usable Library for Question Answering on Large Datasets.. MIT
- TransferNLP (π₯14 Β· β 290 Β· π) - NLP library designed for reproducible experimentation.. MIT

- textvec (π₯13 Β· β 190 Β· π) - Text vectorization tool to outperform TFIDF for classification.. MIT

- spacy-dbpedia-spotlight (π₯13 Β· β 110 Β· π) - A spaCy wrapper for DBpedia Spotlight. MIT
spacy
Image Data
Libraries for image & video processing, manipulation, and augmentation as well as libraries for computer vision tasks such as facial recognition, object detection, and classification.
Pillow (π₯48 Β· β 13K Β· π) - Python Imaging Library (Fork). βοΈPIL
- [GitHub](https://github.com/python-pillow/Pillow) (π¨βπ» 480 Β· π 2.3K Β· π¦ 2M Β· π 3.3K - 3% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/Pillow) (π₯ 120M / month Β· π¦ 11K Β· β±οΈ 02.01.2025):
- [Conda](https://anaconda.org/conda-forge/pillow) (π₯ 49M Β· β±οΈ 03.01.2025):
MoviePy (π₯43 Β· β 13K) - Video editing with Python. MIT
- [GitHub](https://github.com/Zulko/moviepy) (π¨βπ» 180 Β· π 1.6K Β· π¦ 54K Β· π 2K - 23% open Β· β±οΈ 31.01.2025):
- [PyPi](https://pypi.org/project/moviepy) (π₯ 2.6M / month Β· π¦ 1K Β· β±οΈ 10.01.2025):
- [Conda](https://anaconda.org/conda-forge/moviepy) (π₯ 290K Β· β±οΈ 16.06.2023):
PyTorch Image Models (π₯42 Β· β 33K) - The largest collection of PyTorch image encoders /.. Apache-2

- [GitHub](https://github.com/huggingface/pytorch-image-models) (π¨βπ» 170 Β· π 4.8K Β· π₯ 7.5M Β· π¦ 46K Β· π 950 - 4% open Β· β±οΈ 31.01.2025):
- [PyPi](https://pypi.org/project/timm) (π₯ 6.1M / month Β· π¦ 1.1K Β· β±οΈ 19.01.2025):
- [Conda](https://anaconda.org/conda-forge/timm) (π₯ 310K Β· β±οΈ 20.01.2025):
torchvision (π₯41 Β· β 17K) - Datasets, Transforms and Models specific to Computer Vision. BSD-3

- [GitHub](https://github.com/pytorch/vision) (π¨βπ» 620 Β· π 7K Β· π₯ 40K Β· π¦ 21 Β· π 3.6K - 30% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/torchvision) (π₯ 14M / month Β· π¦ 6.3K Β· β±οΈ 29.01.2025):
- [Conda](https://anaconda.org/conda-forge/torchvision) (π₯ 2.3M Β· β±οΈ 20.01.2025):
Albumentations (π₯41 Β· β 15K Β· π) - Fast and flexible image augmentation library. Paper.. MIT

- [GitHub](https://github.com/albumentations-team/albumentations) (π¨βπ» 160 Β· π 1.7K Β· π¦ 32K Β· π 1.1K - 13% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/albumentations) (π₯ 6M / month Β· π¦ 650 Β· β±οΈ 03.02.2025):
- [Conda](https://anaconda.org/conda-forge/albumentations) (π₯ 230K Β· β±οΈ 04.02.2025):
deepface (π₯38 Β· β 17K) - A Lightweight Face Recognition and Facial Attribute Analysis (Age,.. MIT
- [GitHub](https://github.com/serengil/deepface) (π¨βπ» 78 Β· π 2.4K Β· π¦ 5.4K Β· π 1.2K - 0% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/deepface) (π₯ 370K / month Β· π¦ 44 Β· β±οΈ 17.08.2024):
Kornia (π₯37 Β· β 10K) - Geometric Computer Vision Library for Spatial AI. Apache-2

- [GitHub](https://github.com/kornia/kornia) (π¨βπ» 280 Β· π 980 Β· π₯ 1.6K Β· π¦ 14K Β· π 960 - 30% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/kornia) (π₯ 1.9M / month Β· π¦ 310 Β· β±οΈ 11.01.2025):
- [Conda](https://anaconda.org/conda-forge/kornia) (π₯ 170K Β· β±οΈ 11.01.2025):
opencv-python (π₯37 Β· β 4.7K) - Automated CI toolchain to produce precompiled opencv-python,.. MIT
- [GitHub](https://github.com/opencv/opencv-python) (π¨βπ» 53 Β· π 870 Β· π¦ 510K Β· π 840 - 16% open Β· β±οΈ 16.01.2025):
- [PyPi](https://pypi.org/project/opencv-python) (π₯ 15M / month Β· π¦ 12K Β· β±οΈ 16.01.2025):
imageio (π₯37 Β· β 1.5K) - Python library for reading and writing image data. BSD-2
- [GitHub](https://github.com/imageio/imageio) (π¨βπ» 120 Β· π 300 Β· π₯ 1.5K Β· π¦ 160K Β· π 610 - 16% open Β· β±οΈ 20.01.2025):
- [PyPi](https://pypi.org/project/imageio) (π₯ 24M / month Β· π¦ 2.6K Β· β±οΈ 20.01.2025):
- [Conda](https://anaconda.org/conda-forge/imageio) (π₯ 7.4M Β· β±οΈ 30.01.2025):
MMDetection (π₯36 Β· β 30K Β· π€) - OpenMMLab Detection Toolbox and Benchmark. Apache-2

- [GitHub](https://github.com/open-mmlab/mmdetection) (π¨βπ» 480 Β· π 9.5K Β· π¦ 3.4K Β· π 8.6K - 21% open Β· β±οΈ 05.02.2024):
- [PyPi](https://pypi.org/project/mmdet) (π₯ 180K / month Β· π¦ 82 Β· β±οΈ 05.01.2024):
InsightFace (π₯36 Β· β 24K) - State-of-the-art 2D and 3D Face Analysis Project. MIT

- [GitHub](https://github.com/deepinsight/insightface) (π¨βπ» 63 Β· π 5.4K Β· π₯ 6.4M Β· π¦ 3.3K Β· π 2.5K - 45% open Β· β±οΈ 05.12.2024):
- [PyPi](https://pypi.org/project/insightface) (π₯ 220K / month Β· π¦ 30 Β· β±οΈ 17.12.2022):
detectron2 (π₯34 Β· β 31K) - Detectron2 is a platform for object detection, segmentation.. Apache-2

- [GitHub](https://github.com/facebookresearch/detectron2) (π¨βπ» 280 Β· π 7.5K Β· π¦ 2.3K Β· π 3.6K - 14% open Β· β±οΈ 14.01.2025):
- [PyPi](https://pypi.org/project/detectron2) (π₯ 1 / month Β· π¦ 13 Β· β±οΈ 06.02.2020):
- [Conda](https://anaconda.org/conda-forge/detectron2) (π₯ 590K Β· β±οΈ 06.11.2024):
Wand (π₯34 Β· β 1.4K) - The ctypes-based simple ImageMagick binding for Python. MIT
- [GitHub](https://github.com/emcconville/wand) (π¨βπ» 110 Β· π 200 Β· π₯ 52K Β· π¦ 20K Β· π 430 - 6% open Β· β±οΈ 02.02.2025):
- [PyPi](https://pypi.org/project/wand) (π₯ 1.1M / month Β· π¦ 260 Β· β±οΈ 03.11.2023):
- [Conda](https://anaconda.org/conda-forge/wand) (π₯ 100K Β· β±οΈ 16.06.2023):
PaddleSeg (π₯33 Β· β 8.8K) - Easy-to-use image segmentation library with awesome pre-.. Apache-2

- [GitHub](https://github.com/PaddlePaddle/PaddleSeg) (π¨βπ» 130 Β· π 1.7K Β· π¦ 1.4K Β· π 2.2K - 0% open Β· β±οΈ 25.12.2024):
- [PyPi](https://pypi.org/project/paddleseg) (π₯ 1.8K / month Β· π¦ 7 Β· β±οΈ 30.11.2022):
vit-pytorch (π₯32 Β· β 22K) - Implementation of Vision Transformer, a simple way to achieve.. MIT

- [GitHub](https://github.com/lucidrains/vit-pytorch) (π¨βπ» 23 Β· π 3.2K Β· π¦ 600 Β· π 280 - 49% open Β· β±οΈ 19.01.2025):
- [PyPi](https://pypi.org/project/vit-pytorch) (π₯ 30K / month Β· π¦ 17 Β· β±οΈ 19.01.2025):
ImageHash (π₯32 Β· β 3.5K) - A Python Perceptual Image Hashing Module. BSD-2
- [GitHub](https://github.com/JohannesBuchner/imagehash) (π¨βπ» 27 Β· π 340 Β· π¦ 16K Β· π 150 - 15% open Β· β±οΈ 09.10.2024):
- [PyPi](https://pypi.org/project/ImageHash) (π₯ 1.5M / month Β· π¦ 270 Β· β±οΈ 01.02.2025):
- [Conda](https://anaconda.org/conda-forge/imagehash) (π₯ 420K Β· β±οΈ 03.02.2025):
lightly (π₯32 Β· β 3.3K) - A python library for self-supervised learning on images. MIT

- [GitHub](https://github.com/lightly-ai/lightly) (π¨βπ» 64 Β· π 290 Β· π¦ 380 Β· π 600 - 13% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/lightly) (π₯ 40K / month Β· π¦ 18 Β· β±οΈ 28.01.2025):
imageai (π₯30 Β· β 8.7K Β· π€) - A python library built to empower developers to build applications.. MIT
- [GitHub](https://github.com/OlafenwaMoses/ImageAI) (π¨βπ» 19 Β· π 2.2K Β· π₯ 950K Β· π¦ 1.7K Β· π 760 - 41% open Β· β±οΈ 20.02.2024):
- [PyPi](https://pypi.org/project/imageai) (π₯ 10K / month Β· π¦ 19 Β· β±οΈ 02.01.2023):
- [Conda](https://anaconda.org/conda-forge/imageai) (π₯ 8.7K Β· β±οΈ 16.06.2023):
CellProfiler (π₯30 Β· β 940) - An open-source application for biological image analysis. BSD-3
- [GitHub](https://github.com/CellProfiler/CellProfiler) (π¨βπ» 140 Β· π 380 Β· π₯ 8.3K Β· π¦ 27 Β· π 3.3K - 9% open Β· β±οΈ 04.01.2025):
- [PyPi](https://pypi.org/project/cellprofiler) (π₯ 1.6K / month Β· π¦ 2 Β· β±οΈ 16.09.2024):
PaddleDetection (π₯29 Β· β 13K) - Object Detection toolkit based on PaddlePaddle. It.. Apache-2

- [GitHub](https://github.com/PaddlePaddle/PaddleDetection) (π¨βπ» 180 Β· π 2.9K Β· π 5.5K - 22% open Β· β±οΈ 03.12.2024):
- [PyPi](https://pypi.org/project/paddledet) (π₯ 870 / month Β· π¦ 2 Β· β±οΈ 19.09.2022):
sahi (π₯29 Β· β 4.3K) - Framework agnostic sliced/tiled inference + interactive ui + error analysis.. MIT
- [GitHub](https://github.com/obss/sahi) (π¨βπ» 48 Β· π 600 Β· π₯ 32K Β· π¦ 1.6K Β· β±οΈ 18.12.2024):
- [PyPi](https://pypi.org/project/sahi) (π₯ 170K / month Β· π¦ 31 Β· β±οΈ 16.12.2024):
- [Conda](https://anaconda.org/conda-forge/sahi) (π₯ 88K Β· β±οΈ 18.12.2024):
doctr (π₯29 Β· β 4.2K) - docTR (Document Text Recognition) - a seamless, high-.. Apache-2


- [GitHub](https://github.com/mindee/doctr) (π¨βπ» 56 Β· π 470 Β· π₯ 4.8M Β· π 380 - 6% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/python-doctr) (π₯ 47K / month Β· π¦ 14 Β· β±οΈ 30.01.2025):
Face Alignment (π₯28 Β· β 7.2K) - 2D and 3D Face alignment library build using pytorch. BSD-3

- [GitHub](https://github.com/1adrianb/face-alignment) (π¨βπ» 26 Β· π 1.4K Β· π¦ 21 Β· π 320 - 24% open Β· β±οΈ 30.08.2024):
- [PyPi](https://pypi.org/project/face-alignment) (π₯ 76K / month Β· π¦ 10 Β· β±οΈ 17.08.2023):
mtcnn (π₯28 Β· β 2.3K) - MTCNN face detection implementation for TensorFlow, as a PIP package. MIT

- [GitHub](https://github.com/ipazc/mtcnn) (π¨βπ» 16 Β· π 530 Β· π₯ 29 Β· π¦ 7.2K Β· π 130 - 37% open Β· β±οΈ 08.10.2024):
- [PyPi](https://pypi.org/project/mtcnn) (π₯ 140K / month Β· π¦ 73 Β· β±οΈ 08.10.2024):
- [Conda](https://anaconda.org/conda-forge/mtcnn) (π₯ 14K Β· β±οΈ 16.06.2023):
facenet-pytorch (π₯27 Β· β 4.7K) - Pretrained Pytorch face detection (MTCNN) and facial.. MIT

- [GitHub](https://github.com/timesler/facenet-pytorch) (π¨βπ» 18 Β· π 940 Β· π₯ 1.5M Β· π¦ 2.8K Β· π 180 - 41% open Β· β±οΈ 02.08.2024):
- [PyPi](https://pypi.org/project/facenet-pytorch) (π₯ 89K / month Β· π¦ 51 Β· β±οΈ 29.04.2024):
vidgear (π₯27 Β· β 3.4K Β· π€) - A High-performance cross-platform Video Processing Python.. Apache-2
- [GitHub](https://github.com/abhiTronix/vidgear) (π¨βπ» 14 Β· π 260 Β· π₯ 2.2K Β· π¦ 670 Β· π 300 - 2% open Β· β±οΈ 22.06.2024):
- [PyPi](https://pypi.org/project/vidgear) (π₯ 20K / month Β· π¦ 15 Β· β±οΈ 22.06.2024):
mahotas (π₯27 Β· β 860 Β· π€) - Computer Vision in Python. MIT
- [GitHub](https://github.com/luispedro/mahotas) (π¨βπ» 35 Β· π 150 Β· π¦ 1.4K Β· π 91 - 23% open Β· β±οΈ 17.07.2024):
- [PyPi](https://pypi.org/project/mahotas) (π₯ 20K / month Β· π¦ 63 Β· β±οΈ 17.07.2024):
- [Conda](https://anaconda.org/conda-forge/mahotas) (π₯ 590K Β· β±οΈ 18.07.2024):
Norfair (π₯26 Β· β 2.4K Β· π€) - Lightweight Python library for adding real-time multi-object.. BSD-3
- [GitHub](https://github.com/tryolabs/norfair) (π¨βπ» 31 Β· π 250 Β· π₯ 340 Β· π¦ 260 Β· π 170 - 14% open Β· β±οΈ 27.07.2024):
- [PyPi](https://pypi.org/project/norfair) (π₯ 23K / month Β· π¦ 9 Β· β±οΈ 30.05.2022):
Image Deduplicator (π₯25 Β· β 5.2K) - Finding duplicate images made easy!. Apache-2

- [GitHub](https://github.com/idealo/imagededup) (π¨βπ» 16 Β· π 460 Β· π¦ 170 Β· π 130 - 31% open Β· β±οΈ 19.12.2024):
- [PyPi](https://pypi.org/project/imagededup) (π₯ 18K / month Β· π¦ 5 Β· β±οΈ 28.04.2023):
pytorchvideo (π₯25 Β· β 3.4K) - A deep learning library for video understanding research. Apache-2

- [GitHub](https://github.com/facebookresearch/pytorchvideo) (π¨βπ» 58 Β· π 410 Β· π 210 - 50% open Β· β±οΈ 25.01.2025):
- [PyPi](https://pypi.org/project/pytorchvideo) (π₯ 38K / month Β· π¦ 24 Β· β±οΈ 20.01.2022):
tensorflow-graphics (π₯25 Β· β 2.8K) - TensorFlow Graphics: Differentiable Graphics Layers.. Apache-2

- [GitHub](https://github.com/tensorflow/graphics) (π¨βπ» 39 Β· π 370 Β· π 240 - 60% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/tensorflow-graphics) (π₯ 80K / month Β· π¦ 11 Β· β±οΈ 03.12.2021):
kubric (π₯25 Β· β 2.4K) - A data generation pipeline for creating semi-realistic synthetic.. Apache-2
- [GitHub](https://github.com/google-research/kubric) (π¨βπ» 31 Β· π 230 Β· π¦ 7 Β· π 190 - 33% open Β· β±οΈ 29.11.2024):
- [PyPi](https://pypi.org/project/kubric-nightly) (π₯ 27K / month Β· β±οΈ 27.12.2023):
pyvips (π₯25 Β· β 670) - python binding for libvips using cffi. MIT
- [GitHub](https://github.com/libvips/pyvips) (π¨βπ» 16 Β· π 50 Β· π¦ 920 Β· π 450 - 42% open Β· β±οΈ 29.10.2024):
- [PyPi](https://pypi.org/project/pyvips) (π₯ 67K / month Β· π¦ 77 Β· β±οΈ 28.04.2024):
- [Conda](https://anaconda.org/conda-forge/pyvips) (π₯ 190K Β· β±οΈ 06.09.2024):
MMF (π₯24 Β· β 5.5K) - A modular framework for vision & language multimodal research from.. BSD-3

- [GitHub](https://github.com/facebookresearch/mmf) (π¨βπ» 120 Β· π 920 Β· π¦ 21 Β· π 690 - 21% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/mmf) (π₯ 990 / month Β· π¦ 1 Β· β±οΈ 12.06.2020):
segmentation_models (π₯24 Β· β 4.8K) - Segmentation models with pretrained backbones. Keras.. MIT

- [GitHub](https://github.com/qubvel/segmentation_models) (π¨βπ» 15 Β· π 1K Β· π 540 - 50% open Β· β±οΈ 21.08.2024):
- [PyPi](https://pypi.org/project/segmentation_models) (π₯ 35K / month Β· π¦ 28 Β· β±οΈ 10.01.2020):
ffcv (π₯24 Β· β 2.9K Β· π€) - FFCV: Fast Forward Computer Vision (and other ML workloads!). Apache-2
- [GitHub](https://github.com/libffcv/ffcv) (π¨βπ» 31 Β· π 180 Β· π¦ 59 Β· π 290 - 38% open Β· β±οΈ 06.05.2024):
- [PyPi](https://pypi.org/project/ffcv) (π₯ 970 / month Β· π¦ 1 Β· β±οΈ 28.01.2022):
vissl (π₯23 Β· β 3.3K Β· π€) - VISSL is FAIRs library of extensible, modular and scalable.. MIT

- [GitHub](https://github.com/facebookresearch/vissl) (π¨βπ» 38 Β· π 330 Β· π¦ 58 Β· π 190 - 43% open Β· β±οΈ 03.03.2024):
- [PyPi](https://pypi.org/project/vissl) (π₯ 180 / month Β· π¦ 1 Β· β±οΈ 02.11.2021):
icevision (π₯22 Β· β 860) - An Agnostic Computer Vision Framework - Pluggable to any Training.. Apache-2
- [GitHub](https://github.com/airctic/icevision) (π¨βπ» 41 Β· π 130 Β· π 570 - 10% open Β· β±οΈ 31.10.2024):
- [PyPi](https://pypi.org/project/icevision) (π₯ 3.7K / month Β· π¦ 6 Β· β±οΈ 10.02.2022):
DEβ«ΆTR (π₯21 Β· β 14K Β· π€) - End-to-End Object Detection with Transformers. Apache-2

- [GitHub](https://github.com/facebookresearch/detr) (π¨βπ» 27 Β· π 2.4K Β· π¦ 21 Β· π 540 - 47% open Β· β±οΈ 12.03.2024):
Image Super-Resolution (π₯21 Β· β 4.7K) - Super-scale your images and run experiments with.. Apache-2

- [GitHub](https://github.com/idealo/image-super-resolution) (π¨βπ» 11 Β· π 740 Β· π 220 - 48% open Β· β±οΈ 18.12.2024):
- [PyPi](https://pypi.org/project/ISR) (π₯ 4.9K / month Β· π¦ 5 Β· β±οΈ 08.01.2020):
- [Docker Hub](https://hub.docker.com/r/idealo/image-super-resolution-gpu) (π₯ 270 Β· β 1 Β· β±οΈ 01.04.2019):
PySlowFast (π₯20 Β· β 6.8K) - PySlowFast: video understanding codebase from FAIR for.. Apache-2

- [GitHub](https://github.com/facebookresearch/SlowFast) (π¨βπ» 34 Β· π 1.2K Β· π¦ 22 Β· π 700 - 58% open Β· β±οΈ 26.11.2024):
- [PyPi](https://pypi.org/project/pyslowfast) (π₯ 74 / month Β· β±οΈ 15.01.2020):
scenic (π₯18 Β· β 3.4K) - Scenic: A Jax Library for Computer Vision Research and Beyond. Apache-2

- [GitHub](https://github.com/google-research/scenic) (π¨βπ» 91 Β· π 440 Β· π 270 - 55% open Β· β±οΈ 31.01.2025):

Show 22 hidden projects...
- scikit-image (π₯42 Β· β 6.2K) - Image processing in Python.βUnlicensed
- glfw (π₯37 Β· β 13K) - A multi-platform library for OpenGL, OpenGL ES, Vulkan, window and input. βοΈZlib
- imgaug (π₯36 Β· β 15K Β· π) - Image augmentation for machine learning experiments. MIT
- Face Recognition (π₯35 Β· β 54K Β· π) - The worlds simplest facial recognition api for Python.. MIT

- PyTorch3D (π₯34 Β· β 9K) - PyTorch3D is FAIRs library of reusable components for deep.. βUnlicensed

- imutils (π₯31 Β· β 4.6K Β· π) - A series of convenience functions to make basic image processing.. MIT
- GluonCV (π₯29 Β· β 5.9K Β· π) - Gluon CV Toolkit. Apache-2

- layout-parser (π₯27 Β· β 5.1K Β· π) - A Unified Toolkit for Deep Learning Based Document Image.. Apache-2
- chainercv (π₯27 Β· β 1.5K Β· π) - ChainerCV: a Library for Deep Learning in Computer Vision. MIT
- Augmentor (π₯26 Β· β 5.1K Β· π) - Image augmentation library in Python for machine learning. MIT
- Pillow-SIMD (π₯25 Β· β 2.2K) - The friendly PIL fork. βοΈPIL
- deep-daze (π₯23 Β· β 4.4K Β· π) - Simple command line tool for text to image generation using.. MIT
- Luminoth (π₯23 Β· β 2.4K Β· π) - Deep Learning toolkit for Computer Vision. BSD-3

- Classy Vision (π₯22 Β· β 1.6K Β· π) - An end-to-end PyTorch framework for image and video.. MIT

- detecto (π₯21 Β· β 620 Β· π) - Build fully-functioning computer vision models with PyTorch. MIT

- image-match (π₯20 Β· β 3K Β· π) - Quickly search over billions of images. Apache-2
- nude.py (π₯20 Β· β 930 Β· π) - Nudity detection with Python. MIT
- pycls (π₯18 Β· β 2.1K Β· π) - Codebase for Image Classification Research, written in PyTorch. MIT

- Caer (π₯17 Β· β 780 Β· π) - A lightweight Computer Vision library. Scale your models, not boilerplate. MIT
- solt (π₯17 Β· β 260) - Streaming over lightweight data transformations. MIT
- Torch Points 3D (π₯17 Β· β 230 Β· π) - Pytorch framework for doing deep learning on point.. BSD-3

- HugsVision (π₯16 Β· β 200 Β· π) - HugsVision is a easy to use huggingface wrapper for state-of-.. MIT
huggingface
Graph Data
Libraries for graph processing, clustering, embedding, and machine learning tasks.
networkx (π₯45 Β· β 15K) - Network Analysis in Python. BSD-3
- [GitHub](https://github.com/networkx/networkx) (π¨βπ» 770 Β· π 3.3K Β· π₯ 79 Β· π¦ 350K Β· π 3.4K - 10% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/networkx) (π₯ 66M / month Β· π¦ 9.6K Β· β±οΈ 21.10.2024):
- [Conda](https://anaconda.org/conda-forge/networkx) (π₯ 20M Β· β±οΈ 25.12.2024):
PyTorch Geometric (π₯40 Β· β 22K) - Graph Neural Network Library for PyTorch. MIT

- [GitHub](https://github.com/pyg-team/pytorch_geometric) (π¨βπ» 540 Β· π 3.7K Β· π¦ 7.8K Β· π 3.8K - 29% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/torch-geometric) (π₯ 400K / month Β· π¦ 360 Β· β±οΈ 26.09.2024):
- [Conda](https://anaconda.org/conda-forge/pytorch_geometric) (π₯ 140K Β· β±οΈ 19.12.2024):
dgl (π₯36 Β· β 14K) - Python package built to ease deep learning on graph, on top of existing DL.. Apache-2
- [GitHub](https://github.com/dmlc/dgl) (π¨βπ» 300 Β· π 3K Β· π¦ 330 Β· π 2.9K - 18% open Β· β±οΈ 26.01.2025):
- [PyPi](https://pypi.org/project/dgl) (π₯ 110K / month Β· π¦ 150 Β· β±οΈ 13.05.2024):
pygraphistry (π₯31 Β· β 2.2K) - PyGraphistry is a Python library to quickly load, shape,.. BSD-3

- [GitHub](https://github.com/graphistry/pygraphistry) (π¨βπ» 45 Β· π 210 Β· π¦ 140 Β· π 360 - 53% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/graphistry) (π₯ 18K / month Β· π¦ 6 Β· β±οΈ 06.02.2025):
PyKEEN (π₯30 Β· β 1.7K) - A Python library for learning and evaluating knowledge graph embeddings. MIT
- [GitHub](https://github.com/pykeen/pykeen) (π¨βπ» 41 Β· π 190 Β· π₯ 230 Β· π¦ 280 Β· π 580 - 19% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pykeen) (π₯ 16K / month Β· π¦ 19 Β· β±οΈ 29.10.2024):
ogb (π₯28 Β· β 2K) - Benchmark datasets, data loaders, and evaluators for graph machine learning. MIT
- [GitHub](https://github.com/snap-stanford/ogb) (π¨βπ» 32 Β· π 400 Β· π¦ 2.3K Β· π 300 - 9% open Β· β±οΈ 09.12.2024):
- [PyPi](https://pypi.org/project/ogb) (π₯ 31K / month Β· π¦ 22 Β· β±οΈ 02.11.2022):
- [Conda](https://anaconda.org/conda-forge/ogb) (π₯ 47K Β· β±οΈ 22.12.2024):
AmpliGraph (π₯26 Β· β 2.2K Β· π€) - Python library for Representation Learning on Knowledge.. Apache-2

- [GitHub](https://github.com/Accenture/AmpliGraph) (π¨βπ» 21 Β· π 250 Β· π¦ 63 Β· π 230 - 13% open Β· β±οΈ 28.02.2024):
- [PyPi](https://pypi.org/project/ampligraph) (π₯ 1.4K / month Β· π¦ 2 Β· β±οΈ 26.02.2024):
pytorch_geometric_temporal (π₯24 Β· β 2.7K) - PyTorch Geometric Temporal: Spatiotemporal Signal.. MIT

- [GitHub](https://github.com/benedekrozemberczki/pytorch_geometric_temporal) (π¨βπ» 34 Β· π 370 Β· π 200 - 20% open Β· β±οΈ 14.10.2024):
- [PyPi](https://pypi.org/project/torch-geometric-temporal) (π₯ 3K / month Β· π¦ 7 Β· β±οΈ 04.09.2022):
torch-cluster (π₯24 Β· β 840) - PyTorch Extension Library of Optimized Graph Cluster.. MIT

- [GitHub](https://github.com/rusty1s/pytorch_cluster) (π¨βπ» 38 Β· π 150 Β· π 180 - 18% open Β· β±οΈ 10.01.2025):
- [PyPi](https://pypi.org/project/torch-cluster) (π₯ 15K / month Β· π¦ 62 Β· β±οΈ 12.10.2023):
- [Conda](https://anaconda.org/conda-forge/pytorch_cluster) (π₯ 310K Β· β±οΈ 28.08.2024):
PyTorch-BigGraph (π₯23 Β· β 3.4K Β· π€) - Generate embeddings from large-scale graph-structured.. BSD-3

- [GitHub](https://github.com/facebookresearch/PyTorch-BigGraph) (π¨βπ» 32 Β· π 450 Β· π₯ 220 Β· π 200 - 32% open Β· β±οΈ 03.03.2024):
- [PyPi](https://pypi.org/project/torchbiggraph) (π₯ 300K / month Β· π¦ 2 Β· β±οΈ 14.10.2019):
Node2Vec (π₯23 Β· β 1.3K) - Implementation of the node2vec algorithm. MIT
- [GitHub](https://github.com/eliorc/node2vec) (π¨βπ» 16 Β· π 250 Β· π¦ 790 Β· π 93 - 5% open Β· β±οΈ 02.08.2024):
- [PyPi](https://pypi.org/project/node2vec) (π₯ 21K / month Β· π¦ 31 Β· β±οΈ 02.08.2024):
- [Conda](https://anaconda.org/conda-forge/node2vec) (π₯ 33K Β· β±οΈ 16.06.2023):
GraphVite (π₯14 Β· β 1.2K Β· π€) - GraphVite: A General and High-performance Graph Embedding.. Apache-2
- [GitHub](https://github.com/DeepGraphLearning/graphvite) (π¨βπ» 1 Β· π 150 Β· π 110 - 46% open Β· β±οΈ 14.06.2024):
- [Conda](https://anaconda.org/milagraph/graphvite) (π₯ 5K Β· β±οΈ 16.06.2023):
AutoGL (π₯14 Β· β 1.1K Β· π€) - An autoML framework & toolkit for machine learning on graphs. Apache-2

- [GitHub](https://github.com/THUMNLab/AutoGL) (π¨βπ» 16 Β· π 120 Β· π 39 - 35% open Β· β±οΈ 05.02.2024):
- [PyPi](https://pypi.org/project/auto-graph-learning) (π₯ 1 / month Β· β±οΈ 23.12.2020):
Show 23 hidden projects...
- igraph (π₯33 Β· β 1.3K) - Python interface for igraph.βοΈGPL-2.0
- Spektral (π₯28 Β· β 2.4K Β· π) - Graph Neural Networks with Keras and Tensorflow 2. MIT

- StellarGraph (π₯27 Β· β 3K Β· π) - StellarGraph - Machine Learning on Graphs. Apache-2

- pygal (π₯27 Β· β 2.7K) - PYthon svg GrAph plotting Library. βοΈLGPL-3.0
- Paddle Graph Learning (π₯26 Β· β 1.6K Β· π) - Paddle Graph Learning (PGL) is an efficient and.. Apache-2

- Karate Club (π₯23 Β· β 2.2K Β· π€) - Karate Club: An API Oriented Open-source Python Framework.. βοΈGPL-3.0
- jraph (π₯23 Β· β 1.4K Β· π) - A Graph Neural Network Library in Jax. Apache-2

- graph4nlp (π₯22 Β· β 1.7K Β· π) - Graph4nlp is the library for the easy use of Graph.. Apache-2

- graph-nets (π₯21 Β· β 5.4K Β· π) - Build Graph Nets in Tensorflow. Apache-2

- pyRDF2Vec (π₯21 Β· β 250 Β· π) - Python Implementation and Extension of RDF2Vec. MIT
- DeepWalk (π₯20 Β· β 2.7K Β· π) - DeepWalk - Deep Learning for Graphs. βοΈGPL-3.0
- DIG (π₯20 Β· β 1.9K Β· π€) - A library for graph deep learning research. βοΈGPL-3.0
- deepsnap (π₯20 Β· β 560 Β· π) - Python library assists deep learning on graphs. MIT
- GraphGym (π₯19 Β· β 1.7K Β· π) - Platform for designing and evaluating Graph Neural Networks (GNN). MIT
- Sematch (π₯18 Β· β 440 Β· π) - semantic similarity framework for knowledge graph. Apache-2
- DeepGraph (π₯18 Β· β 290 Β· π€) - Analyze Data with Pandas-based Networks. Documentation:. BSD-3

- kglib (π₯17 Β· β 550 Β· π) - TypeDB-ML is the Machine Learning integrations library for TypeDB. Apache-2
- Euler (π₯16 Β· β 2.9K Β· π) - A distributed graph deep learning framework. Apache-2

- ptgnn (π₯15 Β· β 370 Β· π) - A PyTorch Graph Neural Network Library. MIT

- GraphEmbedding (π₯14 Β· β 3.8K Β· π) - Implementation and experiments of graph embedding.. MIT

- GraphSAGE (π₯14 Β· β 3.5K Β· π) - Representation learning on large graphs using stochastic.. MIT

- OpenNE (π₯14 Β· β 1.7K Β· π) - An Open-Source Package for Network Embedding (NE). MIT

- OpenKE (π₯13 Β· β 3.9K Β· π) - An Open-Source Package for Knowledge Embedding (KE). βUnlicensed
Audio Data
Libraries for audio analysis, manipulation, transformation, and extraction, as well as speech recognition and music generation tasks.
speechbrain (π₯39 Β· β 9.3K) - A PyTorch-based Speech Toolkit. Apache-2

- [GitHub](https://github.com/speechbrain/speechbrain) (π¨βπ» 250 Β· π 1.4K Β· π¦ 2.8K Β· π 1.2K - 12% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/speechbrain) (π₯ 3.1M / month Β· π¦ 67 Β· β±οΈ 30.10.2024):
espnet (π₯38 Β· β 8.7K) - End-to-End Speech Processing Toolkit. Apache-2
- [GitHub](https://github.com/espnet/espnet) (π¨βπ» 490 Β· π 2.2K Β· π₯ 84 Β· π¦ 410 Β· π 2.5K - 14% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/espnet) (π₯ 21K / month Β· π¦ 12 Β· β±οΈ 04.12.2024):
SpeechRecognition (π₯36 Β· β 8.6K) - Speech recognition module for Python, supporting several.. BSD-3
- [GitHub](https://github.com/Uberi/speech_recognition) (π¨βπ» 53 Β· π 2.4K Β· π¦ 21 Β· π 660 - 48% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/SpeechRecognition) (π₯ 1.2M / month Β· π¦ 650 Β· β±οΈ 25.01.2025):
- [Conda](https://anaconda.org/conda-forge/speechrecognition) (π₯ 220K Β· β±οΈ 25.01.2025):
Coqui TTS (π₯35 Β· β 37K Β· π€) - - a deep learning toolkit for Text-to-Speech, battle-.. MPL-2.0


- [GitHub](https://github.com/coqui-ai/TTS) (π¨βπ» 170 Β· π 4.4K Β· π₯ 4.3M Β· π¦ 2.2K Β· π 1.2K - 7% open Β· β±οΈ 10.02.2024):
- [PyPi](https://pypi.org/project/tts) (π₯ 170K / month Β· π¦ 53 Β· β±οΈ 12.12.2023):
- [Conda](https://anaconda.org/conda-forge/tts) (π₯ 22K Β· β±οΈ 16.06.2023):
torchaudio (π₯35 Β· β 2.6K) - Data manipulation and transformation for audio signal.. BSD-2

- [GitHub](https://github.com/pytorch/audio) (π¨βπ» 230 Β· π 670 Β· π 1K - 27% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/torchaudio) (π₯ 6.3M / month Β· π¦ 1.6K Β· β±οΈ 29.01.2025):
spleeter (π₯33 Β· β 26K) - Deezer source separation library including pretrained models. MIT

- [GitHub](https://github.com/deezer/spleeter) (π¨βπ» 22 Β· π 2.9K Β· π₯ 3.7M Β· π¦ 890 Β· π 800 - 29% open Β· β±οΈ 24.01.2025):
- [PyPi](https://pypi.org/project/spleeter) (π₯ 25K / month Β· π¦ 12 Β· β±οΈ 10.06.2022):
- [Conda](https://anaconda.org/conda-forge/spleeter) (π₯ 100K Β· β±οΈ 16.06.2023):
Magenta (π₯32 Β· β 19K) - Magenta: Music and Art Generation with Machine Intelligence. Apache-2

- [GitHub](https://github.com/magenta/magenta) (π¨βπ» 160 Β· π 3.7K Β· π¦ 550 Β· π 1K - 41% open Β· β±οΈ 17.01.2025):
- [PyPi](https://pypi.org/project/magenta) (π₯ 9.9K / month Β· π¦ 5 Β· β±οΈ 01.08.2022):
librosa (π₯32 Β· β 7.4K) - Python library for audio and music analysis. ISC
- [GitHub](https://github.com/librosa/librosa) (π¨βπ» 120 Β· π 970 Β· π 1.2K - 4% open Β· β±οΈ 15.01.2025):
- [PyPi](https://pypi.org/project/librosa) (π₯ 2.9M / month Β· π¦ 1.4K Β· β±οΈ 14.05.2024):
- [Conda](https://anaconda.org/conda-forge/librosa) (π₯ 860K Β· β±οΈ 19.12.2024):
python-soundfile (π₯32 Β· β 730) - SoundFile is an audio library based on libsndfile, CFFI, and.. BSD-3
- [GitHub](https://github.com/bastibe/python-soundfile) (π¨βπ» 37 Β· π 110 Β· π₯ 21K Β· π¦ 51K Β· π 260 - 46% open Β· β±οΈ 25.01.2025):
- [PyPi](https://pypi.org/project/soundfile) (π₯ 4.4M / month Β· π¦ 1.1K Β· β±οΈ 25.01.2025):
- [Conda](https://anaconda.org/anaconda/pysoundfile):
Porcupine (π₯30 Β· β 3.9K) - On-device wake word detection powered by deep learning. Apache-2
- [GitHub](https://github.com/Picovoice/porcupine) (π¨βπ» 42 Β· π 510 Β· π¦ 40 Β· π 560 - 0% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/pvporcupine) (π₯ 17K / month Β· π¦ 38 Β· β±οΈ 05.02.2025):
audiomentations (π₯29 Β· β 1.9K) - A Python library for audio data augmentation. Inspired by.. MIT
- [GitHub](https://github.com/iver56/audiomentations) (π¨βπ» 30 Β· π 190 Β· π¦ 660 Β· π 190 - 25% open Β· β±οΈ 01.02.2025):
- [PyPi](https://pypi.org/project/audiomentations) (π₯ 48K / month Β· π¦ 21 Β· β±οΈ 06.12.2024):
Madmom (π₯27 Β· β 1.4K) - Python audio and music signal processing library. BSD-3
- [GitHub](https://github.com/CPJKU/madmom) (π¨βπ» 24 Β· π 200 Β· π¦ 460 Β· π 280 - 24% open Β· β±οΈ 25.08.2024):
- [PyPi](https://pypi.org/project/madmom) (π₯ 2.3K / month Β· π¦ 27 Β· β±οΈ 14.11.2018):
tinytag (π₯27 Β· β 720) - Python library for reading audio file metadata. MIT
- [GitHub](https://github.com/tinytag/tinytag) (π¨βπ» 27 Β· π 100 Β· π¦ 1.1K Β· π 120 - 3% open Β· β±οΈ 26.01.2025):
- [PyPi](https://pypi.org/project/tinytag) (π₯ 51K / month Β· π¦ 110 Β· β±οΈ 03.11.2024):
DDSP (π₯24 Β· β 3K) - DDSP: Differentiable Digital Signal Processing. Apache-2

- [GitHub](https://github.com/magenta/ddsp) (π¨βπ» 32 Β· π 340 Β· π¦ 62 Β· π 170 - 28% open Β· β±οΈ 23.09.2024):
- [PyPi](https://pypi.org/project/ddsp) (π₯ 3.9K / month Β· π¦ 1 Β· β±οΈ 25.05.2022):
- [Conda](https://anaconda.org/conda-forge/ddsp) (π₯ 20K Β· β±οΈ 16.06.2023):
nnAudio (π₯22 Β· β 1.1K Β· π€) - Audio processing by using pytorch 1D convolution network. MIT
- [GitHub](https://github.com/KinWaiCheuk/nnAudio) (π¨βπ» 15 Β· π 91 Β· π¦ 270 Β· π 63 - 28% open Β· β±οΈ 13.02.2024):
- [PyPi](https://pypi.org/project/nnAudio) (π₯ 42K / month Β· π¦ 4 Β· β±οΈ 13.02.2024):
Show 14 hidden projects...
- Pydub (π₯36 Β· β 9.2K Β· π) - Manipulate audio with a simple and easy high level interface.MIT
- DeepSpeech (π₯33 Β· β 26K Β· π) - DeepSpeech is an open source embedded (offline, on-.. MPL-2.0

- audioread (π₯29 Β· β 500 Β· π) - cross-library (GStreamer + Core Audio + MAD + FFmpeg) audio.. MIT
- pyAudioAnalysis (π₯28 Β· β 6K Β· π) - Python Audio Analysis Library: Feature Extraction,.. Apache-2
- Essentia (π₯28 Β· β 3K) - C++ library for audio and music analysis, description and.. βοΈAGPL-3.0
- aubio (π₯27 Β· β 3.4K Β· π) - a library for audio and music analysis. βοΈGPL-3.0
- TTS (π₯26 Β· β 9.6K Β· π) - Deep learning for Text to Speech (Discussion forum:.. MPL-2.0
- python_speech_features (π₯26 Β· β 2.4K Β· π) - This library provides common speech features for ASR.. MIT
- Dejavu (π₯23 Β· β 6.5K Β· π) - Audio fingerprinting and recognition in Python. MIT
- kapre (π₯22 Β· β 920 Β· π) - kapre: Keras Audio Preprocessors. MIT

- Julius (π₯21 Β· β 440 Β· π) - Fast PyTorch based DSP for audio and 1D signals. MIT

- TimeSide (π₯21 Β· β 380) - scalable audio processing framework and server written in Python. βοΈAGPL-3.0
- Muda (π₯18 Β· β 230 Β· π) - A library for augmenting annotated audio data. ISC
- textlesslib (π₯10 Β· β 530 Β· π) - Library for Textless Spoken Language Processing. MIT

Geospatial Data
Libraries to load, process, analyze, and write geographic data as well as libraries for spatial analysis, map visualization, and geocoding.
pydeck (π₯43 Β· β 12K) - WebGL2 powered visualization framework. MIT

- [GitHub](https://github.com/visgl/deck.gl) (π¨βπ» 280 Β· π 2.1K Β· π¦ 8.6K Β· π 3.1K - 11% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/pydeck) (π₯ 5.8M / month Β· π¦ 120 Β· β±οΈ 10.05.2024):
- [Conda](https://anaconda.org/conda-forge/pydeck) (π₯ 690K Β· β±οΈ 31.01.2025):
- [npm](https://www.npmjs.com/package/deck.gl) (π₯ 470K / month Β· π¦ 310 Β· β±οΈ 21.01.2025):
Shapely (π₯40 Β· β 4K) - Manipulation and analysis of geometric objects. BSD-3
- [GitHub](https://github.com/shapely/shapely) (π¨βπ» 160 Β· π 570 Β· π₯ 3.8K Β· π¦ 93K Β· π 1.3K - 23% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/shapely) (π₯ 36M / month Β· π¦ 3.6K Β· β±οΈ 31.01.2025):
- [Conda](https://anaconda.org/conda-forge/shapely) (π₯ 11M Β· β±οΈ 31.01.2025):
folium (π₯39 Β· β 7K) - Python Data. Leaflet.js Maps. MIT
- [GitHub](https://github.com/python-visualization/folium) (π¨βπ» 170 Β· π 2.2K Β· π¦ 51K Β· π 1.1K - 7% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/folium) (π₯ 1.7M / month Β· π¦ 820 Β· β±οΈ 06.01.2025):
- [Conda](https://anaconda.org/conda-forge/folium) (π₯ 3.4M Β· β±οΈ 07.01.2025):
GeoPandas (π₯38 Β· β 4.6K) - Python tools for geographic data. BSD-3

- [GitHub](https://github.com/geopandas/geopandas) (π¨βπ» 240 Β· π 940 Β· π₯ 2.9K Β· π¦ 48K Β· π 1.7K - 25% open Β· β±οΈ 24.01.2025):
- [PyPi](https://pypi.org/project/geopandas) (π₯ 6.4M / month Β· π¦ 2.8K Β· β±οΈ 02.07.2024):
- [Conda](https://anaconda.org/conda-forge/geopandas) (π₯ 4.3M Β· β±οΈ 16.12.2024):
Rasterio (π₯37 Β· β 2.3K) - Rasterio reads and writes geospatial raster datasets. BSD-3
- [GitHub](https://github.com/rasterio/rasterio) (π¨βπ» 160 Β· π 540 Β· π₯ 1K Β· π¦ 15K Β· π 1.9K - 7% open Β· β±οΈ 17.01.2025):
- [PyPi](https://pypi.org/project/rasterio) (π₯ 2.3M / month Β· π¦ 1.5K Β· β±οΈ 02.12.2024):
- [Conda](https://anaconda.org/conda-forge/rasterio) (π₯ 4.3M Β· β±οΈ 02.12.2024):
Fiona (π₯36 Β· β 1.2K) - Fiona reads and writes geographic data files. BSD-3
- [GitHub](https://github.com/Toblerity/Fiona) (π¨βπ» 77 Β· π 210 Β· π¦ 24K Β· π 810 - 4% open Β· β±οΈ 07.01.2025):
- [PyPi](https://pypi.org/project/fiona) (π₯ 4.4M / month Β· π¦ 300 Β· β±οΈ 16.09.2024):
- [Conda](https://anaconda.org/conda-forge/fiona) (π₯ 6.5M Β· β±οΈ 06.12.2024):
ArcGIS API (π₯35 Β· β 1.9K) - Documentation and samples for ArcGIS API for Python. Apache-2
- [GitHub](https://github.com/Esri/arcgis-python-api) (π¨βπ» 96 Β· π 1.1K Β· π₯ 14K Β· π¦ 900 Β· π 810 - 7% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/arcgis) (π₯ 83K / month Β· π¦ 40 Β· β±οΈ 01.10.2024):
- [Docker Hub](https://hub.docker.com/r/esridocker/arcgis-api-python-notebook):
pyproj (π₯35 Β· β 1.1K) - Python interface to PROJ (cartographic projections and coordinate.. MIT
- [GitHub](https://github.com/pyproj4/pyproj) (π¨βπ» 69 Β· π 220 Β· π¦ 39K Β· π 630 - 5% open Β· β±οΈ 04.12.2024):
- [PyPi](https://pypi.org/project/pyproj) (π₯ 8.8M / month Β· π¦ 1.7K Β· β±οΈ 01.10.2024):
- [Conda](https://anaconda.org/conda-forge/pyproj) (π₯ 9.6M Β· β±οΈ 01.10.2024):
ipyleaflet (π₯31 Β· β 1.5K) - A Jupyter - Leaflet.js bridge. MIT

- [GitHub](https://github.com/jupyter-widgets/ipyleaflet) (π¨βπ» 91 Β· π 360 Β· π¦ 14K Β· π 660 - 45% open Β· β±οΈ 05.12.2024):
- [PyPi](https://pypi.org/project/ipyleaflet) (π₯ 160K / month Β· π¦ 280 Β· β±οΈ 22.07.2024):
- [Conda](https://anaconda.org/conda-forge/ipyleaflet) (π₯ 1.4M Β· β±οΈ 16.12.2024):
- [npm](https://www.npmjs.com/package/jupyter-leaflet) (π₯ 5.1K / month Β· π¦ 9 Β· β±οΈ 22.07.2024):
PySAL (π₯31 Β· β 1.4K) - PySAL: Python Spatial Analysis Library Meta-Package. BSD-3
- [GitHub](https://github.com/pysal/pysal) (π¨βπ» 79 Β· π 300 Β· π¦ 1.7K Β· π 650 - 2% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pysal) (π₯ 28K / month Β· π¦ 49 Β· β±οΈ 30.07.2024):
- [Conda](https://anaconda.org/conda-forge/pysal) (π₯ 600K Β· β±οΈ 23.12.2024):
geojson (π₯30 Β· β 940) - Python bindings and utilities for GeoJSON. BSD-3
- [GitHub](https://github.com/jazzband/geojson) (π¨βπ» 58 Β· π 120 Β· π¦ 19K Β· π 100 - 23% open Β· β±οΈ 21.12.2024):
- [PyPi](https://pypi.org/project/geojson) (π₯ 2.6M / month Β· π¦ 720 Β· β±οΈ 21.12.2024):
- [Conda](https://anaconda.org/conda-forge/geojson) (π₯ 910K Β· β±οΈ 22.12.2024):
GeoViews (π₯29 Β· β 610) - Simple, concise geographical visualization in Python. BSD-3
- [GitHub](https://github.com/holoviz/geoviews) (π¨βπ» 32 Β· π 77 Β· π¦ 1.2K Β· π 350 - 30% open Β· β±οΈ 13.01.2025):
- [PyPi](https://pypi.org/project/geoviews) (π₯ 16K / month Β· π¦ 63 Β· β±οΈ 17.12.2024):
- [Conda](https://anaconda.org/conda-forge/geoviews) (π₯ 280K Β· β±οΈ 18.12.2024):
pymap3d (π₯25 Β· β 400) - pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef.. BSD-2
- [GitHub](https://github.com/geospace-code/pymap3d) (π¨βπ» 19 Β· π 87 Β· π¦ 470 Β· π 60 - 15% open Β· β±οΈ 08.01.2025):
- [PyPi](https://pypi.org/project/pymap3d) (π₯ 260K / month Β· π¦ 44 Β· β±οΈ 11.02.2024):
- [Conda](https://anaconda.org/conda-forge/pymap3d) (π₯ 92K Β· β±οΈ 25.12.2024):
Show 9 hidden projects...
- geopy (π₯33 Β· β 4.6K Β· π) - Geocoding library for Python.MIT
- Geocoder (π₯33 Β· β 1.6K Β· π) - Python Geocoder. MIT
- Satpy (π₯31 Β· β 1.1K) - Python package for earth-observing satellite data processing. βοΈGPL-3.0
- Sentinelsat (π₯27 Β· β 990 Β· π€) - Search and download Copernicus Sentinel satellite images. βοΈGPL-3.0
- EarthPy (π₯26 Β· β 520 Β· π) - A package built to support working with spatial data using open.. BSD-3
- prettymaps (π₯25 Β· β 11K) - A small set of Python functions to draw pretty maps from.. βοΈAGPL-3.0
- Mapbox GL (π₯24 Β· β 670 Β· π) - Use Mapbox GL JS to visualize data in a Python Jupyter notebook. MIT

- gmaps (π₯22 Β· β 760 Β· π) - Google maps for Jupyter notebooks. BSD-3

- geoplotlib (π₯20 Β· β 1K Β· π) - python toolbox for visualizing geographical data and making maps. MIT
Financial Data
Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, technical analysis, and other tasks on financial data.
yfinance (π₯42 Β· β 16K) - Download market data from Yahoo! Finances API. Apache-2
- [GitHub](https://github.com/ranaroussi/yfinance) (π¨βπ» 130 Β· π 2.5K Β· π¦ 60K Β· π 1.5K - 13% open Β· β±οΈ 18.01.2025):
- [PyPi](https://pypi.org/project/yfinance) (π₯ 4M / month Β· π¦ 800 Β· β±οΈ 18.01.2025):
- [Conda](https://anaconda.org/ranaroussi/yfinance) (π₯ 98K Β· β±οΈ 16.06.2023):
Qlib (π₯31 Β· β 16K) - Qlib is an AI-oriented quantitative investment platform that aims to.. MIT

- [GitHub](https://github.com/microsoft/qlib) (π¨βπ» 140 Β· π 2.7K Β· π₯ 770 Β· π¦ 21 Β· π 950 - 26% open Β· β±οΈ 09.01.2025):
- [PyPi](https://pypi.org/project/pyqlib) (π₯ 7.2K / month Β· π¦ 1 Β· β±οΈ 23.12.2024):
bt (π₯29 Β· β 2.4K) - bt - flexible backtesting for Python. MIT
- [GitHub](https://github.com/pmorissette/bt) (π¨βπ» 34 Β· π 430 Β· π¦ 1.6K Β· π 350 - 23% open Β· β±οΈ 02.02.2025):
- [PyPi](https://pypi.org/project/bt) (π₯ 6.6K / month Β· π¦ 10 Β· β±οΈ 06.08.2024):
- [Conda](https://anaconda.org/conda-forge/bt) (π₯ 71K Β· β±οΈ 21.09.2024):
ffn (π₯28 Β· β 2.1K) - ffn - a financial function library for Python. MIT
- [GitHub](https://github.com/pmorissette/ffn) (π¨βπ» 35 Β· π 300 Β· π¦ 520 Β· π 130 - 18% open Β· β±οΈ 02.02.2025):
- [PyPi](https://pypi.org/project/ffn) (π₯ 17K / month Β· π¦ 18 Β· β±οΈ 02.11.2024):
- [Conda](https://anaconda.org/conda-forge/ffn) (π₯ 16K Β· β±οΈ 31.12.2024):
IB-insync (π₯27 Β· β 2.9K Β· π€) - Python sync/async framework for Interactive Brokers API. BSD-2
- [GitHub](https://github.com/erdewit/ib_insync) (π¨βπ» 36 Β· π 800 Β· π 590 - 3% open Β· β±οΈ 14.03.2024):
- [PyPi](https://pypi.org/project/ib_insync) (π₯ 42K / month Β· π¦ 44 Β· β±οΈ 21.11.2022):
- [Conda](https://anaconda.org/conda-forge/ib-insync) (π₯ 53K Β· β±οΈ 16.06.2023):
stockstats (π₯27 Β· β 1.3K) - Supply a wrapper ``StockDataFrame`` based on the.. BSD-3
- [GitHub](https://github.com/jealous/stockstats) (π¨βπ» 10 Β· π 300 Β· π¦ 1.2K Β· π 130 - 11% open Β· β±οΈ 02.02.2025):
- [PyPi](https://pypi.org/project/stockstats) (π₯ 11K / month Β· π¦ 12 Β· β±οΈ 02.02.2025):
TensorTrade (π₯26 Β· β 4.6K Β· π€) - An open source reinforcement learning framework for.. Apache-2
- [GitHub](https://github.com/tensortrade-org/tensortrade) (π¨βπ» 61 Β· π 1K Β· π¦ 67 Β· π 260 - 20% open Β· β±οΈ 09.06.2024):
- [PyPi](https://pypi.org/project/tensortrade) (π₯ 2.3K / month Β· π¦ 1 Β· β±οΈ 10.05.2021):
- [Conda](https://anaconda.org/conda-forge/tensortrade) (π₯ 4.5K Β· β±οΈ 16.06.2023):
Alpha Vantage (π₯26 Β· β 4.4K Β· π€) - A python wrapper for Alpha Vantage API for financial data. MIT
- [GitHub](https://github.com/RomelTorres/alpha_vantage) (π¨βπ» 44 Β· π 740 Β· π 290 - 0% open Β· β±οΈ 18.07.2024):
- [PyPi](https://pypi.org/project/alpha_vantage) (π₯ 48K / month Β· π¦ 35 Β· β±οΈ 18.07.2024):
- [Conda](https://anaconda.org/conda-forge/alpha_vantage) (π₯ 8.4K Β· β±οΈ 09.08.2024):
tf-quant-finance (π₯22 Β· β 4.7K) - High-performance TensorFlow library for quantitative.. Apache-2

- [GitHub](https://github.com/google/tf-quant-finance) (π¨βπ» 47 Β· π 580 Β· π 63 - 55% open Β· β±οΈ 06.11.2024):
- [PyPi](https://pypi.org/project/tf-quant-finance) (π₯ 1.4K / month Β· π¦ 3 Β· β±οΈ 19.08.2022):
finmarketpy (π₯22 Β· β 3.5K) - Python library for backtesting trading strategies & analyzing.. Apache-2
- [GitHub](https://github.com/cuemacro/finmarketpy) (π¨βπ» 18 Β· π 510 Β· π₯ 57 Β· π¦ 16 Β· π 30 - 86% open Β· β±οΈ 09.11.2024):
- [PyPi](https://pypi.org/project/finmarketpy) (π₯ 630 / month Β· β±οΈ 19.05.2024):
Show 15 hidden projects...
- zipline (π₯32 Β· β 18K Β· π) - Zipline, a Pythonic Algorithmic Trading Library.Apache-2
- arch (π₯32 Β· β 1.4K) - ARCH models in Python. βUnlicensed
- pyfolio (π₯31 Β· β 5.8K Β· π) - Portfolio and risk analytics in Python. Apache-2
- ta (π₯31 Β· β 4.5K Β· π) - Technical Analysis Library using Pandas and Numpy. MIT
- backtrader (π₯28 Β· β 16K Β· π) - Python Backtesting library for trading strategies. βοΈGPL-3.0
- Backtesting.py (π₯27 Β· β 5.9K) - Backtest trading strategies in Python. βοΈAGPL-3.0
- Alphalens (π₯27 Β· β 3.5K Β· π) - Performance analysis of predictive (alpha) stock factors. Apache-2
- empyrical (π₯27 Β· β 1.3K Β· π) - Common financial risk and performance metrics. Used by.. Apache-2
- Enigma Catalyst (π₯26 Β· β 2.5K Β· π) - An Algorithmic Trading Library for Crypto-Assets in.. Apache-2
- PyAlgoTrade (π₯24 Β· β 4.5K Β· π) - Python Algorithmic Trading Library. Apache-2
- FinTA (π₯24 Β· β 2.2K Β· π) - Common financial technical indicators implemented in Pandas. βοΈLGPL-3.0
- Crypto Signals (π₯22 Β· β 5.1K Β· π) - Github.com/CryptoSignal - Trading & Technical Analysis Bot -.. MIT
- FinQuant (π₯22 Β· β 1.5K Β· π) - A program for financial portfolio management, analysis and.. MIT
- surpriver (π₯12 Β· β 1.8K Β· π) - Find big moving stocks before they move using machine.. βοΈGPL-3.0
- pyrtfolio (π₯10 Β· β 150 Β· π) - Python package to generate stock portfolios. βοΈGPL-3.0
Time Series Data
Libraries for forecasting, anomaly detection, feature extraction, and machine learning on time-series and sequential data.
sktime (π₯40 Β· β 8.2K) - A unified framework for machine learning with time series. BSD-3

- [GitHub](https://github.com/sktime/sktime) (π¨βπ» 440 Β· π 1.4K Β· π₯ 110 Β· π¦ 3.9K Β· π 2.7K - 38% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/sktime) (π₯ 890K / month Β· π¦ 130 Β· β±οΈ 05.02.2025):
- [Conda](https://anaconda.org/conda-forge/sktime-all-extras) (π₯ 1.1M Β· β±οΈ 04.01.2025):
StatsForecast (π₯34 Β· β 4.1K) - Lightning fast forecasting with statistical and econometric.. Apache-2
- [GitHub](https://github.com/Nixtla/statsforecast) (π¨βπ» 48 Β· π 300 Β· π¦ 1.4K Β· π 360 - 28% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/statsforecast) (π₯ 1M / month Β· π¦ 59 Β· β±οΈ 26.11.2024):
- [Conda](https://anaconda.org/conda-forge/statsforecast) (π₯ 150K Β· β±οΈ 05.12.2024):
Prophet (π₯33 Β· β 19K) - Tool for producing high quality forecasts for time series data that has.. MIT
- [GitHub](https://github.com/facebook/prophet) (π¨βπ» 180 Β· π 4.5K Β· π₯ 2.9K Β· π¦ 21 Β· π 2.2K - 19% open Β· β±οΈ 20.10.2024):
- [PyPi](https://pypi.org/project/fbprophet) (π₯ 190K / month Β· π¦ 91 Β· β±οΈ 05.09.2020):
- [Conda](https://anaconda.org/conda-forge/prophet) (π₯ 1.4M Β· β±οΈ 04.10.2024):
Darts (π₯32 Β· β 8.3K) - A python library for user-friendly forecasting and anomaly detection.. Apache-2
- [GitHub](https://github.com/unit8co/darts) (π¨βπ» 130 Β· π 900 Β· π 1.6K - 15% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/u8darts) (π₯ 87K / month Β· π¦ 10 Β· β±οΈ 21.12.2024):
- [Conda](https://anaconda.org/conda-forge/u8darts-all) (π₯ 70K Β· β±οΈ 21.12.2024):
- [Docker Hub](https://hub.docker.com/r/unit8/darts) (π₯ 1.1K Β· β±οΈ 21.12.2024):
pytorch-forecasting (π₯32 Β· β 4.1K) - Time series forecasting with PyTorch. MIT
- [GitHub](https://github.com/sktime/pytorch-forecasting) (π¨βπ» 62 Β· π 640 Β· π¦ 490 Β· π 810 - 60% open Β· β±οΈ 22.01.2025):
- [PyPi](https://pypi.org/project/pytorch-forecasting) (π₯ 75K / month Β· π¦ 22 Β· β±οΈ 19.11.2024):
- [Conda](https://anaconda.org/conda-forge/pytorch-forecasting) (π₯ 72K Β· β±οΈ 12.01.2025):
STUMPY (π₯32 Β· β 3.8K) - STUMPY is a powerful and scalable Python library for modern time series.. BSD-3
- [GitHub](https://github.com/TDAmeritrade/stumpy) (π¨βπ» 41 Β· π 330 Β· π¦ 1K Β· π 530 - 13% open Β· β±οΈ 01.02.2025):
- [PyPi](https://pypi.org/project/stumpy) (π₯ 300K / month Β· π¦ 30 Β· β±οΈ 09.07.2024):
- [Conda](https://anaconda.org/conda-forge/stumpy) (π₯ 1.1M Β· β±οΈ 21.12.2024):
NeuralForecast (π₯32 Β· β 3.3K) - Scalable and user friendly neural forecasting algorithms. Apache-2
- [GitHub](https://github.com/Nixtla/neuralforecast) (π¨βπ» 49 Β· π 380 Β· π¦ 300 Β· π 590 - 20% open Β· β±οΈ 22.01.2025):
- [PyPi](https://pypi.org/project/neuralforecast) (π₯ 68K / month Β· π¦ 25 Β· β±οΈ 22.01.2025):
- [Conda](https://anaconda.org/conda-forge/neuralforecast) (π₯ 31K Β· β±οΈ 23.01.2025):
tsfresh (π₯31 Β· β 8.6K) - Automatic extraction of relevant features from time series:. MIT

- [GitHub](https://github.com/blue-yonder/tsfresh) (π¨βπ» 98 Β· π 1.2K Β· π¦ 21 Β· π 540 - 12% open Β· β±οΈ 25.01.2025):
- [PyPi](https://pypi.org/project/tsfresh) (π₯ 240K / month Β· π¦ 93 Β· β±οΈ 03.08.2024):
- [Conda](https://anaconda.org/conda-forge/tsfresh) (π₯ 1.4M Β· β±οΈ 11.01.2025):
pmdarima (π₯31 Β· β 1.6K) - A statistical library designed to fill the void in Pythons time series.. MIT
- [GitHub](https://github.com/alkaline-ml/pmdarima) (π¨βπ» 23 Β· π 240 Β· π¦ 11K Β· π 340 - 19% open Β· β±οΈ 07.11.2024):
- [PyPi](https://pypi.org/project/pmdarima) (π₯ 2.6M / month Β· π¦ 150 Β· β±οΈ 23.10.2023):
- [Conda](https://anaconda.org/conda-forge/pmdarima) (π₯ 1.3M Β· β±οΈ 14.07.2024):
GluonTS (π₯30 Β· β 4.8K) - Probabilistic time series modeling in Python. Apache-2

- [GitHub](https://github.com/awslabs/gluonts) (π¨βπ» 120 Β· π 760 Β· π 970 - 34% open Β· β±οΈ 05.11.2024):
- [PyPi](https://pypi.org/project/gluonts) (π₯ 660K / month Β· π¦ 33 Β· β±οΈ 11.11.2024):
- [Conda](https://anaconda.org/anaconda/gluonts) (π₯ 1.4K Β· β±οΈ 16.12.2024):
tslearn (π₯30 Β· β 2.9K Β· π€) - The machine learning toolkit for time series analysis in Python. BSD-2

- [GitHub](https://github.com/tslearn-team/tslearn) (π¨βπ» 43 Β· π 340 Β· π¦ 1.6K Β· π 340 - 41% open Β· β±οΈ 01.07.2024):
- [PyPi](https://pypi.org/project/tslearn) (π₯ 410K / month Β· π¦ 79 Β· β±οΈ 12.12.2023):
- [Conda](https://anaconda.org/conda-forge/tslearn) (π₯ 1.5M Β· β±οΈ 26.07.2024):
skforecast (π₯30 Β· β 1.2K) - Time series forecasting with machine learning models. BSD-3

- [GitHub](https://github.com/skforecast/skforecast) (π¨βπ» 17 Β· π 150 Β· π¦ 390 Β· π 190 - 13% open Β· β±οΈ 28.11.2024):
- [PyPi](https://pypi.org/project/skforecast) (π₯ 100K / month Β· π¦ 15 Β· β±οΈ 11.11.2024):
Streamz (π₯27 Β· β 1.3K) - Real-time stream processing for python. BSD-3
- [GitHub](https://github.com/python-streamz/streamz) (π¨βπ» 49 Β· π 150 Β· π¦ 520 Β· π 270 - 44% open Β· β±οΈ 22.11.2024):
- [PyPi](https://pypi.org/project/streamz) (π₯ 20K / month Β· π¦ 57 Β· β±οΈ 27.07.2022):
- [Conda](https://anaconda.org/conda-forge/streamz) (π₯ 1.6M Β· β±οΈ 20.12.2024):
NeuralProphet (π₯26 Β· β 4K) - NeuralProphet: A simple forecasting package. MIT

- [GitHub](https://github.com/ourownstory/neural_prophet) (π¨βπ» 56 Β· π 480 Β· π 560 - 10% open Β· β±οΈ 13.09.2024):
- [PyPi](https://pypi.org/project/neuralprophet) (π₯ 59K / month Β· π¦ 8 Β· β±οΈ 26.06.2024):
TSFEL (π₯22 Β· β 970) - An intuitive library to extract features from time series. BSD-3
- [GitHub](https://github.com/fraunhoferportugal/tsfel) (π¨βπ» 20 Β· π 140 Β· π¦ 170 Β· π 82 - 12% open Β· β±οΈ 17.10.2024):
- [PyPi](https://pypi.org/project/tsfel) (π₯ 11K / month Β· π¦ 7 Β· β±οΈ 12.09.2024):
tsflex (π₯20 Β· β 410) - Flexible time series feature extraction & processing. MIT
- [GitHub](https://github.com/predict-idlab/tsflex) (π¨βπ» 6 Β· π 26 Β· π¦ 19 Β· π 56 - 58% open Β· β±οΈ 06.09.2024):
- [PyPi](https://pypi.org/project/tsflex) (π₯ 1.6K / month Β· π¦ 2 Β· β±οΈ 06.09.2024):
- [Conda](https://anaconda.org/conda-forge/tsflex) (π₯ 30K Β· β±οΈ 08.04.2024):
pydlm (π₯19 Β· β 480) - A python library for Bayesian time series modeling. BSD-3
- [GitHub](https://github.com/wwrechard/pydlm) (π¨βπ» 7 Β· π 98 Β· π¦ 38 Β· π 56 - 73% open Β· β±οΈ 07.09.2024):
- [PyPi](https://pypi.org/project/pydlm) (π₯ 39K / month Β· π¦ 2 Β· β±οΈ 13.08.2024):
Auto TS (π₯18 Β· β 740 Β· π€) - Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost.. Apache-2
- [GitHub](https://github.com/AutoViML/Auto_TS) (π¨βπ» 13 Β· π 120 Β· π 90 - 2% open Β· β±οΈ 05.05.2024):
- [PyPi](https://pypi.org/project/auto-ts) (π₯ 10K / month Β· β±οΈ 05.05.2024):
Show 11 hidden projects...
- pyts (π₯27 Β· β 1.8K Β· π) - A Python package for time series classification.BSD-3
- PyFlux (π₯25 Β· β 2.1K Β· π) - Open source time series library for Python. BSD-3
- luminol (π₯22 Β· β 1.2K Β· π) - Anomaly Detection and Correlation library. Apache-2
- ADTK (π₯22 Β· β 1.1K Β· π) - A Python toolkit for rule-based/unsupervised anomaly detection in.. MPL-2.0
- greykite (π₯21 Β· β 1.8K Β· π) - A flexible, intuitive and fast forecasting library. BSD-2
- seglearn (π₯21 Β· β 570 Β· π) - Python module for machine learning time series:. BSD-3
- matrixprofile-ts (π₯19 Β· β 740 Β· π) - A Python library for detecting patterns and anomalies.. Apache-2
- tick (π₯18 Β· β 500 Β· π) - Module for statistical learning, with a particular emphasis on time-.. BSD-3
- atspy (π₯15 Β· β 520 Β· π) - AtsPy: Automated Time Series Models in Python (by @firmai). MIT
- tsaug (π₯14 Β· β 350 Β· π) - A Python package for time series augmentation. Apache-2
- tslumen (π₯8 Β· β 69 Β· π) - A library for Time Series EDA (exploratory data analysis). Apache-2
Medical Data
Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic data, and other medical imaging formats.
MNE (π₯39 Β· β 2.8K) - MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python. BSD-3
- [GitHub](https://github.com/mne-tools/mne-python) (π¨βπ» 380 Β· π 1.3K Β· π¦ 5K Β· π 5K - 11% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/mne) (π₯ 140K / month Β· π¦ 420 Β· β±οΈ 18.12.2024):
- [Conda](https://anaconda.org/conda-forge/mne) (π₯ 490K Β· β±οΈ 07.01.2025):
Nilearn (π₯39 Β· β 1.2K) - Machine learning for NeuroImaging in Python. BSD-3

- [GitHub](https://github.com/nilearn/nilearn) (π¨βπ» 250 Β· π 600 Β· π₯ 290 Β· π¦ 3.8K Β· π 2.3K - 13% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/nilearn) (π₯ 71K / month Β· π¦ 310 Β· β±οΈ 23.12.2024):
- [Conda](https://anaconda.org/conda-forge/nilearn) (π₯ 320K Β· β±οΈ 23.12.2024):
MONAI (π₯36 Β· β 6.1K) - AI Toolkit for Healthcare Imaging. Apache-2

- [GitHub](https://github.com/Project-MONAI/MONAI) (π¨βπ» 220 Β· π 1.1K Β· π¦ 3.5K Β· π 3.2K - 12% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/monai) (π₯ 250K / month Β· π¦ 140 Β· β±οΈ 10.12.2024):
- [Conda](https://anaconda.org/conda-forge/monai) (π₯ 40K Β· β±οΈ 23.12.2024):
NIPYPE (π₯36 Β· β 760) - Workflows and interfaces for neuroimaging packages. Apache-2
- [GitHub](https://github.com/nipy/nipype) (π¨βπ» 260 Β· π 530 Β· π¦ 5.7K Β· π 1.4K - 30% open Β· β±οΈ 18.01.2025):
- [PyPi](https://pypi.org/project/nipype) (π₯ 250K / month Β· π¦ 150 Β· β±οΈ 17.12.2024):
- [Conda](https://anaconda.org/conda-forge/nipype) (π₯ 760K Β· β±οΈ 18.12.2024):
NiBabel (π₯36 Β· β 670) - Python package to access a cacophony of neuro-imaging file formats. MIT
- [GitHub](https://github.com/nipy/nibabel) (π¨βπ» 110 Β· π 260 Β· π¦ 25K Β· π 540 - 23% open Β· β±οΈ 16.01.2025):
- [PyPi](https://pypi.org/project/nibabel) (π₯ 580K / month Β· π¦ 1.2K Β· β±οΈ 23.10.2024):
- [Conda](https://anaconda.org/conda-forge/nibabel) (π₯ 850K Β· β±οΈ 12.12.2024):
Lifelines (π₯33 Β· β 2.4K) - Survival analysis in Python. MIT
- [GitHub](https://github.com/CamDavidsonPilon/lifelines) (π¨βπ» 120 Β· π 560 Β· π¦ 3.3K Β· π 980 - 27% open Β· β±οΈ 29.10.2024):
- [PyPi](https://pypi.org/project/lifelines) (π₯ 2.7M / month Β· π¦ 160 Β· β±οΈ 29.10.2024):
- [Conda](https://anaconda.org/conda-forge/lifelines) (π₯ 400K Β· β±οΈ 19.12.2024):
Hail (π₯33 Β· β 990) - Cloud-native genomic dataframes and batch computing. MIT

- [GitHub](https://github.com/hail-is/hail) (π¨βπ» 97 Β· π 250 Β· π¦ 160 Β· π 2.5K - 10% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/hail) (π₯ 210K / month Β· π¦ 34 Β· β±οΈ 04.10.2024):
DeepVariant (π₯27 Β· β 3.3K) - DeepVariant is an analysis pipeline that uses a deep neural.. BSD-3

- [GitHub](https://github.com/google/deepvariant) (π¨βπ» 36 Β· π 730 Β· π₯ 4.8K Β· π 860 - 0% open Β· β±οΈ 09.12.2024):
- [Conda](https://anaconda.org/bioconda/deepvariant) (π₯ 74K Β· β±οΈ 16.06.2023):
Brainiak (π₯20 Β· β 350) - Brain Imaging Analysis Kit. Apache-2
- [GitHub](https://github.com/brainiak/brainiak) (π¨βπ» 35 Β· π 140 Β· π 230 - 39% open Β· β±οΈ 06.01.2025):
- [PyPi](https://pypi.org/project/brainiak) (π₯ 3.1K / month Β· β±οΈ 07.01.2025):
- [Docker Hub](https://hub.docker.com/r/brainiak/brainiak) (π₯ 1.9K Β· β 1 Β· β±οΈ 07.01.2025):
Show 10 hidden projects...
- DIPY (π₯32 Β· β 730) - DIPY is the paragon 3D/4D+ medical imaging library in Python...βUnlicensed
- NiftyNet (π₯25 Β· β 1.4K Β· π) - [unmaintained] An open-source convolutional neural.. Apache-2

- NIPY (π₯25 Β· β 380) - Neuroimaging in Python FMRI analysis package. βUnlicensed
- MedPy (π₯21 Β· β 580 Β· π€) - Medical image processing in Python. βοΈGPL-3.0
- Glow (π₯21 Β· β 270) - An open-source toolkit for large-scale genomic analysis. Apache-2
- DLTK (π₯20 Β· β 1.4K Β· π) - Deep Learning Toolkit for Medical Image Analysis. Apache-2

- MedicalTorch (π₯15 Β· β 860 Β· π) - A medical imaging framework for Pytorch. Apache-2

- DeepNeuro (π₯15 Β· β 120 Β· π) - A deep learning python package for neuroimaging data. Made by:. MIT
- Medical Detection Toolkit (π₯14 Β· β 1.3K Β· π) - The Medical Detection Toolkit contains 2D + 3D.. Apache-2

- MedicalNet (π₯12 Β· β 2K Β· π) - Many studies have shown that the performance on deep learning is.. MIT
Tabular Data
Libraries for processing tabular and structured data.
pytorch_tabular (π₯24 Β· β 1.4K) - A standard framework for modelling Deep Learning Models.. MIT

- [GitHub](https://github.com/manujosephv/pytorch_tabular) (π¨βπ» 25 Β· π 140 Β· π₯ 54 Β· π 160 - 6% open Β· β±οΈ 18.12.2024):
- [PyPi](https://pypi.org/project/pytorch_tabular) (π₯ 4.1K / month Β· π¦ 9 Β· β±οΈ 28.11.2024):
miceforest (π₯23 Β· β 370) - Multiple Imputation with LightGBM in Python. MIT
- [GitHub](https://github.com/AnotherSamWilson/miceforest) (π¨βπ» 8 Β· π 30 Β· π¦ 200 Β· π 86 - 9% open Β· β±οΈ 02.08.2024):
- [PyPi](https://pypi.org/project/miceforest) (π₯ 65K / month Β· π¦ 9 Β· β±οΈ 02.08.2024):
- [Conda](https://anaconda.org/conda-forge/miceforest) (π₯ 17K Β· β±οΈ 16.06.2023):
upgini (π₯21 Β· β 320) - Data search & enrichment library for Machine Learning Easily find and add.. BSD-3
- [GitHub](https://github.com/upgini/upgini) (π¨βπ» 13 Β· π 25 Β· π¦ 9 Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/upgini) (π₯ 34K / month Β· β±οΈ 06.02.2025):
carefree-learn (π₯18 Β· β 410 Β· π€) - Deep Learning PyTorch. MIT

- [GitHub](https://github.com/carefree0910/carefree-learn) (π¨βπ» 1 Β· π 38 Β· π¦ 8 Β· π 82 - 2% open Β· β±οΈ 18.03.2024):
- [PyPi](https://pypi.org/project/carefree-learn) (π₯ 2K / month Β· β±οΈ 09.01.2024):
Show 1 hidden projects...
- deltapy (π₯13 Β· β 540 Β· π) - DeltaPy - Tabular Data Augmentation (by @firmai).MIT
Optical Character Recognition
Libraries for optical character recognition (OCR) and text extraction from images or videos.
PaddleOCR (π₯41 Β· β 46K) - Awesome multilingual OCR toolkits based on PaddlePaddle.. Apache-2

- [GitHub](https://github.com/PaddlePaddle/PaddleOCR) (π¨βπ» 270 Β· π 7.9K Β· π₯ 1.2M Β· π¦ 4.2K Β· π 9.5K - 1% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/paddleocr) (π₯ 290K / month Β· π¦ 110 Β· β±οΈ 22.10.2024):
OCRmyPDF (π₯37 Β· β 17K) - OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them.. MPL-2.0
- [GitHub](https://github.com/ocrmypdf/OCRmyPDF) (π¨βπ» 100 Β· π 1.1K Β· π₯ 6.7K Β· π¦ 1.1K Β· π 1.2K - 9% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/ocrmypdf) (π₯ 180K / month Β· π¦ 41 Β· β±οΈ 05.01.2025):
- [Conda](https://anaconda.org/conda-forge/ocrmypdf) (π₯ 90K Β· β±οΈ 16.06.2023):
EasyOCR (π₯35 Β· β 25K) - Ready-to-use OCR with 80+ supported languages and all popular writing.. Apache-2
- [GitHub](https://github.com/JaidedAI/EasyOCR) (π¨βπ» 130 Β· π 3.2K Β· π₯ 18M Β· π¦ 11K Β· π 1.1K - 43% open Β· β±οΈ 24.09.2024):
- [PyPi](https://pypi.org/project/easyocr) (π₯ 760K / month Β· π¦ 250 Β· β±οΈ 24.09.2024):
Tesseract (π₯32 Β· β 6K) - Python-tesseract is an optical character recognition (OCR) tool for.. Apache-2
- [GitHub](https://github.com/madmaze/pytesseract) (π¨βπ» 49 Β· π 720 Β· π 370 - 2% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/pytesseract) (π₯ 2.5M / month Β· π¦ 970 Β· β±οΈ 16.08.2024):
- [Conda](https://anaconda.org/conda-forge/pytesseract) (π₯ 640K Β· β±οΈ 07.01.2025):
tesserocr (π₯28 Β· β 2.1K) - A Python wrapper for the tesseract-ocr API. MIT
- [GitHub](https://github.com/sirfz/tesserocr) (π¨βπ» 30 Β· π 250 Β· π₯ 790 Β· π¦ 1.2K Β· π 280 - 18% open Β· β±οΈ 25.11.2024):
- [PyPi](https://pypi.org/project/tesserocr) (π₯ 92K / month Β· π¦ 36 Β· β±οΈ 26.08.2024):
- [Conda](https://anaconda.org/conda-forge/tesserocr) (π₯ 230K Β· β±οΈ 13.09.2024):
MMOCR (π₯26 Β· β 4.4K) - OpenMMLab Text Detection, Recognition and Understanding Toolbox. Apache-2

- [GitHub](https://github.com/open-mmlab/mmocr) (π¨βπ» 90 Β· π 750 Β· π¦ 190 Β· π 930 - 20% open Β· β±οΈ 27.11.2024):
- [PyPi](https://pypi.org/project/mmocr) (π₯ 4.7K / month Β· π¦ 4 Β· β±οΈ 05.05.2022):
Show 6 hidden projects...
- keras-ocr (π₯25 Β· β 1.4K Β· π) - A packaged and flexible version of the CRAFT text detector..MIT

- calamari (π₯22 Β· β 1.1K) - Line based ATR Engine based on OCRopy. βοΈGPL-3.0
- pdftabextract (π₯21 Β· β 2.2K Β· π) - A set of tools for extracting tables from PDF files.. Apache-2
- attention-ocr (π₯21 Β· β 1.1K Β· π) - A Tensorflow model for text recognition (CNN + seq2seq.. MIT

- doc2text (π₯20 Β· β 1.3K Β· π) - Detect text blocks and OCR poorly scanned PDFs in bulk. Python.. MIT
- Mozart (π₯10 Β· β 640 Β· π) - An optical music recognition (OMR) system. Converts sheet.. Apache-2

Data Containers & Structures
General-purpose data containers & structures as well as utilities & extensions for pandas.
π best-of-python - Data Containers ( β 3.8K) - Collection of data-container, dataframe, and pandas-..
Data Loading & Extraction
Libraries for loading, collecting, and extracting data from a variety of data sources and formats.
π best-of-python - Data Extraction ( β 3.8K) - Collection of data-loading and -extraction libraries.
Web Scraping & Crawling
Libraries for web scraping, crawling, downloading, and mining as well as libraries.
π best-of-web-python - Web Scraping ( β 2.4K Β· π€) - Collection of web-scraping and crawling libraries.
Data Pipelines & Streaming
Libraries for data batch- and stream-processing, workflow automation, job scheduling, and other data pipeline tasks.
π best-of-python - Data Pipelines ( β 3.8K) - Libraries for data batch- and stream-processing,..
Show 1 hidden projects...
- pyclugen (π₯10 Β· β 7 Β· β) - Multidimensional cluster generation in Python.MIT
Distributed Machine Learning
Libraries that provide capabilities to distribute and parallelize machine learning tasks across large-scale compute infrastructure.
Ray (π₯46 Β· β 35K) - Ray is an AI compute engine. Ray consists of a core distributed runtime.. Apache-2
- [GitHub](https://github.com/ray-project/ray) (π¨βπ» 1.1K Β· π 6K Β· π₯ 250 Β· π¦ 21K Β· π 20K - 21% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/ray) (π₯ 6.3M / month Β· π¦ 870 Β· β±οΈ 04.02.2025):
- [Conda](https://anaconda.org/conda-forge/ray-tune) (π₯ 660K Β· β±οΈ 06.02.2025):
dask (π₯44 Β· β 13K) - Parallel computing with task scheduling. BSD-3
- [GitHub](https://github.com/dask/dask) (π¨βπ» 620 Β· π 1.7K Β· π¦ 70K Β· π 5.4K - 20% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/dask) (π₯ 10M / month Β· π¦ 2.6K Β· β±οΈ 17.01.2025):
- [Conda](https://anaconda.org/conda-forge/dask) (π₯ 13M Β· β±οΈ 19.01.2025):
DeepSpeed (π₯41 Β· β 37K) - DeepSpeed is a deep learning optimization library that makes.. Apache-2

- [GitHub](https://github.com/deepspeedai/DeepSpeed) (π¨βπ» 370 Β· π 4.2K Β· π¦ 11K Β· π 3.1K - 35% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/deepspeed) (π₯ 620K / month Β· π¦ 240 Β· β±οΈ 21.01.2025):
- [Docker Hub](https://hub.docker.com/r/deepspeed/deepspeed) (π₯ 22K Β· β 4 Β· β±οΈ 02.09.2022):
dask.distributed (π₯40 Β· β 1.6K) - A distributed task scheduler for Dask. BSD-3
- [GitHub](https://github.com/dask/distributed) (π¨βπ» 330 Β· π 720 Β· π¦ 38K Β· π 4K - 39% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/distributed) (π₯ 4.3M / month Β· π¦ 900 Β· β±οΈ 17.01.2025):
- [Conda](https://anaconda.org/conda-forge/distributed) (π₯ 16M Β· β±οΈ 19.01.2025):
metrics (π₯36 Β· β 2.2K) - Machine learning metrics for distributed, scalable PyTorch.. Apache-2

- [GitHub](https://github.com/Lightning-AI/torchmetrics) (π¨βπ» 270 Β· π 410 Β· π₯ 6.3K Β· π¦ 36K Β· π 920 - 9% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/metrics) (π₯ 6.2K / month Β· π¦ 2 Β· β±οΈ 28.04.2018):
- [Conda](https://anaconda.org/conda-forge/torchmetrics) (π₯ 1.8M Β· β±οΈ 26.12.2024):
horovod (π₯35 Β· β 14K) - Distributed training framework for TensorFlow, Keras, PyTorch, and.. Apache-2
- [GitHub](https://github.com/horovod/horovod) (π¨βπ» 170 Β· π 2.2K Β· π¦ 1.3K Β· π 2.3K - 17% open Β· β±οΈ 01.02.2025):
- [PyPi](https://pypi.org/project/horovod) (π₯ 88K / month Β· π¦ 33 Β· β±οΈ 12.06.2023):
H2O-3 (π₯34 Β· β 7K) - H2O is an Open Source, Distributed, Fast & Scalable Machine Learning.. Apache-2
- [GitHub](https://github.com/h2oai/h2o-3) (π¨βπ» 270 Β· π 2K Β· π¦ 21 Β· π 9.6K - 29% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/h2o) (π₯ 200K / month Β· π¦ 49 Β· β±οΈ 02.11.2024):
ColossalAI (π₯32 Β· β 39K) - Making large AI models cheaper, faster and more accessible. Apache-2
- [GitHub](https://github.com/hpcaitech/ColossalAI) (π¨βπ» 190 Β· π 4.4K Β· π¦ 460 Β· π 1.7K - 25% open Β· β±οΈ 06.02.2025):
BigDL (π₯32 Β· β 7.1K) - Accelerate local LLM inference and finetuning (LLaMA, Mistral,.. Apache-2
- [GitHub](https://github.com/intel/ipex-llm) (π¨βπ» 120 Β· π 1.3K Β· π₯ 650 Β· π 2.7K - 38% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/bigdl) (π₯ 32K / month Β· π¦ 2 Β· β±οΈ 24.03.2024):
- [Maven](https://search.maven.org/artifact/com.intel.analytics.bigdl/bigdl-SPARK_2.4) (π¦ 5 Β· β±οΈ 20.04.2021):
FairScale (π₯31 Β· β 3.2K) - PyTorch extensions for high performance and large scale training. BSD-3

- [GitHub](https://github.com/facebookresearch/fairscale) (π¨βπ» 76 Β· π 280 Β· π¦ 7.4K Β· π 390 - 26% open Β· β±οΈ 12.01.2025):
- [PyPi](https://pypi.org/project/fairscale) (π₯ 470K / month Β· π¦ 150 Β· β±οΈ 11.12.2022):
- [Conda](https://anaconda.org/conda-forge/fairscale) (π₯ 390K Β· β±οΈ 28.11.2023):
SynapseML (π₯29 Β· β 5.1K) - Simple and Distributed Machine Learning. MIT
- [GitHub](https://github.com/microsoft/SynapseML) (π¨βπ» 120 Β· π 830 Β· π 790 - 48% open Β· β±οΈ 10.01.2025):
- [PyPi](https://pypi.org/project/synapseml) (π₯ 250K / month Β· π¦ 7 Β· β±οΈ 10.01.2025):
mpi4py (π₯29 Β· β 830) - Python bindings for MPI. BSD-3
- [GitHub](https://github.com/mpi4py/mpi4py) (π¨βπ» 27 Β· π 120 Β· π₯ 30K Β· π 200 - 3% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/mpi4py) (π₯ 360K / month Β· π¦ 830 Β· β±οΈ 01.02.2025):
- [Conda](https://anaconda.org/conda-forge/mpi4py) (π₯ 3.5M Β· β±οΈ 02.02.2025):
Submit it (π₯28 Β· β 1.4K) - Python 3.8+ toolbox for submitting jobs to Slurm. MIT
- [GitHub](https://github.com/facebookincubator/submitit) (π¨βπ» 25 Β· π 130 Β· π¦ 3.9K Β· π 130 - 39% open Β· β±οΈ 18.09.2024):
- [PyPi](https://pypi.org/project/submitit) (π₯ 400K / month Β· π¦ 49 Β· β±οΈ 18.09.2024):
- [Conda](https://anaconda.org/conda-forge/submitit) (π₯ 47K Β· β±οΈ 19.11.2024):
dask-ml (π₯27 Β· β 920) - Scalable Machine Learning with Dask. BSD-3
- [GitHub](https://github.com/dask/dask-ml) (π¨βπ» 80 Β· π 260 Β· π¦ 1.2K Β· π 540 - 52% open Β· β±οΈ 25.11.2024):
- [PyPi](https://pypi.org/project/dask-ml) (π₯ 92K / month Β· π¦ 93 Β· β±οΈ 02.04.2024):
- [Conda](https://anaconda.org/conda-forge/dask-ml) (π₯ 940K Β· β±οΈ 17.06.2024):
Hivemind (π₯25 Β· β 2.1K) - Decentralized deep learning in PyTorch. Built to train models on.. MIT
- [GitHub](https://github.com/learning-at-home/hivemind) (π¨βπ» 33 Β· π 170 Β· π¦ 120 Β· π 180 - 43% open Β· β±οΈ 05.11.2024):
- [PyPi](https://pypi.org/project/hivemind) (π₯ 1.4K / month Β· π¦ 10 Β· β±οΈ 31.08.2023):
Apache Singa (π₯24 Β· β 3.4K) - a distributed deep learning platform. Apache-2
- [GitHub](https://github.com/apache/singa) (π¨βπ» 96 Β· π 1.2K Β· π¦ 5 Β· π 140 - 36% open Β· β±οΈ 30.12.2024):
- [Conda](https://anaconda.org/nusdbsystem/singa) (π₯ 940 Β· β±οΈ 16.06.2023):
- [Docker Hub](https://hub.docker.com/r/apache/singa) (π₯ 8.7K Β· β 4 Β· β±οΈ 31.05.2022):
MMLSpark (π₯23 Β· β 5.1K) - Simple and Distributed Machine Learning. MIT

- [GitHub](https://github.com/microsoft/SynapseML) (π¨βπ» 120 Β· π 830 Β· π 790 - 48% open Β· β±οΈ 10.01.2025):
- [PyPi](https://pypi.org/project/mmlspark) (β±οΈ 18.03.2020):
analytics-zoo (π₯23 Β· β 2.6K) - Distributed Tensorflow, Keras and PyTorch on Apache.. Apache-2

- [GitHub](https://github.com/intel/analytics-zoo) (π¨βπ» 110 Β· π 730 Β· π 1.3K - 32% open Β· β±οΈ 09.01.2025):
- [PyPi](https://pypi.org/project/analytics-zoo) (π₯ 1.9K / month Β· π¦ 1 Β· β±οΈ 22.08.2022):
Show 18 hidden projects...
- DEAP (π₯35 Β· β 6K) - Distributed Evolutionary Algorithms in Python.βοΈLGPL-3.0
- ipyparallel (π₯29 Β· β 2.6K) - IPython Parallel: Interactive Parallel Computing in.. βUnlicensed

- petastorm (π₯28 Β· β 1.8K Β· π) - Petastorm library enables single machine or distributed.. Apache-2
- TensorFlowOnSpark (π₯26 Β· β 3.9K Β· π) - TensorFlowOnSpark brings TensorFlow programs to.. Apache-2


- Elephas (π₯25 Β· β 1.6K Β· π) - Distributed Deep learning with Keras & Spark. MIT
keras

- BytePS (π₯22 Β· β 3.7K Β· π) - A high performance and generic framework for distributed DNN.. Apache-2
- Mesh (π₯22 Β· β 1.6K Β· π) - Mesh TensorFlow: Model Parallelism Made Easier. Apache-2

- sk-dist (π₯21 Β· β 280 Β· π) - Distributed scikit-learn meta-estimators in PySpark. Apache-2


- somoclu (π₯20 Β· β 270 Β· π) - Massively parallel self-organizing maps: accelerate training on.. MIT
- launchpad (π₯19 Β· β 320 Β· π) - Launchpad is a library that simplifies writing.. Apache-2

- mesh-transformer-jax (π₯18 Β· β 6.3K Β· π) - Model parallel transformers in JAX and Haiku. Apache-2

- bluefog (π₯18 Β· β 290 Β· π) - Distributed and decentralized training framework for PyTorch.. Apache-2

- Fiber (π₯17 Β· β 1K Β· π) - Distributed Computing for AI Made Simple. Apache-2
- parallelformers (π₯17 Β· β 780 Β· π) - Parallelformers: An Efficient Model Parallelization.. Apache-2
- TensorFrames (π₯16 Β· β 720 Β· π) - Tensorflow wrapper for DataFrames on Apache Spark. Apache-2


- LazyCluster (π₯15 Β· β 49 Β· π) - Distributed machine learning made simple. Apache-2
- autodist (π₯12 Β· β 130 Β· π) - Simple Distributed Deep Learning on TensorFlow. Apache-2

- moolib (π₯11 Β· β 370 Β· π) - A library for distributed ML training with PyTorch. MIT

Hyperparameter Optimization & AutoML
Libraries for hyperparameter optimization, automl and neural architecture search.
Optuna (π₯43 Β· β 11K) - A hyperparameter optimization framework. MIT
- [GitHub](https://github.com/optuna/optuna) (π¨βπ» 280 Β· π 1.1K Β· π¦ 22K Β· π 1.7K - 3% open Β· β±οΈ 31.01.2025):
- [PyPi](https://pypi.org/project/optuna) (π₯ 3.6M / month Β· π¦ 1.1K Β· β±οΈ 27.01.2025):
- [Conda](https://anaconda.org/conda-forge/optuna) (π₯ 2.2M Β· β±οΈ 20.01.2025):
AutoGluon (π₯36 Β· β 8.4K) - Fast and Accurate ML in 3 Lines of Code. Apache-2


- [GitHub](https://github.com/autogluon/autogluon) (π¨βπ» 130 Β· π 950 Β· π¦ 960 Β· π 1.6K - 24% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/autogluon) (π₯ 260K / month Β· π¦ 30 Β· β±οΈ 06.02.2025):
- [Conda](https://anaconda.org/conda-forge/autogluon) (π₯ 28K Β· β±οΈ 12.12.2024):
- [Docker Hub](https://hub.docker.com/r/autogluon/autogluon) (π₯ 14K Β· β 17 Β· β±οΈ 07.03.2024):
Ax (π₯36 Β· β 2.4K) - Adaptive Experimentation Platform. MIT

- [GitHub](https://github.com/facebook/Ax) (π¨βπ» 180 Β· π 320 Β· π¦ 880 Β· π 820 - 10% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/ax-platform) (π₯ 140K / month Β· π¦ 57 Β· β±οΈ 03.02.2025):
- [Conda](https://anaconda.org/conda-forge/ax-platform) (π₯ 34K Β· β±οΈ 23.12.2024):
BoTorch (π₯34 Β· β 3.2K) - Bayesian optimization in PyTorch. MIT

- [GitHub](https://github.com/pytorch/botorch) (π¨βπ» 140 Β· π 410 Β· π¦ 1.3K Β· π 570 - 13% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/botorch) (π₯ 230K / month Β· π¦ 100 Β· β±οΈ 03.02.2025):
- [Conda](https://anaconda.org/conda-forge/botorch) (π₯ 140K Β· β±οΈ 04.02.2025):
Hyperopt (π₯33 Β· β 7.3K) - Distributed Asynchronous Hyperparameter Optimization in Python. BSD-3
- [GitHub](https://github.com/hyperopt/hyperopt) (π¨βπ» 100 Β· π 1.1K Β· π¦ 19K Β· π 710 - 20% open Β· β±οΈ 27.12.2024):
- [PyPi](https://pypi.org/project/hyperopt) (π₯ 2.2M / month Β· π¦ 450 Β· β±οΈ 17.11.2021):
- [Conda](https://anaconda.org/conda-forge/hyperopt) (π₯ 810K Β· β±οΈ 20.12.2024):
nevergrad (π₯33 Β· β 4K) - A Python toolbox for performing gradient-free optimization. MIT
- [GitHub](https://github.com/facebookresearch/nevergrad) (π¨βπ» 57 Β· π 360 Β· π¦ 830 Β· π 310 - 39% open Β· β±οΈ 05.12.2024):
- [PyPi](https://pypi.org/project/nevergrad) (π₯ 110K / month Β· π¦ 62 Β· β±οΈ 01.12.2024):
- [Conda](https://anaconda.org/conda-forge/nevergrad) (π₯ 58K Β· β±οΈ 09.01.2024):
Bayesian Optimization (π₯32 Β· β 8.1K) - A Python implementation of global optimization with.. MIT
- [GitHub](https://github.com/bayesian-optimization/BayesianOptimization) (π¨βπ» 47 Β· π 1.6K Β· π₯ 170 Β· π¦ 3.3K Β· π 370 - 1% open Β· β±οΈ 27.12.2024):
- [PyPi](https://pypi.org/project/bayesian-optimization) (π₯ 370K / month Β· π¦ 150 Β· β±οΈ 27.12.2024):
AutoKeras (π₯31 Β· β 9.2K) - AutoML library for deep learning. Apache-2

- [GitHub](https://github.com/keras-team/autokeras) (π¨βπ» 140 Β· π 1.4K Β· π₯ 19K Β· π¦ 790 Β· π 900 - 16% open Β· β±οΈ 16.12.2024):
- [PyPi](https://pypi.org/project/autokeras) (π₯ 19K / month Β· π¦ 13 Β· β±οΈ 20.03.2024):
featuretools (π₯31 Β· β 7.4K) - An open source python library for automated feature engineering. BSD-3
- [GitHub](https://github.com/alteryx/featuretools) (π¨βπ» 74 Β· π 880 Β· π¦ 1.9K Β· π 1K - 15% open Β· β±οΈ 13.11.2024):
- [PyPi](https://pypi.org/project/featuretools) (π₯ 62K / month Β· π¦ 74 Β· β±οΈ 14.05.2024):
- [Conda](https://anaconda.org/conda-forge/featuretools) (π₯ 230K Β· β±οΈ 15.05.2024):
Keras Tuner (π₯31 Β· β 2.9K Β· π€) - A Hyperparameter Tuning Library for Keras. Apache-2

- [GitHub](https://github.com/keras-team/keras-tuner) (π¨βπ» 61 Β· π 400 Β· π¦ 5.1K Β· π 500 - 44% open Β· β±οΈ 24.06.2024):
- [PyPi](https://pypi.org/project/keras-tuner) (π₯ 380K / month Β· π¦ 120 Β· β±οΈ 04.03.2024):
- [Conda](https://anaconda.org/conda-forge/keras-tuner) (π₯ 50K Β· β±οΈ 25.12.2024):
mljar-supervised (π₯29 Β· β 3.1K) - Python package for AutoML on Tabular Data with Feature.. MIT
- [GitHub](https://github.com/mljar/mljar-supervised) (π¨βπ» 29 Β· π 410 Β· π¦ 140 Β· π 670 - 20% open Β· β±οΈ 14.01.2025):
- [PyPi](https://pypi.org/project/mljar-supervised) (π₯ 10K / month Β· π¦ 6 Β· β±οΈ 14.01.2025):
- [Conda](https://anaconda.org/conda-forge/mljar-supervised) (π₯ 35K Β· β±οΈ 14.01.2025):
lazypredict (π₯27 Β· β 3.1K Β· π) - Lazy Predict help build a lot of basic models without much.. MIT

- [GitHub](https://github.com/shankarpandala/lazypredict) (π¨βπ» 18 Β· π 350 Β· π¦ 1.2K Β· π 140 - 69% open Β· β±οΈ 03.11.2024):
- [PyPi](https://pypi.org/project/lazypredict) (π₯ 17K / month Β· π¦ 6 Β· β±οΈ 02.11.2024):
- [Conda](https://anaconda.org/conda-forge/lazypredict) (π₯ 4.1K Β· β±οΈ 16.06.2023):
Talos (π₯25 Β· β 1.6K Β· π€) - Hyperparameter Experiments with TensorFlow and Keras. MIT

- [GitHub](https://github.com/autonomio/talos) (π¨βπ» 23 Β· π 270 Β· π¦ 200 Β· π 400 - 2% open Β· β±οΈ 22.04.2024):
- [PyPi](https://pypi.org/project/talos) (π₯ 1.5K / month Β· π¦ 8 Β· β±οΈ 21.04.2024):
FEDOT (π₯24 Β· β 660) - Automated modeling and machine learning framework FEDOT. BSD-3
- [GitHub](https://github.com/aimclub/FEDOT) (π¨βπ» 37 Β· π 88 Β· π¦ 57 Β· π 560 - 10% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/fedot) (π₯ 2K / month Β· π¦ 5 Β· β±οΈ 28.08.2024):
featurewiz (π₯23 Β· β 600) - Use advanced feature engineering strategies and select best.. Apache-2
- [GitHub](https://github.com/AutoViML/featurewiz) (π¨βπ» 18 Β· π 91 Β· π¦ 81 Β· π 120 - 10% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/featurewiz) (π₯ 15K / month Β· π¦ 4 Β· β±οΈ 29.01.2025):
Hyperactive (π₯23 Β· β 520) - An optimization and data collection toolbox for convenient and fast.. MIT
- [GitHub](https://github.com/SimonBlanke/Hyperactive) (π¨βπ» 9 Β· π 42 Β· π₯ 300 Β· π¦ 36 Β· π 78 - 17% open Β· β±οΈ 24.01.2025):
- [PyPi](https://pypi.org/project/hyperactive) (π₯ 2.8K / month Β· π¦ 13 Β· β±οΈ 15.08.2024):
Auto ViML (π₯22 Β· β 530) - Automatically Build Multiple ML Models with a Single Line of Code... Apache-2
- [GitHub](https://github.com/AutoViML/Auto_ViML) (π¨βπ» 9 Β· π 100 Β· π¦ 28 Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/autoviml) (π₯ 8K / month Β· π¦ 3 Β· β±οΈ 30.01.2025):
AlphaPy (π₯21 Β· β 1.4K) - Python AutoML for Trading Systems and Sports Betting. Apache-2
- [GitHub](https://github.com/ScottfreeLLC/AlphaPy) (π¨βπ» 5 Β· π 220 Β· π¦ 7 Β· π 44 - 34% open Β· β±οΈ 15.12.2024):
- [PyPi](https://pypi.org/project/alphapy) (π₯ 1.7K / month Β· β±οΈ 29.08.2020):
opytimizer (π₯18 Β· β 610) - Opytimizer is a Python library consisting of meta-heuristic.. Apache-2
- [GitHub](https://github.com/gugarosa/opytimizer) (π¨βπ» 4 Β· π 41 Β· π¦ 19 Β· β±οΈ 18.08.2024):
- [PyPi](https://pypi.org/project/opytimizer) (π₯ 840 / month Β· β±οΈ 18.08.2024):
shap-hypetune (π₯18 Β· β 570 Β· π€) - A python package for simultaneous Hyperparameters Tuning and.. MIT
- [GitHub](https://github.com/cerlymarco/shap-hypetune) (π¨βπ» 3 Β· π 69 Β· π¦ 21 Β· π 36 - 11% open Β· β±οΈ 21.02.2024):
- [PyPi](https://pypi.org/project/shap-hypetune) (π₯ 2.1K / month Β· π¦ 2 Β· β±οΈ 21.02.2024):
Show 32 hidden projects...
- TPOT (π₯32 Β· β 9.8K Β· π€) - A Python Automated Machine Learning tool that optimizes..βοΈLGPL-3.0

- scikit-optimize (π₯32 Β· β 2.8K Β· π) - Sequential model-based optimization with a.. BSD-3
- NNI (π₯31 Β· β 14K Β· π) - An open source AutoML toolkit for automate machine learning lifecycle,.. MIT
- auto-sklearn (π₯31 Β· β 7.7K Β· π) - Automated Machine Learning with scikit-learn. BSD-3

- Hyperas (π₯27 Β· β 2.2K Β· π) - Keras + Hyperopt: A very simple wrapper for convenient.. MIT

- SMAC3 (π₯25 Β· β 1.1K) - SMAC3: A Versatile Bayesian Optimization Package for.. βοΈBSD-1-Clause
- GPyOpt (π₯25 Β· β 940 Β· π) - Gaussian Process Optimization using GPy. BSD-3
- lightwood (π₯25 Β· β 460) - Lightwood is Legos for Machine Learning. βοΈGPL-3.0

- AdaNet (π₯24 Β· β 3.5K Β· π) - Fast and flexible AutoML with learning guarantees. Apache-2

- auto_ml (π₯24 Β· β 1.6K Β· π) - [UNMAINTAINED] Automated machine learning for analytics & production. MIT
- Orion (π₯24 Β· β 290 Β· π) - Asynchronous Distributed Hyperparameter Optimization. BSD-3
- HpBandSter (π₯23 Β· β 620 Β· π) - a distributed Hyperband implementation on Steroids. BSD-3
- igel (π₯21 Β· β 3.1K Β· π) - a delightful machine learning tool that allows you to train, test, and.. MIT
- MLBox (π₯21 Β· β 1.5K Β· π) - MLBox is a powerful Automated Machine Learning python library. βοΈBSD-1-Clause
- Test Tube (π₯21 Β· β 740 Β· π) - Python library to easily log experiments and parallelize.. MIT
- Neuraxle (π₯21 Β· β 610 Β· π) - The worlds cleanest AutoML library - Do hyperparameter tuning.. Apache-2
- sklearn-deap (π₯20 Β· β 770 Β· π) - Use evolutionary algorithms instead of gridsearch in.. MIT

- optunity (π₯20 Β· β 420 Β· π) - optimization routines for hyperparameter tuning. BSD-3
- Dragonfly (π₯19 Β· β 870 Β· π) - An open source python library for scalable Bayesian optimisation. MIT
- Auto Tune Models (π₯19 Β· β 530 Β· π) - Auto Tune Models - A multi-tenant, multi-data system for.. MIT
- Sherpa (π₯19 Β· β 330 Β· π) - Hyperparameter optimization that enables researchers to.. βοΈGPL-3.0
- Advisor (π₯18 Β· β 1.6K Β· π) - Open-source implementation of Google Vizier for hyper parameters.. Apache-2
- Xcessiv (π₯18 Β· β 1.3K Β· π) - A web-based application for quick, scalable, and automated.. Apache-2
- HyperparameterHunter (π₯17 Β· β 700 Β· π) - Easy hyperparameter optimization and automatic result.. MIT
- automl-gs (π₯16 Β· β 1.9K Β· π) - Provide an input CSV and a target field to predict, generate a.. MIT
- Parfit (π₯15 Β· β 200 Β· π) - A package for parallelizing the fit and flexibly scoring of.. MIT

- ENAS (π₯13 Β· β 2.7K Β· π) - PyTorch implementation of Efficient Neural Architecture Search via.. Apache-2
- Auptimizer (π₯13 Β· β 200 Β· π) - An automatic ML model optimization tool. βοΈGPL-3.0
- Hypermax (π₯13 Β· β 110 Β· π) - Better, faster hyper-parameter optimization. BSD-3
- model_search (π₯11 Β· β 3.3K Β· π) - AutoML algorithms for model architecture search at scale. Apache-2
- Devol (π₯11 Β· β 950 Β· π) - Genetic neural architecture search with Keras. MIT
- Hypertunity (π₯10 Β· β 140 Β· π) - A toolset for black-box hyperparameter optimisation. Apache-2
Reinforcement Learning
Libraries for building and evaluating reinforcement learning & agent-based systems.
FinRL (π₯31 Β· β 11K) - FinRL: Financial Reinforcement Learning. MIT
- [GitHub](https://github.com/AI4Finance-Foundation/FinRL) (π¨βπ» 120 Β· π 2.5K Β· π¦ 63 Β· π 730 - 33% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/finrl) (π₯ 2.1K / month Β· β±οΈ 08.01.2022):
TF-Agents (π₯28 Β· β 2.8K) - TF-Agents: A reliable, scalable and easy to use TensorFlow.. Apache-2

- [GitHub](https://github.com/tensorflow/agents) (π¨βπ» 150 Β· π 720 Β· π 670 - 29% open Β· β±οΈ 23.01.2025):
- [PyPi](https://pypi.org/project/tf-agents) (π₯ 33K / month Β· π¦ 14 Β· β±οΈ 14.12.2023):
ViZDoom (π₯28 Β· β 1.8K) - Reinforcement Learning environments based on the 1993 game Doom. MIT
- [GitHub](https://github.com/Farama-Foundation/ViZDoom) (π¨βπ» 55 Β· π 390 Β· π₯ 12K Β· π¦ 300 Β· π 460 - 6% open Β· β±οΈ 08.09.2024):
- [PyPi](https://pypi.org/project/vizdoom) (π₯ 9.3K / month Β· π¦ 15 Β· β±οΈ 20.08.2024):
Dopamine (π₯27 Β· β 11K) - Dopamine is a research framework for fast prototyping of.. Apache-2

- [GitHub](https://github.com/google/dopamine) (π¨βπ» 15 Β· π 1.4K Β· π¦ 21 Β· π 190 - 54% open Β· β±οΈ 04.11.2024):
- [PyPi](https://pypi.org/project/dopamine-rl) (π₯ 23K / month Β· π¦ 10 Β· β±οΈ 31.10.2024):
Acme (π₯27 Β· β 3.6K) - A library of reinforcement learning components and agents. Apache-2

- [GitHub](https://github.com/google-deepmind/acme) (π¨βπ» 86 Β· π 440 Β· π¦ 230 Β· π 270 - 23% open Β· β±οΈ 14.01.2025):
- [PyPi](https://pypi.org/project/dm-acme) (π₯ 1.6K / month Β· π¦ 3 Β· β±οΈ 10.02.2022):
- [Conda](https://anaconda.org/conda-forge/dm-acme) (π₯ 11K Β· β±οΈ 04.01.2025):
TensorForce (π₯26 Β· β 3.3K Β· π€) - Tensorforce: a TensorFlow library for applied.. Apache-2

- [GitHub](https://github.com/tensorforce/tensorforce) (π¨βπ» 85 Β· π 530 Β· π¦ 460 Β· π 680 - 6% open Β· β±οΈ 31.07.2024):
- [PyPi](https://pypi.org/project/tensorforce) (π₯ 1.1K / month Β· π¦ 4 Β· β±οΈ 30.08.2021):
PARL (π₯25 Β· β 3.3K) - A high-performance distributed training framework for Reinforcement.. Apache-2

- [GitHub](https://github.com/PaddlePaddle/PARL) (π¨βπ» 46 Β· π 810 Β· π¦ 130 Β· π 540 - 24% open Β· β±οΈ 24.01.2025):
- [PyPi](https://pypi.org/project/parl) (π₯ 1.7K / month Β· π¦ 1 Β· β±οΈ 13.05.2022):
RLax (π₯24 Β· β 1.3K) - A library of reinforcement learning building blocks in JAX. Apache-2

- [GitHub](https://github.com/google-deepmind/rlax) (π¨βπ» 21 Β· π 88 Β· π¦ 300 Β· π 26 - 30% open Β· β±οΈ 15.01.2025):
- [PyPi](https://pypi.org/project/rlax) (π₯ 23K / month Β· π¦ 11 Β· β±οΈ 09.01.2023):

ReAgent (π₯22 Β· β 3.6K) - A platform for Reasoning systems (Reinforcement Learning,.. BSD-3

- [GitHub](https://github.com/facebookresearch/ReAgent) (π¨βπ» 170 Β· π 510 Β· π 160 - 53% open Β· β±οΈ 06.01.2025):
- [PyPi](https://pypi.org/project/reagent) (π₯ 72 / month Β· β±οΈ 27.05.2020):
PFRL (π₯22 Β· β 1.2K) - PFRL: a PyTorch-based deep reinforcement learning library. MIT
- [GitHub](https://github.com/pfnet/pfrl) (π¨βπ» 20 Β· π 150 Β· π¦ 120 Β· π 79 - 41% open Β· β±οΈ 04.08.2024):
- [PyPi](https://pypi.org/project/pfrl) (π₯ 550 / month Β· π¦ 1 Β· β±οΈ 16.07.2023):
rliable (π₯13 Β· β 800) - [NeurIPS21 Outstanding Paper] Library for reliable evaluation on RL.. Apache-2
- [GitHub](https://github.com/google-research/rliable) (π¨βπ» 9 Β· π 48 Β· π¦ 180 Β· π 19 - 15% open Β· β±οΈ 12.08.2024):
- [PyPi](https://pypi.org/project/rliable`):
Show 12 hidden projects...
- OpenAI Gym (π₯39 Β· β 35K Β· π) - A toolkit for developing and comparing reinforcement learning..MIT
- baselines (π₯29 Β· β 16K Β· π) - OpenAI Baselines: high-quality implementations of reinforcement.. MIT
- TensorLayer (π₯27 Β· β 7.3K Β· π) - Deep Learning and Reinforcement Learning Library for.. Apache-2

- keras-rl (π₯27 Β· β 5.5K Β· π) - Deep Reinforcement Learning for Keras. MIT

- garage (π₯25 Β· β 1.9K Β· π) - A toolkit for reproducible reinforcement learning research. MIT

- Stable Baselines (π₯24 Β· β 4.2K Β· π) - A fork of OpenAI Baselines, implementations of.. MIT
- ChainerRL (π₯24 Β· β 1.2K Β· π) - ChainerRL is a deep reinforcement learning library built on top of.. MIT
- TRFL (π₯22 Β· β 3.1K Β· π) - TensorFlow Reinforcement Learning. Apache-2

- Coach (π₯21 Β· β 2.3K Β· π) - Reinforcement Learning Coach by Intel AI Lab enables easy.. Apache-2
- SerpentAI (π₯19 Β· β 6.8K Β· π) - Game Agent Framework. Helping you create AIs / Bots that learn to.. MIT
- DeepMind Lab (π₯17 Β· β 7.2K Β· π) - A customisable 3D platform for agent-based AI research. βUnlicensed
- Maze (π₯13 Β· β 270 Β· π) - Maze Applied Reinforcement Learning Framework. βοΈCustom

Recommender Systems
Libraries for building and evaluating recommendation systems.
Recommenders (π₯34 Β· β 20K) - Best Practices on Recommendation Systems. MIT
- [GitHub](https://github.com/recommenders-team/recommenders) (π¨βπ» 140 Β· π 3.1K Β· π₯ 670 Β· π¦ 150 Β· π 880 - 18% open Β· β±οΈ 19.01.2025):
- [PyPi](https://pypi.org/project/recommenders) (π₯ 20K / month Β· π¦ 4 Β· β±οΈ 24.12.2024):
torchrec (π₯30 Β· β 2K) - Pytorch domain library for recommendation systems. BSD-3
- [GitHub](https://github.com/pytorch/torchrec) (π¨βπ» 320 Β· π 470 Β· π¦ 170 Β· π 470 - 72% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/torchrec-nightly-cpu) (π₯ 3.9K / month Β· β±οΈ 12.05.2022):
Cornac (π₯28 Β· β 920) - A Comparative Framework for Multimodal Recommender Systems. Apache-2
- [GitHub](https://github.com/PreferredAI/cornac) (π¨βπ» 22 Β· π 150 Β· π¦ 260 Β· π 160 - 14% open Β· β±οΈ 26.01.2025):
- [PyPi](https://pypi.org/project/cornac) (π₯ 40K / month Β· π¦ 18 Β· β±οΈ 24.12.2024):
- [Conda](https://anaconda.org/conda-forge/cornac) (π₯ 750K Β· β±οΈ 24.12.2024):
scikit-surprise (π₯27 Β· β 6.5K Β· π€) - A Python scikit for building and analyzing recommender.. BSD-3
- [GitHub](https://github.com/NicolasHug/Surprise) (π¨βπ» 46 Β· π 1K Β· π¦ 21 Β· π 400 - 21% open Β· β±οΈ 14.06.2024):
- [PyPi](https://pypi.org/project/scikit-surprise) (π₯ 160K / month Β· π¦ 37 Β· β±οΈ 19.05.2024):
- [Conda](https://anaconda.org/conda-forge/scikit-surprise) (π₯ 460K Β· β±οΈ 20.05.2024):
TF Ranking (π₯25 Β· β 2.8K Β· π€) - Learning to Rank in TensorFlow. Apache-2

- [GitHub](https://github.com/tensorflow/ranking) (π¨βπ» 36 Β· π 480 Β· π 330 - 27% open Β· β±οΈ 18.03.2024):
- [PyPi](https://pypi.org/project/tensorflow_ranking) (π₯ 52K / month Β· π¦ 15 Β· β±οΈ 18.03.2024):
TF Recommenders (π₯25 Β· β 1.9K) - TensorFlow Recommenders is a library for building.. Apache-2

- [GitHub](https://github.com/tensorflow/recommenders) (π¨βπ» 43 Β· π 280 Β· π 450 - 59% open Β· β±οΈ 16.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-recommenders) (π₯ 220K / month Β· π¦ 2 Β· β±οΈ 03.02.2023):
RecBole (π₯24 Β· β 3.6K) - A unified, comprehensive and efficient recommendation library. MIT

- [GitHub](https://github.com/RUCAIBox/RecBole) (π¨βπ» 74 Β· π 620 Β· π 1K - 28% open Β· β±οΈ 05.09.2024):
- [PyPi](https://pypi.org/project/recbole) (π₯ 54K / month Β· π¦ 2 Β· β±οΈ 31.10.2023):
- [Conda](https://anaconda.org/aibox/recbole) (π₯ 7.4K Β· β±οΈ 01.11.2023):
Show 10 hidden projects...
- implicit (π₯29 Β· β 3.6K Β· π) - Fast Python Collaborative Filtering for Implicit Feedback Datasets.MIT
- lightfm (π₯28 Β· β 4.8K Β· π) - A Python implementation of LightFM, a hybrid recommendation.. Apache-2
- lkpy (π₯27 Β· β 280) - Python recommendation toolkit. MIT
- tensorrec (π₯21 Β· β 1.3K Β· π) - A TensorFlow recommendation algorithm and framework in.. Apache-2

- fastFM (π₯21 Β· β 1.1K Β· π) - fastFM: A Library for Factorization Machines. BSD-3
- recmetrics (π₯19 Β· β 580 Β· π) - A library of metrics for evaluating recommender systems. MIT
- Spotlight (π₯18 Β· β 3K Β· π) - Deep recommender models using PyTorch. MIT

- Case Recommender (π₯18 Β· β 490 Β· π) - Case Recommender: A Flexible and Extensible Python.. MIT

- OpenRec (π₯17 Β· β 410 Β· π) - OpenRec is an open-source and modular library for neural network-.. Apache-2
- Collie (π₯17 Β· β 110 Β· π) - A library for preparing, training, and evaluating scalable deep.. BSD-3

Privacy Machine Learning
Libraries for encrypted and privacy-preserving machine learning using methods like federated learning & differential privacy.
PySyft (π₯33 Β· β 9.6K) - Perform data science on data that remains in someone elses server. Apache-2

- [GitHub](https://github.com/OpenMined/PySyft) (π¨βπ» 520 Β· π 2K Β· π₯ 2.5K Β· π¦ 1 Β· π 3.4K - 1% open Β· β±οΈ 03.11.2024):
- [PyPi](https://pypi.org/project/syft) (π₯ 24K / month Β· π¦ 4 Β· β±οΈ 03.11.2024):
Opacus (π₯31 Β· β 1.7K) - Training PyTorch models with differential privacy. Apache-2

- [GitHub](https://github.com/pytorch/opacus) (π¨βπ» 84 Β· π 340 Β· π₯ 140 Β· π¦ 980 Β· π 320 - 21% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/opacus) (π₯ 95K / month Β· π¦ 36 Β· β±οΈ 03.08.2024):
- [Conda](https://anaconda.org/conda-forge/opacus) (π₯ 21K Β· β±οΈ 02.01.2025):
TensorFlow Privacy (π₯25 Β· β 1.9K) - Library for training machine learning models with.. Apache-2

- [GitHub](https://github.com/tensorflow/privacy) (π¨βπ» 59 Β· π 440 Β· π₯ 190 Β· π 210 - 55% open Β· β±οΈ 15.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-privacy) (π₯ 20K / month Β· π¦ 21 Β· β±οΈ 14.02.2024):
TFEncrypted (π₯25 Β· β 1.2K) - A Framework for Encrypted Machine Learning in TensorFlow. Apache-2

- [GitHub](https://github.com/tf-encrypted/tf-encrypted) (π¨βπ» 29 Β· π 210 Β· π¦ 68 Β· π 440 - 32% open Β· β±οΈ 25.09.2024):
- [PyPi](https://pypi.org/project/tf-encrypted) (π₯ 2.1K / month Β· π¦ 9 Β· β±οΈ 16.11.2022):
FATE (π₯23 Β· β 5.8K) - An Industrial Grade Federated Learning Framework. Apache-2
- [GitHub](https://github.com/FederatedAI/FATE) (π¨βπ» 100 Β· π 1.6K Β· π 2.1K - 3% open Β· β±οΈ 19.11.2024):
- [PyPi](https://pypi.org/project/ETAF) (π₯ 1 / month Β· β±οΈ 06.05.2020):
CrypTen (π₯23 Β· β 1.6K) - A framework for Privacy Preserving Machine Learning. MIT

- [GitHub](https://github.com/facebookresearch/CrypTen) (π¨βπ» 39 Β· π 280 Β· π¦ 48 Β· π 280 - 28% open Β· β±οΈ 23.11.2024):
- [PyPi](https://pypi.org/project/crypten) (π₯ 440 / month Β· π¦ 1 Β· β±οΈ 08.12.2022):
Show 1 hidden projects...
- PipelineDP (π₯19 Β· β 280) - PipelineDP is a Python framework for applying differentially..Apache-2
Workflow & Experiment Tracking
Libraries to organize, track, and visualize machine learning experiments.
mlflow (π₯44 Β· β 19K) - Open source platform for the machine learning lifecycle. Apache-2
- [GitHub](https://github.com/mlflow/mlflow) (π¨βπ» 820 Β· π 4.3K Β· π¦ 52K Β· π 4.4K - 38% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/mlflow) (π₯ 14M / month Β· π¦ 970 Β· β±οΈ 30.01.2025):
- [Conda](https://anaconda.org/conda-forge/mlflow) (π₯ 2.9M Β· β±οΈ 31.01.2025):
wandb client (π₯42 Β· β 9.4K) - The AI developer platform. Use Weights & Biases to train and fine-.. MIT
- [GitHub](https://github.com/wandb/wandb) (π¨βπ» 210 Β· π 690 Β· π₯ 560 Β· π¦ 65K Β· π 3.5K - 17% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/wandb) (π₯ 17M / month Β· π¦ 1.6K Β· β±οΈ 05.02.2025):
- [Conda](https://anaconda.org/conda-forge/wandb) (π₯ 940K Β· β±οΈ 29.01.2025):
Tensorboard (π₯42 Β· β 6.8K) - TensorFlows Visualization Toolkit. Apache-2

- [GitHub](https://github.com/tensorflow/tensorboard) (π¨βπ» 320 Β· π 1.7K Β· π¦ 290K Β· π 1.9K - 35% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/tensorboard) (π₯ 24M / month Β· π¦ 2.2K Β· β±οΈ 25.09.2024):
- [Conda](https://anaconda.org/conda-forge/tensorboard) (π₯ 5.3M Β· β±οΈ 10.12.2024):
DVC (π₯41 Β· β 14K) - Data Versioning and ML Experiments. Apache-2
- [GitHub](https://github.com/iterative/dvc) (π¨βπ» 310 Β· π 1.2K Β· π¦ 21K Β· π 4.7K - 5% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/dvc) (π₯ 750K / month Β· π¦ 140 Β· β±οΈ 13.01.2025):
- [Conda](https://anaconda.org/conda-forge/dvc) (π₯ 2.6M Β· β±οΈ 13.01.2025):
SageMaker SDK (π₯40 Β· β 2.1K) - A library for training and deploying machine learning.. Apache-2


- [GitHub](https://github.com/aws/sagemaker-python-sdk) (π¨βπ» 470 Β· π 1.1K Β· π¦ 5.2K Β· π 1.6K - 22% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/sagemaker) (π₯ 23M / month Β· π¦ 160 Β· β±οΈ 01.02.2025):
- [Conda](https://anaconda.org/conda-forge/sagemaker-python-sdk) (π₯ 1.3M Β· β±οΈ 01.02.2025):
PyCaret (π₯35 Β· β 9.1K) - An open-source, low-code machine learning library in Python. MIT
- [GitHub](https://github.com/pycaret/pycaret) (π¨βπ» 140 Β· π 1.8K Β· π₯ 720 Β· π¦ 7K Β· π 2.3K - 16% open Β· β±οΈ 30.08.2024):
- [PyPi](https://pypi.org/project/pycaret) (π₯ 300K / month Β· π¦ 31 Β· β±οΈ 28.04.2024):
- [Conda](https://anaconda.org/conda-forge/pycaret) (π₯ 63K Β· β±οΈ 20.01.2025):
Metaflow (π₯35 Β· β 8.5K) - Open Source AI/ML Platform. Apache-2
- [GitHub](https://github.com/Netflix/metaflow) (π¨βπ» 100 Β· π 790 Β· π¦ 800 Β· π 750 - 41% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/metaflow) (π₯ 410K / month Β· π¦ 49 Β· β±οΈ 31.01.2025):
- [Conda](https://anaconda.org/conda-forge/metaflow) (π₯ 260K Β· β±οΈ 05.02.2025):
tensorboardX (π₯34 Β· β 7.9K) - tensorboard for pytorch (and chainer, mxnet, numpy, ...). MIT
- [GitHub](https://github.com/lanpa/tensorboardX) (π¨βπ» 82 Β· π 860 Β· π₯ 460 Β· π¦ 53K Β· π 460 - 17% open Β· β±οΈ 01.01.2025):
- [PyPi](https://pypi.org/project/tensorboardX) (π₯ 2.6M / month Β· π¦ 620 Β· β±οΈ 20.08.2023):
- [Conda](https://anaconda.org/conda-forge/tensorboardx) (π₯ 1.3M Β· β±οΈ 20.12.2024):
snakemake (π₯34 Β· β 2.4K) - This is the development home of the workflow management system.. MIT
- [GitHub](https://github.com/snakemake/snakemake) (π¨βπ» 350 Β· π 560 Β· π¦ 2.2K Β· π 1.9K - 61% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/snakemake) (π₯ 87K / month Β· π¦ 260 Β· β±οΈ 08.01.2025):
- [Conda](https://anaconda.org/bioconda/snakemake) (π₯ 1.3M Β· β±οΈ 08.01.2025):
ClearML (π₯33 Β· β 5.8K) - ClearML - Auto-Magical CI/CD to streamline your AI workload... Apache-2
- [GitHub](https://github.com/clearml/clearml) (π¨βπ» 100 Β· π 660 Β· π₯ 3.1K Β· π¦ 1.6K Β· π 1.1K - 46% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/clearml) (π₯ 380K / month Β· π¦ 53 Β· β±οΈ 05.02.2025):
- [Docker Hub](https://hub.docker.com/r/allegroai/trains) (π₯ 30K Β· β±οΈ 05.10.2020):
kaggle (π₯32 Β· β 6.4K) - Official Kaggle API. Apache-2
- [GitHub](https://github.com/Kaggle/kaggle-api) (π¨βπ» 49 Β· π 1.1K Β· π¦ 21 Β· π 500 - 29% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/kaggle) (π₯ 250K / month Β· π¦ 210 Β· β±οΈ 24.07.2024):
- [Conda](https://anaconda.org/conda-forge/kaggle) (π₯ 210K Β· β±οΈ 13.01.2025):
aim (π₯32 Β· β 5.3K) - Aim An easy-to-use & supercharged open-source experiment tracker. Apache-2
- [GitHub](https://github.com/aimhubio/aim) (π¨βπ» 80 Β· π 330 Β· π¦ 810 Β· π 1.1K - 36% open Β· β±οΈ 20.01.2025):
- [PyPi](https://pypi.org/project/aim) (π₯ 170K / month Β· π¦ 41 Β· β±οΈ 05.02.2025):
- [Conda](https://anaconda.org/conda-forge/aim) (π₯ 110K Β· β±οΈ 14.06.2024):
AzureML SDK (π₯32 Β· β 4.1K) - Python notebooks with ML and deep learning examples with Azure.. MIT
- [GitHub](https://github.com/Azure/MachineLearningNotebooks) (π¨βπ» 64 Β· π 2.5K Β· π₯ 660 Β· π 1.5K - 26% open Β· β±οΈ 16.12.2024):
- [PyPi](https://pypi.org/project/azureml-sdk) (π₯ 390K / month Β· π¦ 31 Β· β±οΈ 10.12.2024):
VisualDL (π₯29 Β· β 4.8K) - Deep Learning Visualization Toolkit. Apache-2

- [GitHub](https://github.com/PaddlePaddle/VisualDL) (π¨βπ» 36 Β· π 630 Β· π₯ 490 Β· π¦ 2 Β· π 500 - 28% open Β· β±οΈ 22.01.2025):
- [PyPi](https://pypi.org/project/visualdl) (π₯ 140K / month Β· π¦ 82 Β· β±οΈ 30.10.2024):
Neptune.ai (π₯29 Β· β 600) - The experiment tracker for foundation model training. Apache-2
- [GitHub](https://github.com/neptune-ai/neptune-client) (π¨βπ» 55 Β· π 64 Β· π¦ 740 Β· π 250 - 13% open Β· β±οΈ 19.12.2024):
- [PyPi](https://pypi.org/project/neptune-client) (π₯ 520K / month Β· π¦ 77 Β· β±οΈ 31.10.2024):
- [Conda](https://anaconda.org/conda-forge/neptune-client) (π₯ 320K Β· β±οΈ 31.10.2024):
livelossplot (π₯28 Β· β 1.3K) - Live training loss plot in Jupyter Notebook for Keras,.. MIT

- [GitHub](https://github.com/stared/livelossplot) (π¨βπ» 17 Β· π 140 Β· π¦ 1.8K Β· π 79 - 7% open Β· β±οΈ 03.01.2025):
- [PyPi](https://pypi.org/project/livelossplot) (π₯ 19K / month Β· π¦ 16 Β· β±οΈ 03.01.2025):
sacred (π₯27 Β· β 4.3K Β· π) - Sacred is a tool to help you configure, organize, log and reproduce.. MIT
- [GitHub](https://github.com/IDSIA/sacred) (π¨βπ» 110 Β· π 380 Β· π 560 - 18% open Β· β±οΈ 26.11.2024):
- [PyPi](https://pypi.org/project/sacred) (π₯ 23K / month Β· π¦ 60 Β· β±οΈ 26.11.2024):
- [Conda](https://anaconda.org/conda-forge/sacred) (π₯ 7.9K Β· β±οΈ 28.11.2023):
Labml (π₯26 Β· β 2.1K) - Monitor deep learning model training and hardware usage from your mobile.. MIT
- [GitHub](https://github.com/labmlai/labml) (π¨βπ» 9 Β· π 140 Β· π¦ 200 Β· π 50 - 12% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/labml) (π₯ 6.2K / month Β· π¦ 14 Β· β±οΈ 15.09.2024):
ml-metadata (π₯26 Β· β 630) - For recording and retrieving metadata associated with ML.. Apache-2
- [GitHub](https://github.com/google/ml-metadata) (π¨βπ» 21 Β· π 150 Β· π₯ 3K Β· π¦ 630 Β· π 120 - 38% open Β· β±οΈ 24.10.2024):
- [PyPi](https://pypi.org/project/ml-metadata) (π₯ 160K / month Β· π¦ 31 Β· β±οΈ 01.10.2024):
TNT (π₯25 Β· β 1.7K) - A lightweight library for PyTorch training tools and utilities. BSD-3

- [GitHub](https://github.com/pytorch/tnt) (π¨βπ» 140 Β· π 280 Β· π 150 - 56% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/torchnet) (π₯ 4.6K / month Β· π¦ 24 Β· β±οΈ 29.07.2018):
gokart (π₯25 Β· β 320) - Gokart solves reproducibility, task dependencies, constraints of good code,.. MIT
- [GitHub](https://github.com/m3dev/gokart) (π¨βπ» 42 Β· π 61 Β· π¦ 84 Β· π 86 - 26% open Β· β±οΈ 31.01.2025):
- [PyPi](https://pypi.org/project/gokart) (π₯ 6.8K / month Β· π¦ 8 Β· β±οΈ 13.01.2025):
quinn (π₯24 Β· β 660) - pyspark methods to enhance developer productivity. Apache-2

- [GitHub](https://github.com/mrpowers-io/quinn) (π¨βπ» 31 Β· π 98 Β· π₯ 56 Β· π¦ 90 Β· π 130 - 27% open Β· β±οΈ 06.12.2024):
- [PyPi](https://pypi.org/project/quinn) (π₯ 740K / month Β· π¦ 7 Β· β±οΈ 13.02.2024):
keepsake (π₯18 Β· β 1.7K) - Version control for machine learning. Apache-2
- [GitHub](https://github.com/replicate/keepsake) (π¨βπ» 18 Β· π 71 Β· π 190 - 66% open Β· β±οΈ 03.12.2024):
- [PyPi](https://pypi.org/project/keepsake) (π₯ 350 / month Β· π¦ 1 Β· β±οΈ 25.01.2021):
CometML (π₯15) - Supercharging Machine Learning. MIT
- [GitHub]():
- [PyPi](https://pypi.org/project/comet_ml) (π₯ 200K / month Β· π¦ 88 Β· β±οΈ 03.02.2025):
- [Conda](https://anaconda.org/anaconda/comet_ml):
Show 16 hidden projects...
- Catalyst (π₯28 Β· β 3.3K Β· π) - Accelerated deep learning R&D.Apache-2

- knockknock (π₯27 Β· β 2.8K Β· π) - Knock Knock: Get notified when your training ends with only two.. MIT
- Guild AI (π₯23 Β· β 880 Β· π) - Experiment tracking, ML developer tools. Apache-2
- SKLL (π₯23 Β· β 550) - SciKit-Learn Laboratory (SKLL) makes it easy to run machine.. βUnlicensed

- hiddenlayer (π₯22 Β· β 1.8K Β· π) - Neural network graphs and training metrics for.. MIT



- lore (π₯22 Β· β 1.6K Β· π) - Lore makes machine learning approachable for Software Engineers and.. MIT
- Studio.ml (π₯22 Β· β 380 Β· π) - Studio: Simplify and expedite model building process. Apache-2
- TensorBoard Logger (π₯21 Β· β 630 Β· π) - Log TensorBoard events without touching TensorFlow. MIT
- TensorWatch (π₯20 Β· β 3.4K Β· π) - Debugging, monitoring and visualization for Python Machine.. MIT
- MXBoard (π₯20 Β· β 320 Β· π) - Logging MXNet data for visualization in TensorBoard. Apache-2

- datmo (π₯18 Β· β 340 Β· π) - Open source production model management tool for data scientists. MIT
- chitra (π₯18 Β· β 220 Β· π€) - A multi-functional library for full-stack Deep Learning... Apache-2
- steppy (π₯17 Β· β 130 Β· π) - Lightweight, Python library for fast and reproducible experimentation. MIT
- caliban (π₯16 Β· β 500 Β· π) - Research workflows made easy, locally and in the Cloud. Apache-2
- ModelChimp (π₯13 Β· β 130 Β· π) - Experiment tracking for machine and deep learning projects. BSD-2
- traintool (π₯9 Β· β 12 Β· π) - Train off-the-shelf machine learning models in one.. Apache-2



Model Serialization & Deployment
Libraries to serialize models to files, convert between a variety of model formats, and optimize models for deployment.
onnx (π₯43 Β· β 18K) - Open standard for machine learning interoperability. Apache-2
- [GitHub](https://github.com/onnx/onnx) (π¨βπ» 330 Β· π 3.7K Β· π₯ 23K Β· π¦ 40K Β· π 2.9K - 11% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/onnx) (π₯ 5.8M / month Β· π¦ 1.1K Β· β±οΈ 01.10.2024):
- [Conda](https://anaconda.org/conda-forge/onnx) (π₯ 1.6M Β· β±οΈ 31.12.2024):
triton (π₯43 Β· β 14K) - Development repository for the Triton language and compiler. MIT
- [GitHub](https://github.com/triton-lang/triton) (π¨βπ» 370 Β· π 1.7K Β· π¦ 52K Β· π 1.6K - 42% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/triton) (π₯ 18M / month Β· π¦ 340 Β· β±οΈ 22.01.2025):
huggingface_hub (π₯38 Β· β 2.3K) - The official Python client for the Huggingface Hub. Apache-2
- [GitHub](https://github.com/huggingface/huggingface_hub) (π¨βπ» 220 Β· π 600 Β· π 1.1K - 15% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/huggingface_hub) (π₯ 52M / month Β· π¦ 2.4K Β· β±οΈ 30.01.2025):
- [Conda](https://anaconda.org/conda-forge/huggingface_hub) (π₯ 2.7M Β· β±οΈ 31.01.2025):
Core ML Tools (π₯36 Β· β 4.6K) - Core ML tools contain supporting tools for Core ML model.. BSD-3
- [GitHub](https://github.com/apple/coremltools) (π¨βπ» 180 Β· π 660 Β· π₯ 13K Β· π¦ 4.4K Β· π 1.5K - 24% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/coremltools) (π₯ 600K / month Β· π¦ 87 Β· β±οΈ 21.01.2025):
- [Conda](https://anaconda.org/conda-forge/coremltools) (π₯ 87K Β· β±οΈ 27.12.2024):
BentoML (π₯35 Β· β 7.3K) - The easiest way to serve AI apps and models - Build Model Inference.. Apache-2
- [GitHub](https://github.com/bentoml/BentoML) (π¨βπ» 220 Β· π 800 Β· π₯ 650 Β· π¦ 2.4K Β· π 1.1K - 14% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/bentoml) (π₯ 99K / month Β· π¦ 33 Β· β±οΈ 04.02.2025):
TorchServe (π₯33 Β· β 4.3K) - Serve, optimize and scale PyTorch models in production. Apache-2

- [GitHub](https://github.com/pytorch/serve) (π¨βπ» 220 Β· π 870 Β· π₯ 7.6K Β· π¦ 800 Β· π 1.7K - 25% open Β· β±οΈ 20.12.2024):
- [PyPi](https://pypi.org/project/torchserve) (π₯ 52K / month Β· π¦ 22 Β· β±οΈ 30.09.2024):
- [Conda](https://anaconda.org/pytorch/torchserve) (π₯ 450K Β· β±οΈ 30.09.2024):
- [Docker Hub](https://hub.docker.com/r/pytorch/torchserve) (π₯ 1.4M Β· β 31 Β· β±οΈ 30.09.2024):
hls4ml (π₯29 Β· β 1.3K) - Machine learning on FPGAs using HLS. Apache-2


- [GitHub](https://github.com/fastmachinelearning/hls4ml) (π¨βπ» 63 Β· π 420 Β· π¦ 39 Β· π 460 - 41% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/hls4ml) (π₯ 1.6K / month Β· π¦ 1 Β· β±οΈ 09.12.2024):
- [Conda](https://anaconda.org/conda-forge/hls4ml) (π₯ 9.7K Β· β±οΈ 16.06.2023):
Hummingbird (π₯26 Β· β 3.4K) - Hummingbird compiles trained ML models into tensor computation for.. MIT
- [GitHub](https://github.com/microsoft/hummingbird) (π¨βπ» 40 Β· π 280 Β· π₯ 780 Β· π 330 - 20% open Β· β±οΈ 24.10.2024):
- [PyPi](https://pypi.org/project/hummingbird-ml) (π₯ 7.7K / month Β· π¦ 7 Β· β±οΈ 25.10.2024):
- [Conda](https://anaconda.org/conda-forge/hummingbird-ml) (π₯ 55K Β· β±οΈ 20.11.2024):
nebullvm (π₯21 Β· β 8.4K Β· π€) - A collection of libraries to optimise AI model performances. Apache-2
- [GitHub](https://github.com/nebuly-ai/optimate) (π¨βπ» 40 Β· π 630 Β· π 200 - 49% open Β· β±οΈ 22.07.2024):
- [PyPi](https://pypi.org/project/nebullvm) (π₯ 1K / month Β· π¦ 2 Β· β±οΈ 18.06.2023):
tfdeploy (π₯17 Β· β 350) - Deploy tensorflow graphs for fast evaluation and export to.. BSD-3

- [GitHub](https://github.com/riga/tfdeploy) (π¨βπ» 4 Β· π 38 Β· π 34 - 32% open Β· β±οΈ 04.01.2025):
- [PyPi](https://pypi.org/project/tfdeploy) (π₯ 490 / month Β· β±οΈ 30.03.2017):
Show 10 hidden projects...
- mmdnn (π₯25 Β· β 5.8K Β· π) - MMdnn is a set of tools to help users inter-operate among different deep..MIT
- m2cgen (π₯25 Β· β 2.8K Β· π) - Transform ML models into a native code (Java, C, Python, Go,.. MIT
- sklearn-porter (π₯24 Β· β 1.3K Β· π) - Transpile trained scikit-learn estimators to C, Java,.. BSD-3

- cortex (π₯22 Β· β 8K Β· π) - Production infrastructure for machine learning at scale. Apache-2
- OMLT (π₯20 Β· β 300) - Represent trained machine learning models as Pyomo optimization.. βUnlicensed
- Larq Compute Engine (π₯20 Β· β 250) - Highly optimized inference engine for Binarized.. Apache-2
- pytorch2keras (π₯19 Β· β 860 Β· π) - PyTorch to Keras model convertor. MIT
- modelkit (π₯17 Β· β 160 Β· π€) - Toolkit for developing and maintaining ML models. MIT
- backprop (π₯15 Β· β 240 Β· π) - Backprop makes it simple to use, finetune, and deploy state-of-.. Apache-2
- ml-ane-transformers (π₯13 Β· β 2.6K Β· π) - Reference implementation of the Transformer.. βUnlicensed

Model Interpretability
Libraries to visualize, explain, debug, evaluate, and interpret machine learning models.
shap (π₯41 Β· β 23K) - A game theoretic approach to explain the output of any machine learning model. MIT
- [GitHub](https://github.com/shap/shap) (π¨βπ» 260 Β· π 3.3K Β· π¦ 25K Β· π 2.6K - 27% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/shap) (π₯ 8.1M / month Β· π¦ 750 Β· β±οΈ 27.06.2024):
- [Conda](https://anaconda.org/conda-forge/shap) (π₯ 5.1M Β· β±οΈ 10.12.2024):
Netron (π₯37 Β· β 29K) - Visualizer for neural network, deep learning and machine learning.. MIT


- [GitHub](https://github.com/lutzroeder/netron) (π¨βπ» 2 Β· π 2.8K Β· π₯ 46K Β· π¦ 640 Β· π 1.2K - 1% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/netron) (π₯ 26K / month Β· π¦ 83 Β· β±οΈ 01.02.2025):
arviz (π₯36 Β· β 1.6K) - Exploratory analysis of Bayesian models with Python. Apache-2
- [GitHub](https://github.com/arviz-devs/arviz) (π¨βπ» 170 Β· π 410 Β· π₯ 180 Β· π¦ 9K Β· π 880 - 20% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/arviz) (π₯ 1.6M / month Β· π¦ 310 Β· β±οΈ 28.09.2024):
- [Conda](https://anaconda.org/conda-forge/arviz) (π₯ 2.3M Β· β±οΈ 13.12.2024):
InterpretML (π₯34 Β· β 6.4K) - Fit interpretable models. Explain blackbox machine learning. MIT

- [GitHub](https://github.com/interpretml/interpret) (π¨βπ» 48 Β· π 740 Β· π¦ 830 Β· π 460 - 22% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/interpret) (π₯ 170K / month Β· π¦ 50 Β· β±οΈ 06.01.2025):
Captum (π₯34 Β· β 5.1K) - Model interpretability and understanding for PyTorch. BSD-3

- [GitHub](https://github.com/pytorch/captum) (π¨βπ» 120 Β· π 500 Β· π¦ 2.8K Β· π 590 - 42% open Β· β±οΈ 22.01.2025):
- [PyPi](https://pypi.org/project/captum) (π₯ 270K / month Β· π¦ 130 Β· β±οΈ 05.12.2023):
- [Conda](https://anaconda.org/conda-forge/captum) (π₯ 110K Β· β±οΈ 14.01.2025):
evaluate (π₯32 Β· β 2.1K) - Evaluate: A library for easily evaluating machine learning models.. Apache-2
- [GitHub](https://github.com/huggingface/evaluate) (π¨βπ» 130 Β· π 260 Β· π¦ 17K Β· π 360 - 60% open Β· β±οΈ 10.01.2025):
- [PyPi](https://pypi.org/project/evaluate) (π₯ 2.5M / month Β· π¦ 400 Β· β±οΈ 11.09.2024):
shapash (π₯31 Β· β 2.8K) - Shapash: User-friendly Explainability and Interpretability to.. Apache-2

- [GitHub](https://github.com/MAIF/shapash) (π¨βπ» 40 Β· π 330 Β· π¦ 190 Β· π 220 - 17% open Β· β±οΈ 10.01.2025):
- [PyPi](https://pypi.org/project/shapash) (π₯ 9.7K / month Β· π¦ 4 Β· β±οΈ 10.01.2025):
explainerdashboard (π₯31 Β· β 2.3K) - Quickly build Explainable AI dashboards that show the inner.. MIT
- [GitHub](https://github.com/oegedijk/explainerdashboard) (π¨βπ» 21 Β· π 330 Β· π¦ 590 Β· π 240 - 15% open Β· β±οΈ 29.12.2024):
- [PyPi](https://pypi.org/project/explainerdashboard) (π₯ 65K / month Β· π¦ 13 Β· β±οΈ 29.12.2024):
- [Conda](https://anaconda.org/conda-forge/explainerdashboard) (π₯ 60K Β· β±οΈ 18.03.2024):
fairlearn (π₯30 Β· β 2K) - A Python package to assess and improve fairness of machine learning.. MIT

- [GitHub](https://github.com/fairlearn/fairlearn) (π¨βπ» 91 Β· π 420 Β· π¦ 3 Β· π 500 - 31% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/fairlearn) (π₯ 150K / month Β· π¦ 63 Β· β±οΈ 11.12.2024):
- [Conda](https://anaconda.org/conda-forge/fairlearn) (π₯ 42K Β· β±οΈ 02.01.2025):
pyLDAvis (π₯30 Β· β 1.8K Β· π€) - Python library for interactive topic model visualization... BSD-3

- [GitHub](https://github.com/bmabey/pyLDAvis) (π¨βπ» 42 Β· π 360 Β· π¦ 6.9K Β· π 190 - 40% open Β· β±οΈ 29.04.2024):
- [PyPi](https://pypi.org/project/pyldavis) (π₯ 130K / month Β· π¦ 100 Β· β±οΈ 23.04.2023):
- [Conda](https://anaconda.org/conda-forge/pyldavis) (π₯ 91K Β· β±οΈ 14.01.2025):
DoWhy (π₯29 Β· β 7.3K) - DoWhy is a Python library for causal inference that supports explicit.. MIT
- [GitHub](https://github.com/py-why/dowhy) (π¨βπ» 100 Β· π 940 Β· π₯ 42 Β· π¦ 510 Β· π 490 - 27% open Β· β±οΈ 21.01.2025):
- [PyPi](https://pypi.org/project/dowhy) (π₯ 42K / month Β· π¦ 18 Β· β±οΈ 24.11.2024):
- [Conda](https://anaconda.org/conda-forge/dowhy) (π₯ 38K Β· β±οΈ 25.11.2024):
dtreeviz (π₯28 Β· β 3K) - A python library for decision tree visualization and model interpretation. MIT
- [GitHub](https://github.com/parrt/dtreeviz) (π¨βπ» 27 Β· π 340 Β· π¦ 1.4K Β· π 210 - 34% open Β· β±οΈ 29.08.2024):
- [PyPi](https://pypi.org/project/dtreeviz) (π₯ 110K / month Β· π¦ 53 Β· β±οΈ 07.07.2022):
- [Conda](https://anaconda.org/conda-forge/dtreeviz) (π₯ 97K Β· β±οΈ 13.07.2023):
Model Analysis (π₯28 Β· β 1.3K) - Model analysis tools for TensorFlow. Apache-2


- [GitHub](https://github.com/tensorflow/model-analysis) (π¨βπ» 59 Β· π 280 Β· π 97 - 39% open Β· β±οΈ 08.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-model-analysis) (π₯ 87K / month Β· π¦ 19 Β· β±οΈ 05.12.2024):
LIT (π₯27 Β· β 3.5K) - The Learning Interpretability Tool: Interactively analyze ML models to.. Apache-2
- [GitHub](https://github.com/PAIR-code/lit) (π¨βπ» 38 Β· π 360 Β· π¦ 42 Β· π 210 - 57% open Β· β±οΈ 20.12.2024):
- [PyPi](https://pypi.org/project/lit-nlp) (π₯ 3K / month Β· π¦ 3 Β· β±οΈ 20.12.2024):
- [Conda](https://anaconda.org/conda-forge/lit-nlp) (π₯ 110K Β· β±οΈ 16.06.2023):
Fairness 360 (π₯26 Β· β 2.5K) - A comprehensive set of fairness metrics for datasets and.. Apache-2
- [GitHub](https://github.com/Trusted-AI/AIF360) (π¨βπ» 73 Β· π 840 Β· π¦ 560 Β· π 300 - 65% open Β· β±οΈ 10.12.2024):
- [PyPi](https://pypi.org/project/aif360) (π₯ 18K / month Β· π¦ 32 Β· β±οΈ 08.04.2024):
- [Conda](https://anaconda.org/conda-forge/aif360) (π₯ 19K Β· β±οΈ 05.01.2025):
responsible-ai-widgets (π₯26 Β· β 1.5K) - Responsible AI Toolbox is a suite of tools providing.. MIT



- [GitHub](https://github.com/microsoft/responsible-ai-toolbox) (π¨βπ» 43 Β· π 380 Β· π 320 - 26% open Β· β±οΈ 27.01.2025):
- [PyPi](https://pypi.org/project/raiwidgets) (π₯ 8.7K / month Β· π¦ 6 Β· β±οΈ 08.07.2024):
imodels (π₯26 Β· β 1.4K) - Interpretable ML package for concise, transparent, and accurate.. MIT
- [GitHub](https://github.com/csinva/imodels) (π¨βπ» 24 Β· π 120 Β· π¦ 110 Β· π 95 - 38% open Β· β±οΈ 08.01.2025):
- [PyPi](https://pypi.org/project/imodels) (π₯ 28K / month Β· π¦ 9 Β· β±οΈ 15.10.2024):
CausalNex (π₯24 Β· β 2.3K Β· π€) - A Python library that helps data scientists to infer.. Apache-2


- [GitHub](https://github.com/mckinsey/causalnex) (π¨βπ» 40 Β· π 260 Β· π¦ 140 Β· π 140 - 17% open Β· β±οΈ 10.02.2024):
- [PyPi](https://pypi.org/project/causalnex) (π₯ 2.9K / month Β· π¦ 4 Β· β±οΈ 22.06.2023):
Explainability 360 (π₯23 Β· β 1.7K Β· π€) - Interpretability and explainability of data and.. Apache-2
- [GitHub](https://github.com/Trusted-AI/AIX360) (π¨βπ» 41 Β· π 300 Β· π¦ 110 Β· π 85 - 63% open Β· β±οΈ 16.07.2024):
- [PyPi](https://pypi.org/project/aix360) (π₯ 880 / month Β· π¦ 1 Β· β±οΈ 31.07.2023):
aequitas (π₯23 Β· β 710) - Bias Auditing & Fair ML Toolkit. MIT
- [GitHub](https://github.com/dssg/aequitas) (π¨βπ» 22 Β· π 120 Β· π¦ 180 Β· π 99 - 51% open Β· β±οΈ 11.09.2024):
- [PyPi](https://pypi.org/project/aequitas) (π₯ 22K / month Β· π¦ 8 Β· β±οΈ 30.01.2024):
ecco (π₯22 Β· β 2K) - Explain, analyze, and visualize NLP language models. Ecco creates.. BSD-3

- [GitHub](https://github.com/jalammar/ecco) (π¨βπ» 12 Β· π 160 Β· π₯ 140 Β· π¦ 32 Β· π 64 - 51% open Β· β±οΈ 15.08.2024):
- [PyPi](https://pypi.org/project/ecco) (π₯ 1K / month Β· π¦ 1 Β· β±οΈ 09.01.2022):
- [Conda](https://anaconda.org/conda-forge/ecco) (π₯ 6.1K Β· β±οΈ 16.06.2023):
What-If Tool (π₯22 Β· β 930 Β· π€) - Source code/webpage/demos for the What-If Tool. Apache-2
- [GitHub](https://github.com/PAIR-code/what-if-tool) (π¨βπ» 20 Β· π 170 Β· π¦ 2 Β· π 150 - 61% open Β· β±οΈ 01.02.2024):
- [PyPi](https://pypi.org/project/witwidget) (π₯ 8.4K / month Β· π¦ 6 Β· β±οΈ 12.10.2021):
- [Conda](https://anaconda.org/conda-forge/tensorboard-plugin-wit) (π₯ 2.4M Β· β±οΈ 16.06.2023):
- [npm](https://www.npmjs.com/package/wit-widget) (π₯ 350 / month Β· π¦ 3 Β· β±οΈ 12.10.2021):
random-forest-importances (π₯22 Β· β 610) - Code to compute permutation and drop-column.. MIT

- [GitHub](https://github.com/parrt/random-forest-importances) (π¨βπ» 15 Β· π 130 Β· π¦ 170 Β· π 39 - 20% open Β· β±οΈ 29.09.2024):
- [PyPi](https://pypi.org/project/rfpimp) (π₯ 12K / month Β· π¦ 5 Β· β±οΈ 28.01.2021):
fairness-indicators (π₯21 Β· β 350) - Tensorflows Fairness Evaluation and Visualization.. Apache-2


- [GitHub](https://github.com/tensorflow/fairness-indicators) (π¨βπ» 36 Β· π 80 Β· π 39 - 74% open Β· β±οΈ 22.01.2025):
- [PyPi](https://pypi.org/project/fairness-indicators) (π₯ 1.8K / month Β· β±οΈ 22.01.2025):
DiCE (π₯20 Β· β 1.4K) - Generate Diverse Counterfactual Explanations for any machine.. MIT


- [GitHub](https://github.com/interpretml/DiCE) (π¨βπ» 19 Β· π 190 Β· π 180 - 48% open Β· β±οΈ 22.11.2024):
- [PyPi](https://pypi.org/project/dice-ml) (π₯ 32K / month Β· π¦ 6 Β· β±οΈ 27.10.2023):
ExplainX.ai (π₯16 Β· β 420) - Explainable AI framework for data scientists. Explain & debug any.. MIT
- [GitHub](https://github.com/explainX/explainx) (π¨βπ» 5 Β· π 53 Β· π₯ 20 Β· π 39 - 25% open Β· β±οΈ 21.08.2024):
- [PyPi](https://pypi.org/project/explainx) (π₯ 1.3K / month Β· β±οΈ 04.02.2021):
interpret-text (π₯15 Β· β 420 Β· π€) - A library that incorporates state-of-the-art explainers.. MIT

- [GitHub](https://github.com/interpretml/interpret-text) (π¨βπ» 18 Β· π 69 Β· π 100 - 84% open Β· β±οΈ 05.02.2024):
- [PyPi](https://pypi.org/project/interpret-text) (π₯ 220 / month Β· β±οΈ 07.12.2021):
Show 27 hidden projects...
- Lime (π₯33 Β· β 12K Β· π) - Lime: Explaining the predictions of any machine learning classifier.BSD-2
- Deep Checks (π₯29 Β· β 3.7K) - Deepchecks: Tests for Continuous Validation of ML Models &.. βοΈAGPL-3.0
- yellowbrick (π₯27 Β· β 4.3K Β· π) - Visual analysis and diagnostic tools to facilitate.. Apache-2

- Alibi (π₯27 Β· β 2.4K) - Algorithms for explaining machine learning models. βοΈIntel
- scikit-plot (π₯27 Β· β 2.4K Β· π) - An intuitive library to add plotting functionality to.. MIT

- DALEX (π₯27 Β· β 1.4K) - moDel Agnostic Language for Exploration and eXplanation. βοΈGPL-3.0
- eli5 (π₯26 Β· β 2.8K Β· π) - A library for debugging/inspecting machine learning classifiers and.. MIT
- Lucid (π₯25 Β· β 4.7K Β· π) - A collection of infrastructure and tools for research in.. Apache-2

- keras-vis (π₯25 Β· β 3K Β· π) - Neural network visualization toolkit for keras. MIT

- iNNvestigate (π₯25 Β· β 1.3K Β· π) - A toolbox to iNNvestigate neural networks predictions!. BSD-2

- checklist (π₯24 Β· β 2K Β· π) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList. MIT

- keract (π₯24 Β· β 1.1K Β· π) - Layers Outputs and Gradients in Keras. Made easy. MIT

- TreeInterpreter (π₯23 Β· β 750 Β· π) - Package for interpreting scikit-learns decision tree.. BSD-3

- tf-explain (π₯22 Β· β 1K Β· π) - Interpretability Methods for tf.keras models with Tensorflow.. MIT

- Quantus (π₯22 Β· β 580) - Quantus is an eXplainable AI toolkit for responsible evaluation of.. βοΈGPL-3.0
- deeplift (π₯21 Β· β 850 Β· π) - Public facing deeplift repo. MIT
- tcav (π₯20 Β· β 640 Β· π) - Code for the TCAV ML interpretability project. Apache-2

- XAI (π₯19 Β· β 1.2K Β· π) - XAI - An eXplainability toolbox for machine learning. MIT
- LOFO (π₯18 Β· β 820 Β· π) - Leave One Feature Out Importance. MIT
- sklearn-evaluation (π₯18 Β· β 460 Β· π) - Machine learning model evaluation made easy: plots,.. MIT

- model-card-toolkit (π₯18 Β· β 430 Β· π) - A toolkit that streamlines and automates the.. Apache-2
- FlashTorch (π₯16 Β· β 740 Β· π) - Visualization toolkit for neural networks in PyTorch! Demo --. MIT

- Anchor (π₯15 Β· β 800 Β· π) - Code for High-Precision Model-Agnostic Explanations paper. BSD-2
- Skater (π₯14 Β· β 1.1K Β· π) - Python Library for Model Interpretation/Explanations. βοΈUPL-1.0
- Attribution Priors (π₯13 Β· β 120 Β· π) - Tools for training explainable models using.. MIT


- bias-detector (π₯13 Β· β 43 Β· π€) - Bias Detector is a python package for detecting bias in machine.. MIT
- contextual-ai (π₯12 Β· β 86 Β· π) - Contextual AI adds explainability to different stages of.. Apache-2
Vector Similarity Search (ANN)
Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarity Search.
π ANN Benchmarks ( β 5.1K) - Benchmarks of approximate nearest neighbor libraries in Python.
Milvus (π₯42 Β· β 32K) - Milvus is a high-performance, cloud-native vector database built for.. Apache-2
- [GitHub](https://github.com/milvus-io/milvus) (π¨βπ» 300 Β· π 3K Β· π₯ 300K Β· π 13K - 5% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pymilvus) (π₯ 1.4M / month Β· π¦ 210 Β· β±οΈ 22.01.2025):
- [Docker Hub](https://hub.docker.com/r/milvusdb/milvus) (π₯ 67M Β· β 69 Β· β±οΈ 06.02.2025):
Faiss (π₯41 Β· β 33K) - A library for efficient similarity search and clustering of dense vectors. MIT
- [GitHub](https://github.com/facebookresearch/faiss) (π¨βπ» 210 Β· π 3.7K Β· π¦ 4.4K Β· π 2.6K - 9% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/pymilvus) (π₯ 1.4M / month Β· π¦ 210 Β· β±οΈ 22.01.2025):
- [Conda](https://anaconda.org/conda-forge/faiss) (π₯ 2.2M Β· β±οΈ 20.12.2024):
Annoy (π₯34 Β· β 13K Β· π€) - Approximate Nearest Neighbors in C++/Python optimized for memory.. Apache-2
- [GitHub](https://github.com/spotify/annoy) (π¨βπ» 88 Β· π 1.2K Β· π¦ 4.7K Β· π 410 - 15% open Β· β±οΈ 29.07.2024):
- [PyPi](https://pypi.org/project/annoy) (π₯ 800K / month Β· π¦ 200 Β· β±οΈ 14.06.2023):
- [Conda](https://anaconda.org/conda-forge/python-annoy) (π₯ 640K Β· β±οΈ 05.09.2024):
hnswlib (π₯31 Β· β 4.5K Β· π€) - Header-only C++/python library for fast approximate nearest.. Apache-2
- [GitHub](https://github.com/nmslib/hnswlib) (π¨βπ» 72 Β· π 670 Β· π¦ 7.5K Β· π 410 - 59% open Β· β±οΈ 17.06.2024):
- [PyPi](https://pypi.org/project/hnswlib) (π₯ 610K / month Β· π¦ 130 Β· β±οΈ 03.12.2023):
- [Conda](https://anaconda.org/conda-forge/hnswlib) (π₯ 310K Β· β±οΈ 20.11.2024):
USearch (π₯31 Β· β 2.4K) - Fast Open-Source Search & Clustering engine for Vectors & Strings in.. Apache-2
- [GitHub](https://github.com/unum-cloud/usearch) (π¨βπ» 62 Β· π 160 Β· π₯ 49K Β· π¦ 160 Β· π 190 - 39% open Β· β±οΈ 23.01.2025):
- [PyPi](https://pypi.org/project/usearch) (π₯ 220K / month Β· π¦ 27 Β· β±οΈ 29.12.2024):
- [npm](https://www.npmjs.com/package/usearch) (π₯ 7.3K / month Β· π¦ 15 Β· β±οΈ 23.01.2025):
- [Docker Hub](https://hub.docker.com/r/unum/usearch) (π₯ 170 Β· β 1 Β· β±οΈ 21.11.2024):
NMSLIB (π₯30 Β· β 3.4K) - Non-Metric Space Library (NMSLIB): An efficient similarity search.. Apache-2
- [GitHub](https://github.com/nmslib/nmslib) (π¨βπ» 49 Β· π 450 Β· π¦ 1.3K Β· π 440 - 20% open Β· β±οΈ 21.09.2024):
- [PyPi](https://pypi.org/project/nmslib) (π₯ 430K / month Β· π¦ 63 Β· β±οΈ 03.02.2021):
- [Conda](https://anaconda.org/conda-forge/nmslib) (π₯ 180K Β· β±οΈ 09.09.2024):
PyNNDescent (π₯27 Β· β 910) - A Python nearest neighbor descent for approximate nearest neighbors. BSD-2
- [GitHub](https://github.com/lmcinnes/pynndescent) (π¨βπ» 29 Β· π 110 Β· π¦ 9.3K Β· π 140 - 52% open Β· β±οΈ 10.11.2024):
- [PyPi](https://pypi.org/project/pynndescent) (π₯ 1.8M / month Β· π¦ 160 Β· β±οΈ 17.06.2024):
- [Conda](https://anaconda.org/conda-forge/pynndescent) (π₯ 2.2M Β· β±οΈ 14.12.2024):
NGT (π₯24 Β· β 1.3K) - Nearest Neighbor Search with Neighborhood Graph and Tree for High-.. Apache-2
- [GitHub](https://github.com/yahoojapan/NGT) (π¨βπ» 16 Β· π 120 Β· π 140 - 14% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/ngt) (π₯ 5.2K / month Β· π¦ 12 Β· β±οΈ 23.01.2025):
Show 4 hidden projects...
- NearPy (π₯21 Β· β 770 Β· π) - Python framework for fast (approximated) nearest neighbour search in..MIT
- Magnitude (π₯20 Β· β 1.6K Β· π) - A fast, efficient universal vector embedding utility package. MIT
- N2 (π₯20 Β· β 570 Β· π) - TOROS N2 - lightweight approximate Nearest Neighbor library which runs.. Apache-2
- PySparNN (π₯11 Β· β 920 Β· π) - Approximate Nearest Neighbor Search for Sparse Data in Python!. BSD-3
Probabilistics & Statistics
Libraries providing capabilities for probabilistic programming/reasoning, bayesian inference, gaussian processes, or statistics.
PyMC3 (π₯41 Β· β 8.9K) - Bayesian Modeling and Probabilistic Programming in Python. Apache-2
- [GitHub](https://github.com/pymc-devs/pymc) (π¨βπ» 510 Β· π 2K Β· π₯ 2K Β· π¦ 5.4K Β· π 3.4K - 10% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pymc3) (π₯ 310K / month Β· π¦ 190 Β· β±οΈ 31.05.2024):
- [Conda](https://anaconda.org/conda-forge/pymc3) (π₯ 640K Β· β±οΈ 21.12.2024):
tensorflow-probability (π₯37 Β· β 4.3K) - Probabilistic reasoning and statistical analysis in.. Apache-2

- [GitHub](https://github.com/tensorflow/probability) (π¨βπ» 500 Β· π 1.1K Β· π¦ 3 Β· π 1.5K - 48% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-probability) (π₯ 1.4M / month Β· π¦ 620 Β· β±οΈ 08.11.2024):
- [Conda](https://anaconda.org/conda-forge/tensorflow-probability) (π₯ 160K Β· β±οΈ 27.05.2024):
patsy (π₯34 Β· β 960) - Describing statistical models in Python using symbolic formulas. BSD-2
- [GitHub](https://github.com/pydata/patsy) (π¨βπ» 22 Β· π 100 Β· π¦ 120K Β· π 160 - 46% open Β· β±οΈ 27.01.2025):
- [PyPi](https://pypi.org/project/patsy) (π₯ 15M / month Β· π¦ 530 Β· β±οΈ 12.11.2024):
- [Conda](https://anaconda.org/conda-forge/patsy) (π₯ 14M Β· β±οΈ 10.12.2024):
pgmpy (π₯33 Β· β 2.8K) - Python Library for learning (Structure and Parameter), inference.. MIT
- [GitHub](https://github.com/pgmpy/pgmpy) (π¨βπ» 130 Β· π 720 Β· π₯ 590 Β· π¦ 1.4K Β· π 960 - 30% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/pgmpy) (π₯ 78K / month Β· π¦ 53 Β· β±οΈ 09.08.2024):
Pyro (π₯32 Β· β 8.6K) - Deep universal probabilistic programming with Python and PyTorch. Apache-2

- [GitHub](https://github.com/pyro-ppl/pyro) (π¨βπ» 160 Β· π 990 Β· π 1.1K - 23% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/pyro-ppl) (π₯ 360K / month Β· π¦ 190 Β· β±οΈ 02.06.2024):
- [Conda](https://anaconda.org/conda-forge/pyro-ppl) (π₯ 220K Β· β±οΈ 18.12.2024):
pandas-ta (π₯31 Β· β 5.7K Β· π€) - Technical Analysis Indicators - Pandas TA is an easy to use.. MIT

- [GitHub](https://github.com/twopirllc/pandas-ta) (π¨βπ» 45 Β· π 1.1K Β· π¦ 4.7K Β· π 610 - 17% open Β· β±οΈ 24.06.2024):
- [PyPi](https://pypi.org/project/pandas-ta) (π₯ 150K / month Β· π¦ 140 Β· β±οΈ 28.07.2021):
- [Conda](https://anaconda.org/conda-forge/pandas-ta) (π₯ 24K Β· β±οΈ 19.01.2025):
GPyTorch (π₯31 Β· β 3.6K) - A highly efficient implementation of Gaussian Processes in PyTorch. MIT

- [GitHub](https://github.com/cornellius-gp/gpytorch) (π¨βπ» 140 Β· π 560 Β· π 1.4K - 27% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/gpytorch) (π₯ 280K / month Β· π¦ 190 Β· β±οΈ 29.01.2025):
- [Conda](https://anaconda.org/conda-forge/gpytorch) (π₯ 190K Β· β±οΈ 02.02.2025):
hmmlearn (π₯30 Β· β 3.1K) - Hidden Markov Models in Python, with scikit-learn like API. BSD-3

- [GitHub](https://github.com/hmmlearn/hmmlearn) (π¨βπ» 49 Β· π 740 Β· π¦ 3.1K Β· π 450 - 15% open Β· β±οΈ 31.10.2024):
- [PyPi](https://pypi.org/project/hmmlearn) (π₯ 140K / month Β· π¦ 92 Β· β±οΈ 31.10.2024):
- [Conda](https://anaconda.org/conda-forge/hmmlearn) (π₯ 340K Β· β±οΈ 31.10.2024):
emcee (π₯30 Β· β 1.5K) - The Python ensemble sampling toolkit for affine-invariant MCMC. MIT
- [GitHub](https://github.com/dfm/emcee) (π¨βπ» 75 Β· π 430 Β· π¦ 2.8K Β· π 300 - 19% open Β· β±οΈ 01.02.2025):
- [PyPi](https://pypi.org/project/emcee) (π₯ 110K / month Β· π¦ 440 Β· β±οΈ 19.04.2024):
- [Conda](https://anaconda.org/conda-forge/emcee) (π₯ 390K Β· β±οΈ 13.12.2024):
GPflow (π₯29 Β· β 1.9K) - Gaussian processes in TensorFlow. Apache-2

- [GitHub](https://github.com/GPflow/GPflow) (π¨βπ» 84 Β· π 440 Β· π¦ 720 Β· π 840 - 18% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/gpflow) (π₯ 64K / month Β· π¦ 35 Β· β±οΈ 17.06.2024):
- [Conda](https://anaconda.org/conda-forge/gpflow) (π₯ 40K Β· β±οΈ 26.06.2024):
pomegranate (π₯28 Β· β 3.4K) - Fast, flexible and easy to use probabilistic modelling in Python. MIT
- [GitHub](https://github.com/jmschrei/pomegranate) (π¨βπ» 75 Β· π 590 Β· π 790 - 3% open Β· β±οΈ 18.10.2024):
- [PyPi](https://pypi.org/project/pomegranate) (π₯ 19K / month Β· π¦ 59 Β· β±οΈ 18.10.2024):
- [Conda](https://anaconda.org/conda-forge/pomegranate) (π₯ 190K Β· β±οΈ 22.12.2024):
bambi (π₯28 Β· β 1.1K) - BAyesian Model-Building Interface (Bambi) in Python. MIT
- [GitHub](https://github.com/bambinos/bambi) (π¨βπ» 46 Β· π 130 Β· π¦ 170 Β· π 430 - 20% open Β· β±οΈ 21.01.2025):
- [PyPi](https://pypi.org/project/bambi) (π₯ 31K / month Β· π¦ 14 Β· β±οΈ 21.12.2024):
- [Conda](https://anaconda.org/conda-forge/bambi) (π₯ 44K Β· β±οΈ 23.12.2024):
SALib (π₯28 Β· β 900) - Sensitivity Analysis Library in Python. Contains Sobol, Morris, FAST, and.. MIT
- [GitHub](https://github.com/SALib/SALib) (π¨βπ» 50 Β· π 240 Β· π¦ 1.4K Β· π 340 - 15% open Β· β±οΈ 06.01.2025):
- [PyPi](https://pypi.org/project/salib) (π₯ 210K / month Β· π¦ 130 Β· β±οΈ 19.08.2024):
- [Conda](https://anaconda.org/conda-forge/salib) (π₯ 200K Β· β±οΈ 27.12.2024):
PyStan (π₯27 Β· β 350 Β· π€) - PyStan, a Python interface to Stan, a platform for statistical.. ISC
- [GitHub](https://github.com/stan-dev/pystan) (π¨βπ» 14 Β· π 60 Β· π¦ 10K Β· π 200 - 6% open Β· β±οΈ 03.07.2024):
- [PyPi](https://pypi.org/project/pystan) (π₯ 790K / month Β· π¦ 160 Β· β±οΈ 03.07.2024):
- [Conda](https://anaconda.org/conda-forge/pystan) (π₯ 3M Β· β±οΈ 16.06.2023):
scikit-posthocs (π₯26 Β· β 360) - Multiple Pairwise Comparisons (Post Hoc) Tests in Python. MIT

- [GitHub](https://github.com/maximtrp/scikit-posthocs) (π¨βπ» 15 Β· π 40 Β· π₯ 66 Β· π¦ 980 Β· π 63 - 4% open Β· β±οΈ 18.12.2024):
- [PyPi](https://pypi.org/project/scikit-posthocs) (π₯ 85K / month Β· π¦ 63 Β· β±οΈ 18.12.2024):
- [Conda](https://anaconda.org/conda-forge/scikit-posthocs) (π₯ 1M Β· β±οΈ 23.12.2024):
Orbit (π₯24 Β· β 1.9K Β· π€) - A Python package for Bayesian forecasting with object-oriented.. Apache-2
- [GitHub](https://github.com/uber/orbit) (π¨βπ» 20 Β· π 140 Β· π¦ 67 Β· π 400 - 12% open Β· β±οΈ 10.07.2024):
- [PyPi](https://pypi.org/project/orbit-ml) (π₯ 11K / month Β· π¦ 1 Β· β±οΈ 01.04.2024):
TorchUncertainty (π₯23 Β· β 340) - Open-source framework for uncertainty and deep.. Apache-2

- [GitHub](https://github.com/ENSTA-U2IS-AI/torch-uncertainty) (π¨βπ» 10 Β· π 24 Β· π 40 - 27% open Β· β±οΈ 21.01.2025):
- [PyPi](https://pypi.org/project/torch-uncertainty) (π₯ 1.5K / month Β· π¦ 3 Β· β±οΈ 21.01.2025):
Baal (π₯21 Β· β 880 Β· π€) - Bayesian active learning library for research and industrial usecases. Apache-2
- [GitHub](https://github.com/baal-org/baal) (π¨βπ» 23 Β· π 87 Β· π¦ 65 Β· π 110 - 17% open Β· β±οΈ 27.06.2024):
- [PyPi](https://pypi.org/project/baal) (π₯ 1.8K / month Β· π¦ 2 Β· β±οΈ 11.06.2024):
- [Conda](https://anaconda.org/conda-forge/baal) (π₯ 12K Β· β±οΈ 12.06.2023):
pyhsmm (π₯21 Β· β 560) - Bayesian inference in HSMMs and HMMs. MIT
- [GitHub](https://github.com/mattjj/pyhsmm) (π¨βπ» 14 Β· π 170 Β· π¦ 34 Β· π 100 - 39% open Β· β±οΈ 25.01.2025):
- [PyPi](https://pypi.org/project/pyhsmm) (π₯ 270 / month Β· π¦ 1 Β· β±οΈ 10.05.2017):
Show 5 hidden projects...
- filterpy (π₯31 Β· β 3.4K Β· π) - Python Kalman filtering and optimal estimation library. Implements..MIT
- pingouin (π₯30 Β· β 1.7K) - Statistical package in Python based on Pandas. βοΈGPL-3.0
- Edward (π₯28 Β· β 4.8K Β· π) - A probabilistic programming language in TensorFlow. Deep.. Apache-2

- Funsor (π₯20 Β· β 240 Β· π) - Functional tensors for probabilistic programming. Apache-2

- ZhuSuan (π₯15 Β· β 2.2K Β· π) - A probabilistic programming library for Bayesian deep learning,.. MIT

Adversarial Robustness
Libraries for testing the robustness of machine learning models against attacks with adversarial/malicious examples.
ART (π₯34 Β· β 5K) - Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning.. MIT
- [GitHub](https://github.com/Trusted-AI/adversarial-robustness-toolbox) (π¨βπ» 140 Β· π 1.2K Β· π¦ 650 Β· π 900 - 2% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/adversarial-robustness-toolbox) (π₯ 27K / month Β· π¦ 20 Β· β±οΈ 22.01.2025):
- [Conda](https://anaconda.org/conda-forge/adversarial-robustness-toolbox) (π₯ 63K Β· β±οΈ 22.01.2025):
TextAttack (π₯27 Β· β 3.1K Β· π€) - TextAttack is a Python framework for adversarial attacks, data.. MIT
- [GitHub](https://github.com/QData/TextAttack) (π¨βπ» 66 Β· π 400 Β· π¦ 340 Β· π 290 - 23% open Β· β±οΈ 25.07.2024):
- [PyPi](https://pypi.org/project/textattack) (π₯ 5.6K / month Β· π¦ 11 Β· β±οΈ 11.03.2024):
- [Conda](https://anaconda.org/conda-forge/textattack) (π₯ 9.4K Β· β±οΈ 16.06.2023):
Foolbox (π₯27 Β· β 2.8K Β· π€) - A Python toolbox to create adversarial examples that fool neural.. MIT
- [GitHub](https://github.com/bethgelab/foolbox) (π¨βπ» 35 Β· π 420 Β· π¦ 670 Β· π 380 - 7% open Β· β±οΈ 04.03.2024):
- [PyPi](https://pypi.org/project/foolbox) (π₯ 4.6K / month Β· π¦ 14 Β· β±οΈ 04.03.2024):
- [Conda](https://anaconda.org/conda-forge/foolbox) (π₯ 16K Β· β±οΈ 16.06.2023):
Show 6 hidden projects...
- CleverHans (π₯29 Β· β 6.2K Β· π) - An adversarial example library for constructing attacks,..MIT

- advertorch (π₯22 Β· β 1.3K Β· π) - A Toolbox for Adversarial Robustness Research. βοΈGPL-3.0

- robustness (π₯20 Β· β 920 Β· π) - A library for experimenting with, training and evaluating neural.. MIT
- AdvBox (π₯19 Β· β 1.4K Β· π) - Advbox is a toolbox to generate adversarial examples that fool.. Apache-2
- textflint (π₯17 Β· β 640 Β· π) - Unified Multilingual Robustness Evaluation Toolkit for.. βοΈGPL-3.0
- Adversary (π₯15 Β· β 400 Β· π) - Tool to generate adversarial text examples and test machine.. MIT
GPU & Accelerator Utilities
Libraries that require and make use of CUDA/GPU or other accelerator hardware capabilities to optimize machine learning tasks.
CuPy (π₯38 Β· β 9.8K) - NumPy & SciPy for GPU. MIT
- [GitHub](https://github.com/cupy/cupy) (π¨βπ» 400 Β· π 860 Β· π₯ 190K Β· π¦ 2.5K Β· π 2.4K - 25% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/cupy) (π₯ 32K / month Β· π¦ 270 Β· β±οΈ 22.08.2024):
- [Conda](https://anaconda.org/conda-forge/cupy) (π₯ 5.7M Β· β±οΈ 18.10.2024):
- [Docker Hub](https://hub.docker.com/r/cupy/cupy) (π₯ 75K Β· β 13 Β· β±οΈ 22.08.2024):
optimum (π₯36 Β· β 2.7K) - Accelerate inference and training of Transformers, Diffusers, TIMM.. Apache-2
- [GitHub](https://github.com/huggingface/optimum) (π¨βπ» 140 Β· π 490 Β· π¦ 4.5K Β· π 880 - 46% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/optimum) (π₯ 920K / month Β· π¦ 200 Β· β±οΈ 30.01.2025):
- [Conda](https://anaconda.org/conda-forge/optimum) (π₯ 32K Β· β±οΈ 29.05.2024):
cuDF (π₯35 Β· β 8.6K) - cuDF - GPU DataFrame Library. Apache-2
- [GitHub](https://github.com/rapidsai/cudf) (π¨βπ» 300 Β· π 920 Β· π¦ 59 Β· π 6.8K - 15% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/cudf) (π₯ 3.6K / month Β· π¦ 22 Β· β±οΈ 01.06.2020):
Apex (π₯31 Β· β 8.5K) - A PyTorch Extension: Tools for easy mixed precision and distributed.. BSD-3

- [GitHub](https://github.com/NVIDIA/apex) (π¨βπ» 130 Β· π 1.4K Β· π¦ 3K Β· π 1.3K - 58% open Β· β±οΈ 05.02.2025):
- [Conda](https://anaconda.org/conda-forge/nvidia-apex) (π₯ 430K Β· β±οΈ 04.11.2024):
cuML (π₯31 Β· β 4.4K) - cuML - RAPIDS Machine Learning Library. Apache-2
- [GitHub](https://github.com/rapidsai/cuml) (π¨βπ» 180 Β· π 550 Β· π 2.6K - 35% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/cuml) (π₯ 3.2K / month Β· π¦ 14 Β· β±οΈ 01.06.2020):
PyCUDA (π₯30 Β· β 1.9K) - CUDA integration for Python, plus shiny features. MIT
- [GitHub](https://github.com/inducer/pycuda) (π¨βπ» 82 Β· π 290 Β· π¦ 3.4K Β· π 280 - 29% open Β· β±οΈ 05.11.2024):
- [PyPi](https://pypi.org/project/pycuda) (π₯ 88K / month Β· π¦ 160 Β· β±οΈ 30.07.2024):
- [Conda](https://anaconda.org/conda-forge/pycuda) (π₯ 870K Β· β±οΈ 17.08.2024):
ArrayFire (π₯28 Β· β 4.6K) - ArrayFire: a general purpose GPU library. BSD-3
- [GitHub](https://github.com/arrayfire/arrayfire) (π¨βπ» 95 Β· π 530 Β· π₯ 7.8K Β· π 1.7K - 19% open Β· β±οΈ 30.01.2025):
- [PyPi](https://pypi.org/project/arrayfire) (π₯ 3K / month Β· π¦ 10 Β· β±οΈ 22.02.2022):
cuGraph (π₯27 Β· β 1.9K) - cuGraph - RAPIDS Graph Analytics Library. Apache-2
- [GitHub](https://github.com/rapidsai/cugraph) (π¨βπ» 120 Β· π 310 Β· π 1.8K - 10% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/cugraph) (π₯ 290 / month Β· π¦ 4 Β· β±οΈ 01.06.2020):
- [Conda](https://anaconda.org/conda-forge/libcugraph) (π₯ 27K Β· β±οΈ 16.06.2023):
DALI (π₯25 Β· β 5.3K) - A GPU-accelerated library containing highly optimized building blocks.. Apache-2
- [GitHub](https://github.com/NVIDIA/DALI) (π¨βπ» 95 Β· π 630 Β· π 1.7K - 14% open Β· β±οΈ 05.02.2025):
Vulkan Kompute (π₯23 Β· β 2.1K) - General purpose GPU compute framework built on Vulkan to.. Apache-2
- [GitHub](https://github.com/KomputeProject/kompute) (π¨βπ» 31 Β· π 150 Β· π₯ 620 Β· π 220 - 32% open Β· β±οΈ 10.12.2024):
- [PyPi](https://pypi.org/project/kp) (π₯ 480 / month Β· β±οΈ 20.01.2024):
Merlin (π₯21 Β· β 800 Β· π€) - NVIDIA Merlin is an open source library providing end-to-end GPU-.. Apache-2
- [GitHub](https://github.com/NVIDIA-Merlin/Merlin) (π¨βπ» 32 Β· π 120 Β· π 460 - 46% open Β· β±οΈ 22.07.2024):
- [PyPi](https://pypi.org/project/merlin-core) (π₯ 13K / month Β· π¦ 1 Β· β±οΈ 29.08.2023):
Show 9 hidden projects...
- gpustat (π₯30 Β· β 4.1K Β· π) - A simple command-line utility for querying and monitoring GPU status.MIT
- GPUtil (π₯25 Β· β 1.2K Β· π) - A Python module for getting the GPU status from NVIDA GPUs using.. MIT
- scikit-cuda (π₯24 Β· β 990 Β· π) - Python interface to GPU-powered libraries. BSD-3
- py3nvml (π₯22 Β· β 240 Β· π) - Python 3 Bindings for NVML library. Get NVIDIA GPU status inside.. BSD-3
- BlazingSQL (π₯20 Β· β 1.9K Β· π) - BlazingSQL is a lightweight, GPU accelerated, SQL engine for.. Apache-2
- nvidia-ml-py3 (π₯18 Β· β 140 Β· π€) - Python 3 Bindings for the NVIDIA Management Library. BSD-3
- cuSignal (π₯16 Β· β 720 Β· π) - GPU accelerated signal processing. Apache-2
- SpeedTorch (π₯16 Β· β 680 Β· π) - Library for faster pinned CPU - GPU transfer in Pytorch. MIT

- ipyexperiments (π₯16 Β· β 210 Β· π) - Automatic GPU+CPU memory profiling, re-use and memory.. Apache-2

Tensorflow Utilities
Libraries that extend TensorFlow with additional capabilities.
TensorFlow Datasets (π₯39 Β· β 4.4K) - TFDS is a collection of datasets ready to use with.. Apache-2

- [GitHub](https://github.com/tensorflow/datasets) (π¨βπ» 420 Β· π 1.6K Β· π¦ 22K Β· π 1.5K - 47% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/tensorflow-datasets) (π₯ 1.9M / month Β· π¦ 330 Β· β±οΈ 30.10.2024):
- [Conda](https://anaconda.org/conda-forge/tensorflow-datasets) (π₯ 43K Β· β±οΈ 16.06.2023):
TFX (π₯33 Β· β 2.1K) - TFX is an end-to-end platform for deploying production ML pipelines. Apache-2

- [GitHub](https://github.com/tensorflow/tfx) (π¨βπ» 190 Β· π 710 Β· π¦ 1.7K Β· π 1.1K - 22% open Β· β±οΈ 12.12.2024):
- [PyPi](https://pypi.org/project/tfx) (π₯ 45K / month Β· π¦ 17 Β· β±οΈ 11.12.2024):
tensorflow-hub (π₯32 Β· β 3.5K) - A library for transfer learning by reusing parts of.. Apache-2

- [GitHub](https://github.com/tensorflow/hub) (π¨βπ» 110 Β· π 1.7K Β· π 710 - 1% open Β· β±οΈ 17.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-hub) (π₯ 1.9M / month Β· π¦ 300 Β· β±οΈ 30.01.2024):
- [Conda](https://anaconda.org/conda-forge/tensorflow-hub) (π₯ 110K Β· β±οΈ 05.02.2025):
TF Addons (π₯31 Β· β 1.7K Β· π€) - Useful extra functionality for TensorFlow 2.x maintained.. Apache-2

- [GitHub](https://github.com/tensorflow/addons) (π¨βπ» 210 Β· π 610 Β· π 990 - 9% open Β· β±οΈ 15.04.2024):
- [PyPi](https://pypi.org/project/tensorflow-addons) (π₯ 1.5M / month Β· π¦ 370 Β· β±οΈ 28.11.2023):
TensorFlow I/O (π₯29 Β· β 720 Β· π€) - Dataset, streaming, and file system extensions.. Apache-2

- [GitHub](https://github.com/tensorflow/io) (π¨βπ» 110 Β· π 290 Β· π 660 - 44% open Β· β±οΈ 01.07.2024):
- [PyPi](https://pypi.org/project/tensorflow-io) (π₯ 990K / month Β· π¦ 61 Β· β±οΈ 01.07.2024):
TF Model Optimization (π₯28 Β· β 1.5K) - A toolkit to optimize ML models for deployment for.. Apache-2

- [GitHub](https://github.com/tensorflow/model-optimization) (π¨βπ» 87 Β· π 320 Β· π 400 - 57% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/tensorflow-model-optimization) (π₯ 420K / month Β· π¦ 45 Β· β±οΈ 08.02.2024):
TensorFlow Transform (π₯26 Β· β 990) - Input pipeline framework. Apache-2

- [GitHub](https://github.com/tensorflow/transform) (π¨βπ» 29 Β· π 220 Β· π 220 - 17% open Β· β±οΈ 16.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-transform) (π₯ 410K / month Β· π¦ 18 Β· β±οΈ 28.10.2024):
Neural Structured Learning (π₯24 Β· β 980) - Training neural models with structured signals. Apache-2

- [GitHub](https://github.com/tensorflow/neural-structured-learning) (π¨βπ» 39 Β· π 190 Β· π¦ 500 Β· π 69 - 1% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/neural-structured-learning) (π₯ 5.9K / month Β· π¦ 3 Β· β±οΈ 29.07.2022):
Saliency (π₯22 Β· β 960 Β· π€) - Framework-agnostic implementation for state-of-the-art.. Apache-2

- [GitHub](https://github.com/PAIR-code/saliency) (π¨βπ» 18 Β· π 190 Β· π¦ 120 Β· π 39 - 30% open Β· β±οΈ 20.03.2024):
- [PyPi](https://pypi.org/project/saliency) (π₯ 12K / month Β· π¦ 8 Β· β±οΈ 20.03.2024):
TF Compression (π₯21 Β· β 870) - Data compression in TensorFlow. Apache-2

- [GitHub](https://github.com/tensorflow/compression) (π¨βπ» 24 Β· π 250 Β· π 100 - 10% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-compression) (π₯ 3.9K / month Β· π¦ 2 Β· β±οΈ 02.02.2024):
TensorFlow Cloud (π₯21 Β· β 380) - The TensorFlow Cloud repository provides APIs that.. Apache-2

- [GitHub](https://github.com/tensorflow/cloud) (π¨βπ» 28 Β· π 90 Β· π 100 - 73% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/tensorflow-cloud) (π₯ 34K / month Β· π¦ 7 Β· β±οΈ 17.06.2021):
Show 5 hidden projects...
- tensor2tensor (π₯33 Β· β 16K Β· π) - Library of deep learning models and datasets designed..Apache-2

- Keras-Preprocessing (π₯29 Β· β 1K Β· π) - Utilities for working with image data, text data, and.. MIT

- efficientnet (π₯26 Β· β 2.1K Β· π) - Implementation of EfficientNet model. Keras and.. Apache-2

- TensorNets (π₯21 Β· β 1K Β· π) - High level network definitions with pre-trained weights in.. MIT

- tffm (π₯18 Β· β 780 Β· π) - TensorFlow implementation of an arbitrary order Factorization Machine. MIT

Jax Utilities
Libraries that extend Jax with additional capabilities.
equinox (π₯33 Β· β 2.2K) - Elegant easy-to-use neural networks + scientific computing in.. Apache-2

- [GitHub](https://github.com/patrick-kidger/equinox) (π¨βπ» 59 Β· π 150 Β· π¦ 980 Β· π 500 - 34% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/equinox) (π₯ 1M / month Β· π¦ 200 Β· β±οΈ 24.12.2024):

evojax (π₯19 Β· β 870 Β· π€) - EvoJAX: Hardware-accelerated Neuroevolution. Apache-2

- [GitHub](https://github.com/google/evojax) (π¨βπ» 14 Β· π 94 Β· π¦ 27 Β· π 37 - 54% open Β· β±οΈ 27.06.2024):
- [PyPi](https://pypi.org/project/evojax) (π₯ 1.5K / month Β· π¦ 6 Β· β±οΈ 18.06.2024):
- [Conda](https://anaconda.org/conda-forge/evojax) (π₯ 34K Β· β±οΈ 18.06.2024):

Show 1 hidden projects...
- jaxdf (π₯12 Β· β 120) - A JAX-based research framework for writing differentiable..βοΈLGPL-3.0

Sklearn Utilities
Libraries that extend scikit-learn with additional capabilities.
MLxtend (π₯35 Β· β 5K) - A library of extension and helper modules for Pythons data analysis.. BSD-3

- [GitHub](https://github.com/rasbt/mlxtend) (π¨βπ» 110 Β· π 880 Β· π¦ 17K Β· π 500 - 30% open Β· β±οΈ 26.01.2025):
- [PyPi](https://pypi.org/project/mlxtend) (π₯ 680K / month Β· π¦ 200 Β· β±οΈ 26.01.2025):
- [Conda](https://anaconda.org/conda-forge/mlxtend) (π₯ 340K Β· β±οΈ 26.01.2025):
scikit-learn-intelex (π₯35 Β· β 1.2K) - Extension for Scikit-learn is a seamless way to speed.. Apache-2

- [GitHub](https://github.com/uxlfoundation/scikit-learn-intelex) (π¨βπ» 84 Β· π 180 Β· π¦ 13K Β· π 240 - 17% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/scikit-learn-intelex) (π₯ 70K / month Β· π¦ 55 Β· β±οΈ 16.01.2025):
- [Conda](https://anaconda.org/conda-forge/scikit-learn-intelex) (π₯ 450K Β· β±οΈ 13.11.2024):
imbalanced-learn (π₯34 Β· β 6.9K) - A Python Package to Tackle the Curse of Imbalanced.. MIT

- [GitHub](https://github.com/scikit-learn-contrib/imbalanced-learn) (π¨βπ» 86 Β· π 1.3K Β· π 620 - 7% open Β· β±οΈ 23.12.2024):
- [PyPi](https://pypi.org/project/imbalanced-learn) (π₯ 14M / month Β· π¦ 480 Β· β±οΈ 20.12.2024):
- [Conda](https://anaconda.org/conda-forge/imbalanced-learn) (π₯ 660K Β· β±οΈ 20.12.2024):
category_encoders (π₯32 Β· β 2.4K) - A library of sklearn compatible categorical variable.. BSD-3

- [GitHub](https://github.com/scikit-learn-contrib/category_encoders) (π¨βπ» 70 Β· π 400 Β· π¦ 2.6K Β· π 300 - 14% open Β· β±οΈ 19.01.2025):
- [PyPi](https://pypi.org/project/category_encoders) (π₯ 1.5M / month Β· π¦ 300 Β· β±οΈ 19.01.2025):
- [Conda](https://anaconda.org/conda-forge/category_encoders) (π₯ 300K Β· β±οΈ 19.01.2025):
scikit-lego (π₯28 Β· β 1.3K) - Extra blocks for scikit-learn pipelines. MIT

- [GitHub](https://github.com/koaning/scikit-lego) (π¨βπ» 68 Β· π 120 Β· π¦ 170 Β· π 330 - 12% open Β· β±οΈ 19.01.2025):
- [PyPi](https://pypi.org/project/scikit-lego) (π₯ 25K / month Β· π¦ 13 Β· β±οΈ 17.12.2024):
- [Conda](https://anaconda.org/conda-forge/scikit-lego) (π₯ 62K Β· β±οΈ 10.07.2024):
scikit-opt (π₯25 Β· β 5.4K Β· π€) - Genetic Algorithm, Particle Swarm Optimization, Simulated.. MIT

- [GitHub](https://github.com/guofei9987/scikit-opt) (π¨βπ» 24 Β· π 990 Β· π¦ 250 Β· π 180 - 37% open Β· β±οΈ 23.06.2024):
- [PyPi](https://pypi.org/project/scikit-opt) (π₯ 3.8K / month Β· π¦ 15 Β· β±οΈ 14.01.2022):
iterative-stratification (π₯22 Β· β 860) - scikit-learn cross validators for iterative.. BSD-3

- [GitHub](https://github.com/trent-b/iterative-stratification) (π¨βπ» 7 Β· π 75 Β· π¦ 540 Β· π 27 - 7% open Β· β±οΈ 12.10.2024):
- [PyPi](https://pypi.org/project/iterative-stratification) (π₯ 22K / month Β· π¦ 15 Β· β±οΈ 12.10.2024):
dabl (π₯20 Β· β 730) - Data Analysis Baseline Library. BSD-3

- [GitHub](https://github.com/amueller/dabl) (π¨βπ» 24 Β· π 100 Β· β±οΈ 07.08.2024):
- [PyPi](https://pypi.org/project/dabl) (π₯ 6.6K / month Β· π¦ 3 Β· β±οΈ 16.12.2024):
scikit-tda (π₯18 Β· β 530 Β· π€) - Topological Data Analysis for Python. MIT

- [GitHub](https://github.com/scikit-tda/scikit-tda) (π¨βπ» 6 Β· π 55 Β· π¦ 70 Β· π 22 - 18% open Β· β±οΈ 19.07.2024):
- [PyPi](https://pypi.org/project/scikit-tda) (π₯ 1.3K / month Β· β±οΈ 19.07.2024):
DESlib (π₯18 Β· β 480 Β· π€) - A Python library for dynamic classifier and ensemble selection. BSD-3

- [GitHub](https://github.com/scikit-learn-contrib/DESlib) (π¨βπ» 17 Β· π 100 Β· π 160 - 11% open Β· β±οΈ 15.04.2024):
- [PyPi](https://pypi.org/project/deslib) (π₯ 2.6K / month Β· π¦ 3 Β· β±οΈ 12.04.2024):
Show 9 hidden projects...
- scikit-survival (π₯32 Β· β 1.2K) - Survival analysis built on top of scikit-learn.βοΈGPL-3.0

- fancyimpute (π₯27 Β· β 1.3K Β· π) - Multivariate imputation and matrix completion.. Apache-2

- scikit-multilearn (π₯27 Β· β 930 Β· π) - A scikit-learn based module for multi-label et. al... BSD-2

- sklearn-crfsuite (π₯26 Β· β 430 Β· π) - scikit-learn inspired API for CRFsuite. MIT

- sklearn-contrib-lightning (π₯23 Β· β 1.7K Β· π) - Large-scale linear classification, regression and.. BSD-3

- skope-rules (π₯22 Β· β 630 Β· π) - machine learning with logical rules in Python. βοΈBSD-1-Clause

- combo (π₯21 Β· β 640 Β· π) - (AAAI 20) A Python Toolbox for Machine Learning Model.. BSD-2

xgboost
- celer (π₯20 Β· β 210) - Fast solver for L1-type problems: Lasso, sparse Logisitic regression,.. BSD-3

- skggm (π₯17 Β· β 240 Β· π) - Scikit-learn compatible estimation of general graphical models. MIT

Pytorch Utilities
Libraries that extend Pytorch with additional capabilities.
accelerate (π₯41 Β· β 8.3K) - A simple way to launch, train, and use PyTorch models on.. Apache-2

- [GitHub](https://github.com/huggingface/accelerate) (π¨βπ» 310 Β· π 1K Β· π¦ 70K Β· π 1.7K - 7% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/accelerate) (π₯ 8.8M / month Β· π¦ 1.8K Β· β±οΈ 17.01.2025):
- [Conda](https://anaconda.org/conda-forge/accelerate) (π₯ 300K Β· β±οΈ 20.01.2025):
PML (π₯34 Β· β 6.1K) - The easiest way to use deep metric learning in your application. Modular,.. MIT

- [GitHub](https://github.com/KevinMusgrave/pytorch-metric-learning) (π¨βπ» 46 Β· π 660 Β· π¦ 2.3K Β· π 520 - 14% open Β· β±οΈ 11.12.2024):
- [PyPi](https://pypi.org/project/pytorch-metric-learning) (π₯ 690K / month Β· π¦ 55 Β· β±οΈ 11.12.2024):
- [Conda](https://anaconda.org/metric-learning/pytorch-metric-learning) (π₯ 12K Β· β±οΈ 16.06.2023):
tinygrad (π₯33 Β· β 28K) - You like pytorch? You like micrograd? You love tinygrad!. MIT

- [GitHub](https://github.com/tinygrad/tinygrad) (π¨βπ» 370 Β· π 3.1K Β· π¦ 160 Β· π 850 - 16% open Β· β±οΈ 06.02.2025):
torchdiffeq (π₯30 Β· β 5.7K) - Differentiable ODE solvers with full GPU support and.. MIT

- [GitHub](https://github.com/rtqichen/torchdiffeq) (π¨βπ» 21 Β· π 930 Β· π¦ 4.5K Β· π 220 - 33% open Β· β±οΈ 21.11.2024):
- [PyPi](https://pypi.org/project/torchdiffeq) (π₯ 860K / month Β· π¦ 120 Β· β±οΈ 21.11.2024):
- [Conda](https://anaconda.org/conda-forge/torchdiffeq) (π₯ 20K Β· β±οΈ 16.06.2023):
torchsde (π₯29 Β· β 1.6K) - Differentiable SDE solvers with GPU support and efficient.. Apache-2

- [GitHub](https://github.com/google-research/torchsde) (π¨βπ» 9 Β· π 200 Β· π¦ 4.4K Β· π 82 - 35% open Β· β±οΈ 30.12.2024):
- [PyPi](https://pypi.org/project/torchsde) (π₯ 2.2M / month Β· π¦ 37 Β· β±οΈ 26.09.2023):
- [Conda](https://anaconda.org/conda-forge/torchsde) (π₯ 35K Β· β±οΈ 21.11.2024):
torch-scatter (π₯26 Β· β 1.6K) - PyTorch Extension Library of Optimized Scatter Operations. MIT

- [GitHub](https://github.com/rusty1s/pytorch_scatter) (π¨βπ» 32 Β· π 180 Β· π 400 - 6% open Β· β±οΈ 10.01.2025):
- [PyPi](https://pypi.org/project/torch-scatter) (π₯ 38K / month Β· π¦ 150 Β· β±οΈ 06.10.2023):
- [Conda](https://anaconda.org/conda-forge/pytorch_scatter) (π₯ 730K Β· β±οΈ 05.11.2024):
EfficientNets (π₯25 Β· β 1.6K Β· π€) - Pretrained EfficientNet, EfficientNet-Lite, MixNet,.. Apache-2

- [GitHub](https://github.com/rwightman/gen-efficientnet-pytorch) (π¨βπ» 5 Β· π 210 Β· π¦ 280 Β· π 55 - 7% open Β· β±οΈ 13.06.2024):
- [PyPi](https://pypi.org/project/geffnet) (π₯ 140K / month Β· π¦ 4 Β· β±οΈ 08.07.2021):
Pytorch Toolbelt (π₯24 Β· β 1.5K) - PyTorch extensions for fast R&D prototyping and Kaggle.. MIT

- [GitHub](https://github.com/BloodAxe/pytorch-toolbelt) (π¨βπ» 8 Β· π 120 Β· π₯ 130 Β· π 33 - 12% open Β· β±οΈ 21.11.2024):
- [PyPi](https://pypi.org/project/pytorch_toolbelt) (π₯ 8.3K / month Β· π¦ 12 Β· β±οΈ 21.11.2024):
PyTorch Sparse (π₯24 Β· β 1K) - PyTorch Extension Library of Optimized Autograd Sparse Matrix.. MIT

- [GitHub](https://github.com/rusty1s/pytorch_sparse) (π¨βπ» 46 Β· π 150 Β· π 290 - 10% open Β· β±οΈ 10.01.2025):
- [PyPi](https://pypi.org/project/torch-sparse) (π₯ 27K / month Β· π¦ 120 Β· β±οΈ 06.10.2023):
- [Conda](https://anaconda.org/conda-forge/pytorch_sparse) (π₯ 700K Β· β±οΈ 05.11.2024):
pytorchviz (π₯19 Β· β 3.3K) - A small package to create visualizations of PyTorch execution graphs. MIT
- [GitHub](https://github.com/szagoruyko/pytorchviz) (π¨βπ» 6 Β· π 280 Β· π¦ 2.5K Β· π 72 - 47% open Β· β±οΈ 30.12.2024):
madgrad (π₯17 Β· β 800) - MADGRAD Optimization Method. MIT

- [GitHub](https://github.com/facebookresearch/madgrad) (π¨βπ» 3 Β· π 57 Β· π¦ 100 Β· β±οΈ 27.01.2025):
- [PyPi](https://pypi.org/project/madgrad) (π₯ 3.3K / month Β· π¦ 1 Β· β±οΈ 08.03.2022):
Show 21 hidden projects...
- pretrainedmodels (π₯29 Β· β 9.1K Β· π) - Pretrained ConvNets for pytorch: NASNet, ResNeXt,..BSD-3

- pytorch-summary (π₯28 Β· β 4K Β· π) - Model summary in PyTorch similar to `model.summary()` in.. MIT

- lightning-flash (π₯28 Β· β 1.7K Β· π) - Your PyTorch AI Factory - Flash enables you to easily.. Apache-2

- EfficientNet-PyTorch (π₯27 Β· β 8K Β· π) - A PyTorch implementation of EfficientNet. Apache-2

- pytorch-optimizer (π₯27 Β· β 3.1K Β· π) - torch-optimizer -- collection of optimizers for.. Apache-2

- TabNet (π₯25 Β· β 2.7K Β· π) - PyTorch implementation of TabNet paper :.. MIT

- Torchmeta (π₯24 Β· β 2K Β· π) - A collection of extensions and data-loaders for few-shot.. MIT

- Higher (π₯24 Β· β 1.6K Β· π) - higher is a pytorch library allowing users to obtain higher.. Apache-2

- micrograd (π₯22 Β· β 11K Β· π) - A tiny scalar-valued autograd engine and a neural net library.. MIT

- SRU (π₯22 Β· β 2.1K Β· π) - Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755). MIT

- Antialiased CNNs (π₯22 Β· β 1.7K Β· π) - pip install antialiased-cnns to improve stability and.. βοΈCC BY-NC-SA 4.0

- AdaBound (π₯21 Β· β 2.9K Β· π) - An optimizer that trains as fast as Adam and as good as SGD. Apache-2

- reformer-pytorch (π₯21 Β· β 2.1K Β· π) - Reformer, the efficient Transformer, in Pytorch. MIT

- Poutyne (π₯21 Β· β 570) - A simplified framework and utilities for PyTorch. βοΈLGPL-3.0

- Performer Pytorch (π₯20 Β· β 1.1K Β· π) - An implementation of Performer, a linear attention-.. MIT

- Lambda Networks (π₯19 Β· β 1.5K Β· π) - Implementation of LambdaNetworks, a new approach to.. MIT

- Tez (π₯18 Β· β 1.2K Β· π) - Tez is a super-simple and lightweight Trainer for PyTorch. It.. Apache-2

- Torch-Struct (π₯18 Β· β 1.1K Β· π) - Fast, general, and tested differentiable structured.. MIT

- Tensor Sensor (π₯18 Β· β 800 Β· π) - The goal of this library is to generate more helpful.. MIT

- Pywick (π₯17 Β· β 400 Β· π) - High-level batteries-included neural network training library for.. MIT

- TorchDrift (π₯15 Β· β 320 Β· π) - Drift Detection for your PyTorch Models. Apache-2

Database Clients
Libraries for connecting to, operating, and querying databases.
π best-of-python - DB Clients ( β 3.8K) - Collection of database clients for python.
Others
scipy (π₯50 Β· β 13K) - Ecosystem of open-source software for mathematics, science, and engineering. BSD-3
- [GitHub](https://github.com/scipy/scipy) (π¨βπ» 1.7K Β· π 5.2K Β· π₯ 460K Β· π¦ 1.2M Β· π 11K - 15% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/scipy) (π₯ 120M / month Β· π¦ 49K Β· β±οΈ 10.01.2025):
- [Conda](https://anaconda.org/conda-forge/scipy) (π₯ 58M Β· β±οΈ 11.01.2025):
SymPy (π₯49 Β· β 13K) - A computer algebra system written in pure Python. BSD-3
- [GitHub](https://github.com/sympy/sympy) (π¨βπ» 1.4K Β· π 4.5K Β· π₯ 550K Β· π¦ 220K Β· π 14K - 36% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/sympy) (π₯ 33M / month Β· π¦ 3.5K Β· β±οΈ 18.09.2024):
- [Conda](https://anaconda.org/conda-forge/sympy) (π₯ 7.8M Β· β±οΈ 07.01.2025):
Streamlit (π₯46 Β· β 37K) - Streamlit A faster way to build and share data apps. Apache-2
- [GitHub](https://github.com/streamlit/streamlit) (π¨βπ» 300 Β· π 3.2K Β· π¦ 700K Β· π 4.9K - 21% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/streamlit) (π₯ 6.8M / month Β· π¦ 3.2K Β· β±οΈ 04.02.2025):
Gradio (π₯43 Β· β 36K Β· π) - Wrap UIs around any model, share with anyone. Apache-2
- [GitHub](https://github.com/gradio-app/gradio) (π¨βπ» 500 Β· π 2.7K Β· π¦ 55K Β· π 5.3K - 8% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/gradio) (π₯ 6.7M / month Β· π¦ 1K Β· β±οΈ 05.02.2025):
carla (π₯38 Β· β 12K) - Open-source simulator for autonomous driving research. MIT
- [GitHub](https://github.com/carla-simulator/carla) (π¨βπ» 180 Β· π 3.7K Β· π¦ 920 Β· π 5.8K - 19% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/carla) (π₯ 11K / month Β· π¦ 11 Β· β±οΈ 14.11.2023):
PennyLane (π₯37 Β· β 2.5K) - PennyLane is a cross-platform Python library for quantum.. Apache-2
- [GitHub](https://github.com/PennyLaneAI/pennylane) (π¨βπ» 190 Β· π 620 Β· π₯ 100 Β· π¦ 1.3K Β· π 1.5K - 22% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pennylane) (π₯ 71K / month Β· π¦ 120 Β· β±οΈ 14.01.2025):
- [Conda](https://anaconda.org/conda-forge/pennylane) (π₯ 230K Β· β±οΈ 09.07.2024):
PyOD (π₯36 Β· β 8.8K) - A Python Library for Outlier and Anomaly Detection, Integrating Classical.. BSD-2
- [GitHub](https://github.com/yzhao062/pyod) (π¨βπ» 62 Β· π 1.4K Β· π¦ 4.7K Β· π 370 - 60% open Β· β±οΈ 22.12.2024):
- [PyPi](https://pypi.org/project/pyod) (π₯ 620K / month Β· π¦ 120 Β· β±οΈ 22.12.2024):
- [Conda](https://anaconda.org/conda-forge/pyod) (π₯ 140K Β· β±οΈ 06.09.2024):
Autograd (π₯36 Β· β 7.1K) - Efficiently computes derivatives of NumPy code. MIT
- [GitHub](https://github.com/HIPS/autograd) (π¨βπ» 60 Β· π 910 Β· π¦ 11K Β· π 430 - 41% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/autograd) (π₯ 3.6M / month Β· π¦ 280 Β· β±οΈ 22.08.2024):
- [Conda](https://anaconda.org/conda-forge/autograd) (π₯ 510K Β· β±οΈ 13.12.2024):
Datasette (π₯35 Β· β 9.8K) - An open source multi-tool for exploring and publishing data. Apache-2
- [GitHub](https://github.com/simonw/datasette) (π¨βπ» 81 Β· π 700 Β· π₯ 70 Β· π¦ 1.4K Β· π 1.9K - 32% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/datasette) (π₯ 210K / month Β· π¦ 420 Β· β±οΈ 29.11.2024):
- [Conda](https://anaconda.org/conda-forge/datasette) (π₯ 54K Β· β±οΈ 30.11.2024):
DeepChem (π₯35 Β· β 5.7K) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry,.. MIT

- [GitHub](https://github.com/deepchem/deepchem) (π¨βπ» 260 Β· π 1.7K Β· π¦ 500 Β· π 1.9K - 35% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/deepchem) (π₯ 59K / month Β· π¦ 16 Β· β±οΈ 04.02.2025):
- [Conda](https://anaconda.org/conda-forge/deepchem) (π₯ 110K Β· β±οΈ 05.04.2024):
agate (π₯35 Β· β 1.2K) - A Python data analysis library that is optimized for humans instead of.. MIT
- [GitHub](https://github.com/wireservice/agate) (π¨βπ» 53 Β· π 150 Β· π¦ 4.4K Β· π 650 - 0% open Β· β±οΈ 29.01.2025):
- [PyPi](https://pypi.org/project/agate) (π₯ 14M / month Β· π¦ 54 Β· β±οΈ 29.01.2025):
- [Conda](https://anaconda.org/conda-forge/agate) (π₯ 290K Β· β±οΈ 29.01.2025):
hdbscan (π₯34 Β· β 2.8K) - A high performance implementation of HDBSCAN clustering. BSD-3

- [GitHub](https://github.com/scikit-learn-contrib/hdbscan) (π¨βπ» 96 Β· π 500 Β· π¦ 4.7K Β· π 530 - 67% open Β· β±οΈ 09.01.2025):
- [PyPi](https://pypi.org/project/hdbscan) (π₯ 620K / month Β· π¦ 350 Β· β±οΈ 18.11.2024):
- [Conda](https://anaconda.org/conda-forge/hdbscan) (π₯ 2.4M Β· β±οΈ 12.10.2024):
Pythran (π₯33 Β· β 2K) - Ahead of Time compiler for numeric kernels. BSD-3
- [GitHub](https://github.com/serge-sans-paille/pythran) (π¨βπ» 73 Β· π 190 Β· π¦ 3.1K Β· π 880 - 15% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/pythran) (π₯ 320K / month Β· π¦ 21 Β· β±οΈ 31.10.2024):
- [Conda](https://anaconda.org/conda-forge/pythran) (π₯ 1M Β· β±οΈ 23.11.2024):
tensorly (π₯33 Β· β 1.6K) - TensorLy: Tensor Learning in Python. BSD-2
- [GitHub](https://github.com/tensorly/tensorly) (π¨βπ» 70 Β· π 290 Β· π¦ 880 Β· π 270 - 21% open Β· β±οΈ 31.01.2025):
- [PyPi](https://pypi.org/project/tensorly) (π₯ 53K / month Β· π¦ 99 Β· β±οΈ 12.11.2024):
- [Conda](https://anaconda.org/conda-forge/tensorly) (π₯ 370K Β· β±οΈ 10.06.2024):
River (π₯32 Β· β 5.2K) - Online machine learning in Python. BSD-3
- [GitHub](https://github.com/online-ml/river) (π¨βπ» 120 Β· π 550 Β· π¦ 640 Β· π 620 - 19% open Β· β±οΈ 03.02.2025):
- [PyPi](https://pypi.org/project/river) (π₯ 82K / month Β· π¦ 64 Β· β±οΈ 25.11.2024):
- [Conda](https://anaconda.org/conda-forge/river) (π₯ 100K Β· β±οΈ 06.10.2023):
pyjanitor (π₯32 Β· β 1.4K) - Clean APIs for data cleaning. Python implementation of R package.. MIT
- [GitHub](https://github.com/pyjanitor-devs/pyjanitor) (π¨βπ» 110 Β· π 170 Β· π¦ 840 Β· π 570 - 19% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/pyjanitor) (π₯ 91K / month Β· π¦ 36 Β· β±οΈ 04.12.2024):
- [Conda](https://anaconda.org/conda-forge/pyjanitor) (π₯ 240K Β· β±οΈ 05.12.2024):
PaddleHub (π₯31 Β· β 13K) - Awesome pre-trained models toolkit based on PaddlePaddle... Apache-2

- [GitHub](https://github.com/PaddlePaddle/PaddleHub) (π¨βπ» 70 Β· π 2.1K Β· π₯ 840 Β· π¦ 1.8K Β· π 1.3K - 44% open Β· β±οΈ 07.08.2024):
- [PyPi](https://pypi.org/project/paddlehub) (π₯ 5K / month Β· π¦ 7 Β· β±οΈ 20.09.2023):
pyopencl (π₯31 Β· β 1.1K) - OpenCL integration for Python, plus shiny features. MIT
- [GitHub](https://github.com/inducer/pyopencl) (π¨βπ» 97 Β· π 240 Β· π¦ 2.1K Β· π 360 - 21% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/pyopencl) (π₯ 91K / month Β· π¦ 180 Β· β±οΈ 22.01.2025):
- [Conda](https://anaconda.org/conda-forge/pyopencl) (π₯ 1.6M Β· β±οΈ 22.01.2025):
datalad (π₯31 Β· β 560) - Keep code, data, containers under control with git and git-annex. MIT
- [GitHub](https://github.com/datalad/datalad) (π¨βπ» 57 Β· π 110 Β· π¦ 450 Β· π 4K - 13% open Β· β±οΈ 15.12.2024):
- [PyPi](https://pypi.org/project/datalad) (π₯ 16K / month Β· π¦ 99 Β· β±οΈ 15.12.2024):
- [Conda](https://anaconda.org/conda-forge/datalad) (π₯ 790K Β· β±οΈ 20.11.2024):
dstack (π₯30 Β· β 1.7K) - dstack is a lightweight, open-source alternative to Kubernetes &.. MPL-2.0
- [GitHub](https://github.com/dstackai/dstack) (π¨βπ» 49 Β· π 160 Β· π¦ 18 Β· π 1.2K - 9% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/dstack) (π₯ 9.5K / month Β· β±οΈ 05.02.2025):
causalml (π₯29 Β· β 5.2K) - Uplift modeling and causal inference with machine learning.. Apache-2
- [GitHub](https://github.com/uber/causalml) (π¨βπ» 64 Β· π 780 Β· π¦ 240 Β· π 400 - 13% open Β· β±οΈ 10.01.2025):
- [PyPi](https://pypi.org/project/causalml) (π₯ 43K / month Β· π¦ 2 Β· β±οΈ 01.10.2024):
anomalib (π₯29 Β· β 4K) - An anomaly detection library comprising state-of-the-art algorithms.. Apache-2
- [GitHub](https://github.com/openvinotoolkit/anomalib) (π¨βπ» 83 Β· π 700 Β· π₯ 17K Β· π¦ 130 Β· π 970 - 15% open Β· β±οΈ 04.02.2025):
- [PyPi](https://pypi.org/project/anomalib) (π₯ 27K / month Β· π¦ 5 Β· β±οΈ 09.01.2025):
Prince (π₯29 Β· β 1.3K) - Multivariate exploratory data analysis in Python PCA, CA, MCA, MFA,.. MIT

- [GitHub](https://github.com/MaxHalford/prince) (π¨βπ» 16 Β· π 180 Β· π¦ 660 Β· β±οΈ 05.01.2025):
- [PyPi](https://pypi.org/project/prince) (π₯ 160K / month Β· π¦ 19 Β· β±οΈ 04.01.2025):
- [Conda](https://anaconda.org/conda-forge/prince-factor-analysis) (π₯ 23K Β· β±οΈ 16.06.2023):
Trax (π₯28 Β· β 8.2K) - Trax Deep Learning with Clear Code and Speed. Apache-2
- [GitHub](https://github.com/google/trax) (π¨βπ» 80 Β· π 820 Β· π¦ 210 Β· π 250 - 49% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/trax) (π₯ 4.3K / month Β· π¦ 1 Β· β±οΈ 26.10.2021):
TabPy (π₯28 Β· β 1.6K) - Execute Python code on the fly and display results in Tableau visualizations:. MIT
- [GitHub](https://github.com/tableau/TabPy) (π¨βπ» 51 Β· π 600 Β· π¦ 190 Β· π 320 - 6% open Β· β±οΈ 25.11.2024):
- [PyPi](https://pypi.org/project/tabpy) (π₯ 6.8K / month Β· π¦ 2 Β· β±οΈ 25.11.2024):
- [Conda](https://anaconda.org/anaconda/tabpy-client) (π₯ 4.9K Β· β±οΈ 16.06.2023):
adapter-transformers (π₯27 Β· β 2.6K) - A Unified Library for Parameter-Efficient and Modular.. Apache-2
huggingface
- [GitHub](https://github.com/adapter-hub/adapters) (π¨βπ» 15 Β· π 360 Β· π¦ 160 Β· π 400 - 10% open Β· β±οΈ 28.01.2025):
- [PyPi](https://pypi.org/project/adapter-transformers) (π₯ 4.4K / month Β· π¦ 12 Β· β±οΈ 07.07.2024):
avalanche (π₯27 Β· β 1.8K) - Avalanche: an End-to-End Library for Continual Learning based on.. MIT
- [GitHub](https://github.com/ContinualAI/avalanche) (π¨βπ» 80 Β· π 300 Β· π₯ 48 Β· π¦ 120 Β· π 820 - 12% open Β· β±οΈ 29.10.2024):
- [PyPi](https://pypi.org/project/avalanche-lib) (π₯ 1.6K / month Β· π¦ 3 Β· β±οΈ 29.10.2024):
pycm (π₯27 Β· β 1.5K) - Multi-class confusion matrix library in Python. MIT
- [GitHub](https://github.com/sepandhaghighi/pycm) (π¨βπ» 18 Β· π 130 Β· π¦ 370 Β· π 210 - 7% open Β· β±οΈ 13.01.2025):
- [PyPi](https://pypi.org/project/pycm) (π₯ 41K / month Β· π¦ 24 Β· β±οΈ 14.01.2025):
pyclustering (π₯27 Β· β 1.2K Β· π€) - pyclustering is a Python, C++ data mining library. BSD-3
- [GitHub](https://github.com/annoviko/pyclustering) (π¨βπ» 26 Β· π 250 Β· π₯ 650 Β· π¦ 800 Β· π 670 - 11% open Β· β±οΈ 08.02.2024):
- [PyPi](https://pypi.org/project/pyclustering) (π₯ 37K / month Β· π¦ 32 Β· β±οΈ 25.11.2020):
- [Conda](https://anaconda.org/conda-forge/pyclustering) (π₯ 120K Β· β±οΈ 08.11.2024):
metric-learn (π₯26 Β· β 1.4K) - Metric learning algorithms in Python. MIT

- [GitHub](https://github.com/scikit-learn-contrib/metric-learn) (π¨βπ» 23 Β· π 230 Β· π¦ 450 Β· π 170 - 30% open Β· β±οΈ 03.08.2024):
- [PyPi](https://pypi.org/project/metric-learn) (π₯ 6.6K / month Β· π¦ 7 Β· β±οΈ 09.10.2023):
- [Conda](https://anaconda.org/conda-forge/metric-learn) (π₯ 15K Β· β±οΈ 06.01.2025):
Feature Engine (π₯25 Β· β 2K) - Feature engineering package with sklearn like functionality. BSD-3
- [GitHub](https://github.com/solegalli/feature_engine) (π¨βπ» 49 Β· π 320 Β· β±οΈ 31.08.2024):
- [PyPi](https://pypi.org/project/feature_engine) (π₯ 210K / month Β· π¦ 180 Β· β±οΈ 22.01.2025):
- [Conda](https://anaconda.org/conda-forge/feature_engine) (π₯ 66K Β· β±οΈ 27.01.2025):
AugLy (π₯24 Β· β 5K) - A data augmentations library for audio, image, text, and video. MIT
- [GitHub](https://github.com/facebookresearch/AugLy) (π¨βπ» 38 Β· π 300 Β· π¦ 160 Β· π 78 - 30% open Β· β±οΈ 05.02.2025):
- [PyPi](https://pypi.org/project/augly) (π₯ 2.6K / month Β· π¦ 4 Β· β±οΈ 05.12.2023):
MONAILabel (π₯24 Β· β 660) - MONAI Label is an intelligent open source image labeling and.. Apache-2
- [GitHub](https://github.com/Project-MONAI/MONAILabel) (π¨βπ» 65 Β· π 200 Β· π₯ 110K Β· π 540 - 24% open Β· β±οΈ 15.01.2025):
- [PyPi](https://pypi.org/project/monailabel-weekly) (π₯ 3K / month Β· β±οΈ 01.10.2023):
BioPandas (π₯23 Β· β 720) - Working with molecular structures in pandas DataFrames. BSD-3

- [GitHub](https://github.com/BioPandas/biopandas) (π¨βπ» 18 Β· π 120 Β· π¦ 340 Β· π 59 - 35% open Β· β±οΈ 01.08.2024):
- [PyPi](https://pypi.org/project/biopandas) (π₯ 10K / month Β· π¦ 38 Β· β±οΈ 01.08.2024):
- [Conda](https://anaconda.org/conda-forge/biopandas) (π₯ 170K Β· β±οΈ 28.12.2024):
benchmark_VAE (π₯21 Β· β 1.9K Β· π€) - Unifying Variational Autoencoder (VAE).. Apache-2

- [GitHub](https://github.com/clementchadebec/benchmark_VAE) (π¨βπ» 18 Β· π 170 Β· π¦ 37 Β· π 70 - 35% open Β· β±οΈ 17.07.2024):
- [PyPi](https://pypi.org/project/pythae) (π₯ 1.5K / month Β· β±οΈ 06.09.2023):
SUOD (π₯21 Β· β 380 Β· π€) - (MLSys 21) An Acceleration System for Large-scare Unsupervised.. BSD-2
- [GitHub](https://github.com/yzhao062/SUOD) (π¨βπ» 3 Β· π 49 Β· π¦ 540 Β· π 15 - 80% open Β· β±οΈ 08.02.2024):
- [PyPi](https://pypi.org/project/suod) (π₯ 11K / month Β· π¦ 8 Β· β±οΈ 08.02.2024):
pymdp (π₯20 Β· β 500) - A Python implementation of active inference for Markov Decision Processes. MIT
- [GitHub](https://github.com/infer-actively/pymdp) (π¨βπ» 19 Β· π 98 Β· π¦ 17 Β· π 48 - 43% open Β· β±οΈ 06.02.2025):
- [PyPi](https://pypi.org/project/inferactively-pymdp) (π₯ 2K / month Β· β±οΈ 08.12.2022):
pykale (π₯20 Β· β 450) - Knowledge-Aware machine LEarning (KALE): accessible machine learning.. MIT

- [GitHub](https://github.com/pykale/pykale) (π¨βπ» 25 Β· π 64 Β· π¦ 5 Β· π 120 - 8% open Β· β±οΈ 24.09.2024):
- [PyPi](https://pypi.org/project/pykale) (π₯ 440 / month Β· β±οΈ 12.04.2022):
NeuralCompression (π₯15 Β· β 520) - A collection of tools for neural compression enthusiasts. MIT
- [GitHub](https://github.com/facebookresearch/NeuralCompression) (π¨βπ» 10 Β· π 43 Β· π 71 - 8% open Β· β±οΈ 20.09.2024):
- [PyPi](https://pypi.org/project/neuralcompression) (π₯ 290 / month Β· β±οΈ 03.10.2023):
Show 27 hidden projects...
- Cython BLIS (π₯32 Β· β 220) - Fast matrix-multiplication as a self-contained Python library no..BSD-3
- cleanlab (π₯31 Β· β 10K) - The standard data-centric AI package for data quality and machine.. βοΈAGPL-3.0
- pysc2 (π₯28 Β· β 8.1K Β· π) - StarCraft II Learning Environment. Apache-2
- alibi-detect (π₯28 Β· β 2.3K) - Algorithms for outlier, adversarial and drift detection. βοΈIntel
- modAL (π₯28 Β· β 2.3K Β· π) - A modular active learning framework for Python. MIT

- kmodes (π₯28 Β· β 1.3K Β· π) - Python implementations of the k-modes and k-prototypes clustering.. MIT
- gplearn (π₯27 Β· β 1.7K Β· π) - Genetic Programming in Python, with a scikit-learn inspired API. BSD-3

- PySwarms (π₯27 Β· β 1.3K Β· π) - A research toolkit for particle swarm optimization in Python. MIT
- metricflow (π₯26 Β· β 1.2K) - MetricFlow allows you to define, build, and maintain metrics.. βUnlicensed
- minisom (π₯25 Β· β 1.5K) - MiniSom is a minimalistic implementation of the Self Organizing.. βοΈCC-BY-3.0
- findspark (π₯25 Β· β 520 Β· π) - Find pyspark to make it importable. BSD-3

- pandas-ai (π₯24 Β· β 14K) - Chat with your database or your datalake (SQL, CSV, parquet)... βUnlicensed
- Mars (π₯24 Β· β 2.7K Β· π) - Mars is a tensor-based unified framework for large-scale data.. Apache-2
- AstroML (π₯23 Β· β 1.1K Β· π) - Machine learning, statistics, and data mining for astronomy.. BSD-2

- opyrator (π₯22 Β· β 3.1K Β· π) - Turns your machine learning code into microservices with web API,.. MIT
- mlens (π₯22 Β· β 850 Β· π) - ML-Ensemble high performance ensemble learning. MIT
- vecstack (π₯22 Β· β 690 Β· π) - Python package for stacking (machine learning technique). MIT
- impyute (π₯21 Β· β 360 Β· π) - Data imputations library to preprocess datasets with missing data. MIT
- StreamAlert (π₯20 Β· β 2.9K Β· π) - StreamAlert is a serverless, realtime data analysis.. Apache-2
- rrcf (π₯20 Β· β 500 Β· π) - Implementation of the Robust Random Cut Forest algorithm for anomaly.. MIT
- apricot (π₯20 Β· β 500 Β· π) - apricot implements submodular optimization for the purpose of.. MIT
- scikit-rebate (π₯20 Β· β 420 Β· π) - A scikit-learn-compatible Python implementation of.. MIT

- baikal (π₯19 Β· β 590 Β· π) - A graph-based functional API for building complex scikit-learn.. BSD-3
- KD-Lib (π₯16 Β· β 620 Β· π) - A Pytorch Knowledge Distillation library for benchmarking and.. MIT

- pandas-ml (π₯16 Β· β 320 Β· π) - pandas, scikit-learn, xgboost and seaborn integration. BSD-3


- nylon (π₯14 Β· β 83 Β· π) - An intelligent, flexible grammar of machine learning. MIT
- traingenerator (π₯13 Β· β 1.4K Β· π) - A web app to generate template code for machine learning. MIT
Related Resources
- Papers With Code: Discover ML papers, code, and evaluation tables.
- Sotabench: Discover & compare open-source ML models.
- Google Dataset Search: Dataset search engine by Google.
- Dataset List: List of the biggest ML datasets from across the web.
- Awesome Public Datasets: A topic-centric list of open datasets.
- Best-of lists: Discover other best-of lists with awesome open-source projects on all kinds of topics.
- best-of-python-dev: A ranked list of awesome python developer tools and libraries.
- best-of-web-python: A ranked list of awesome python libraries for web development.
Contribution
Contributions are encouraged and always welcome! If you like to add or update projects, choose one of the following ways:
- Open an issue by selecting one of the provided categories from the issue page and fill in the requested information.
- Modify the projects.yaml with your additions or changes, and submit a pull request. This can also be done directly via the Github UI.
If you like to contribute to or share suggestions regarding the project metadata collection or markdown generation, please refer to the best-of-generator repository. If you like to create your own best-of list, we recommend to follow this guide.
For more information on how to add or update projects, please read the contribution guidelines. By participating in this project, you agree to abide by its Code of Conduct.