Skip to content

Blog

Neural Network Models for Chemistry

# Neural-Network-Models-for-Chemistry Check Markdown links

A collection of Neural Network Models for chemistry - Quantum Chemistry Method - Force Field Method - Semi-Empirical Method - Coarse-Grained Method - Enhanced Sampling Method - QM/MM Method - Charge Method

Quantum Chemistry Method

  • DeePKS, DeePHF
    DeePKS-kit is a program to generate accurate energy functionals for quantum chemistry systems, for both perturbative scheme (DeePHF) and self-consistent scheme (DeePKS).

  • NeuralXC
    Implementation of a machine-learned density functional.

  • MOB-ML
    Machine Learning for Molecular Orbital Theory.

  • DM21
    Pushing the Frontiers of Density Functionals by Solving the Fractional Electron Problem.

  • NN-GGA, NN-NRA, NN-meta-GGA, NN-LSDA
    Completing density functional theory by machine-learning hidden messages from molecules.
  • FemiNet
    FermiNet is a neural network for learning highly accurate ground state wavefunctions of atoms and molecules using a variational Monte Carlo approach.
  • DeePQMC
    DeepQMC implements variational quantum Monte Carlo for electrons in molecules, using deep neural networks written in PyTorch as trial wave functions.
  • PauliNet
    PauliNet builds upon HF or CASSCF orbitals as a physically meaningful baseline and takes a neural network approach to the SJB wavefunction in order tocorrect this baseline towards a high-accuracy solution.
  • DeePErwin
    DeepErwin is python package that implements and optimizes wave function models for numerical solutions to the multi-electron Schrödinger equation.
  • Jax-DFT
    JAX-DFT implements one-dimensional density functional theory (DFT) in JAX. It uses powerful JAX primitives to enable JIT compilation, automatical differentiation, and high-performance computation on GPUs.
  • sns-mp2
    Improving the accuracy of Moller-Plesset perturbation theory with neural networks
  • DeepH-pack
    Deep neural networks for density functional theory Hamiltonian. -DeepH-E3
    General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian
  • kdft
    The Kernel Density Functional (KDF) code allows generating ML-based DFT functionals.
  • ML-DFT
    ML-DFT: Machine learning for density functional approximations This repository contains the implementation for the kernel ridge regression based density functional approximation method described in the paper "Quantum chemical accuracy from density functional approximations via machine learning".
  • D4FT
    this work proposed a deep-learning approach to KS-DFT. First, in contrast to the conventional SCF loop, directly minimizing the total energy by reparameterizing the orthogonal constraint as a feed-forward computation. They prove that such an approach has the same expressivity as the SCF method yet reduces the computational complexity from O(N^4) to O(N^3)
  • SchOrb
    Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
  • CiderPress
    Tools for training and evaluating CIDER functionals for use in Density Functional Theory calculations.
  • ML-RPA
    This work demonstrates how machine learning can extend the applicability of the RPA to larger system sizes, time scales, and chemical spaces.
  • ΔOF-MLFF
    a Δ-machine learning model for obtaining Kohn–Sham accuracy from orbital-free density functional theory (DFT) calculations
  • PairNet
    A molecular orbital based machine learning model for predicting accurate CCSD(T) correlation energies. The model, named as PairNet, shows excellent transferability on several public data sets using features inspired by pair natural orbitals(PNOs).

  • SPAHM(a,b)
    SPAHM(a,b): encoding the density information from guess Hamiltonian in quantum machine learning representations

  • GradDFT
    GradDFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation functionals using machine learning techniques.
  • lapnet
    A JAX implementation of the algorithm and calculations described in Forward Laplacian: A New Computational Framework for Neural Network-based Variational Monte Carlo.
  • M-OFDFT
    M-OFDFT is a deep-learning implementation of orbital-free density functional theory that achieves DFT-level accuracy on molecular systems but with lower cost complexity, and can extrapolate to much larger molecules than those seen during training
  • ANN for Schrodinger
    Artificial neural networks (NN) are universal function approximators and have shown great ability in computing the ground state energy of the electronic Schrödinger equation, yet NN has not established itself as a practical and accurate approach to solving the vibrational Schrödinger equation for realistic polyatomic molecules to obtain vibrational energies and wave functions for the excited states
  • equivariant_electron_density
    Generate and predict molecular electron densities with Euclidean Neural Networks
  • DeePDFT
    This is the official Implementation of the DeepDFT model for charge density prediction.
  • DFA_recommeder
    System-specific density functional recommender
  • EG-XC
    The accuracy of density functional theory hinges on the approximation of nonlocal contributions to the exchange-correlation (XC) functional. To date, machine-learned and human-designed approximations suffer from insufficient accuracy, limited scalability, or dependence on costly reference data. To address these issues, we introduce Equivariant Graph Exchange Correlation (EG-XC), a novel non-local XC functional based on equivariant graph neural network
  • scdp
    Machine learning methods are promising in significantly accelerating charge density prediction, yet existing approaches either lack accuracy or scalability. They propose a recipe that can achieve both. In particular, they identify three key ingredients: (1) representing the charge density with atomic and virtual orbitals (spherical fields centered at atom/virtual coordinates); (2) using expressive and learnable orbital basis sets (basis function for the spherical fields); and (3) using high-capacity equivariant neural network architecture
  • physics-informed-DFT
    We have developed an approach for physics-informed training of flexible empirical density functionals. In this approach, the “physics knowledge” is transferred from PBE, or any other exact-constraints-based functional, using local exchange−correlation energy density regularization, i.e., by adding its local energies into the training set

Green Function

  • DeepGreen
    The many-body Green's function provides access to electronic properties beyond density functional theory level in ab inito calculations. It present proof-of-concept benchmark results for both molecules and simple periodic systems, showing that our method is able to provide accurate estimate of physical observables such as energy and density of states based on the predicted Green's function.

Force Field Method

Kernel Method

  • wigner_kernel
    They propose a novel density-based method which involves computing “Wigner kernels”.

Descriptor Domain

  • DeePMD
    A package designed to minimize the effort required to build deep learning based model of interatomic potential energy and force field and to perform molecular dynamics.
  • Torch-ANI
    TorchANI is a pytorch implementation of ANI model.
  • mdgrad
    Pytorch differentiable molecular dynamics
  • PESPIP
    Mathematica programs for choosing the best basis of permutational invariant polynomials for fitting a potential energy surface
  • Schrodinger-ANI
    A neural network potential energy function for use in drug discovery, with chemical element support extended from 41% to 94% of druglike molecules based on ChEMBL.
  • NerualForceFild
    The Neural Force Field (NFF) code is an API based on SchNet, DimeNet, PaiNN and DANN. It provides an interface to train and evaluate neural networks for force fields. It can also be used as a property predictor that uses both 3D geometries and 2D graph information.
  • NNPOps
    The goal of this project is to promote the use of neural network potentials (NNPs) by providing highly optimized, open-source implementations of bottleneck operations that appear in popular potentials.
  • RuNNer
    A program package for constructing high-dimensional neural network potentials,4G-HDNNPs,3G-HDNNPs.
  • aenet
    The Atomic Energy NETwork (ænet) package is a collection of tools for the construction and application of atomic interaction potentials based on artificial neural networks.
  • sGDML
    Symmetric Gradient Domain Machine Learning
  • GAP
    This package is part of QUantum mechanics and Interatomic Potentials
  • QUIP
    The QUIP package is a collection of software tools to carry out molecular dynamics simulations. It implements a variety of interatomic potentials and tight binding quantum mechanics, and is also able to call external packages, and serve as plugins to other software such as LAMMPS, CP2K and also the python framework ASE.
  • NNP-MM
    NNP/MM embeds a Neural Network Potential into a conventional molecular mechanical (MM) model.
  • GAMD
    Data and code for Graph neural network Accelerated Molecular Dynamics.
  • PFP
    Here we report a development of universal NNP called PreFerred Potential (PFP), which is able to handle any combination of 45 elements. Particular emphasis is placed on the datasets, which include a diverse set of virtual structures used to attain the universality.
  • TeaNet
    universal neural network interatomic potential inspired by iterative electronic relaxations.
  • n2p2
    This repository provides ready-to-use software for high-dimensional neural network potentials in computational physics and chemistry.
  • AIMNET
    This repository contains reference AIMNet implementation along with some examples and menchmarks.
  • AIMNet2
    A general-purpose neural netrork potential for organic and element-organic molecules.
  • aevmod
    This package provides functionality for computing an atomic environment vector (AEV), as well as its Jacobian and Hessian.
  • charge3net
    Official implementation of ChargeE3Net, introduced in Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials.
  • jax-nb
    This is a JAX implementation of Polarizable Charge Equilibrium (PQEq) and DFT-D3 dispersion correction.

Graph Domain

  • Nequip
    NequIP is an open-source code for building E(3)-equivariant interatomic potentials.
  • E3NN
    Euclidean neural networks,The aim of this library is to help the development of E(3) equivariant neural networks. It contains fundamental mathematical operations such as tensor products and spherical harmonics.
  • SchNet
    SchNet is a deep learning architecture that allows for spatially and chemically resolved insights into quantum-mechanical observables of atomistic systems.
  • SchNetPack
    SchNetPack aims to provide accessible atomistic neural networks that can be trained and applied out-of-the-box, while still being extensible to custom atomistic architectures. contains schnet,painn,filedschnet,so3net
  • XequiNet XequiNet is an equivariant graph neural network for predicting the properties of chemical molecules or periodical systems.
  • G-SchNet
    Implementation of G-SchNet - a generative model for 3d molecular structures.
  • PhysNet
    PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges.
  • DimeNet
    Directional Message Passing Neural Network.
  • GemNet
    Universal Directional Graph Neural Networks for Molecules.
  • DeePMoleNet
    DeepMoleNet is a deep learning package for molecular properties prediction.
  • AirNet
    A new GNN-based deep molecular model by MindSpore.
  • TorchMD-Net
    TorchMD-NET provides graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials.
  • AQML
    AQML is a mixed Python/Fortran/C++ package, intends to simulate quantum chemistry problems through the use of the fundamental building blocks of larger systems.
  • TensorMol
    A pakcages of NN model chemistry, contains Behler-Parrinello with electrostatics, Many Body Expansion Bonds in Molecules NN, Atomwise, Forces, Inductive Charges.
  • charge_transfer_nnp
    About Graph neural network potential with charge transfer with nequip model.
  • AMP
    Amp: A modular approach to machine learning in atomistic simulations(https://github.com/ulissigroup/amptorch)
  • SCFNN
    A self consistent field neural network (SCFNN) model.
  • jax-md
    JAX MD is a functional and data driven library. Data is stored in arrays or tuples of arrays and functions transform data from one state to another.
  • EANN
    Embedded Atomic Neural Network (EANN) is a physically-inspired neural network framework. The EANN package is implemented using the PyTorch framework used to train interatomic potentials, dipole moments, transition dipole moments and polarizabilities of various systems.
  • REANN
    Recursively embedded atom neural network (REANN) is a PyTorch-based end-to-end multi-functional Deep Neural Network Package for Molecular, Reactive and Periodic Systems.
  • FIREANN
    Field-induced Recursively embedded atom neural network (FIREANN) is a PyTorch-based end-to-end multi-functional Deep Neural Network Package for Molecular, Reactive and Periodic Systems under the presence of the external field with rigorous rotational equivariance.
  • MDsim
    Training and simulating MD with ML force fields
  • ForceNet
    We demonstrate that force-centric GNN models without any explicit physical constraints are able to predict atomic forces more accurately than state-of-the-art energy centric GNN models, while being faster both in training and inference.
  • DIG
    A library for graph deep learning research.
  • scn
    Spherical Channels for Modeling Atomic Interactions
  • spinconv
    Rotation Invariant Graph Neural Networks using Spin Convolutions.
  • HIPPYNN
    a modular library for atomistic machine learning with pytorch.
  • VisNet
    a scalable and accurate geometric deep learning potential for molecular dynamics simulation
  • flare
    FLARE is an open-source Python package for creating fast and accurate interatomic potentials.)
  • alignn
    The Atomistic Line Graph Neural Network (https://www.nature.com/articles/s41524-021-00650-1) introduces a new graph convolution layer that explicitly models both two and three body interactions in atomistic systems.
  • So3krates
    Repository for training, testing and developing machine learned force fields using the So3krates model.
  • spice-model-five-net
    Contains the five equivariant transformer models about the spice datasets(https://github.com/openmm/spice-dataset/releases/tag/1.1).
  • sake
    Spatial Attention Kinetic Networks with E(n)-Equivariance
  • eqgat
    Pytorch implementation for the manuscript Representation Learning on Biomolecular Structures using Equivariant Graph Attention
  • phast
    PyTorch implementation for PhAST: Physics-Aware, Scalable and Task-specific GNNs for Accelerated Catalyst Design
  • GNN-LF
    Graph Neural Network With Local Frame for Molecular Potential Energy Surface
  • Cormorant
    We propose Cormorant, a rotationally covariant neural network architecture for learning the behavior and properties of complex many-body physical systems.
  • LieConv
    Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
  • torchmd-net/ET
    Neural network potentials based on graph neural networks and equivariant transformers
  • torchmd-net/TensorNet+0.1S
    On the Inclusion of Charge and Spin States in Cartesian Tensor Neural Network Potentials
  • GemNet
    GemNet: Universal Directional Graph Neural Networks for Molecules
  • equiformer
    Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
  • VisNet-LSRM
    Inspired by fragmentation-based methods, we propose the Long-Short-Range Message-Passing (LSR-MP) framework as a generalization of the existing equivariant graph neural networks (EGNNs) with the intent to incorporate long-range interactions efficiently and effectively.
  • AP-net
    AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials
  • MACE
    MACE provides fast and accurate machine learning interatomic potentials with higher order equivariant message passing.
  • MACE-OFF23
    This repository contains the MACE-OFF23 pre-traained transferable organic force fields.
  • Unimol+ Uni-Mol+ first generates a raw 3D molecule conformation from inexpensive methods such as RDKit. Then, the raw conformation is iteratively updated to its target DFT equilibrium conformation using neural networks, and the learned conformation will be used to predict the QC properties.
  • ColfNet
    Inspired by differential geometry and physics, we introduce equivariant local complete frames to graph neural networks, such that tensor information at given orders can be projected onto the frames.
  • AIRS
    AIRS is a collection of open-source software tools, datasets, and benchmarks associated with our paper entitled “Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems”.
  • nnp-pre-training
    Synthetic pre-training for neural-network interatomic potentials
  • AlF_dimer
    a global potential for AlF-AlF dimer
  • q-AQUA,q-AQUA-pol
    CCSD(T) potential for water, interfaced with TTM3-F
  • LeftNet
    A New Perspective on Building Efficient and Expressive 3D Equivariant Graph Neural Networks
  • mlp-train
    General machine learning potentials (MLP) training for molecular systems in gas phase and solution
  • ARROW-NN
    The simulation conda package contains the InterX ARBALEST molecular dynamics simulation software along with all the necessary database files to run ARROW-NN molecular simulations
  • SO3krates with transformer
    we propose a transformer architecture called SO3krates that combines sparse equivariant representations
  • AMOEBA+NN
    It present an integrated non-reactive hybrid model, AMOEBA+NN, which employs the AMOEBA potential for the short- and long-range non-bonded interactions and an NNP to capture the remaining local (covalent) contributions
  • LEIGNN A lightweight equivariant interaction graph neural network (LEIGNN) that can enable accurate and efficient interatomic potential and force predictions in crystals. Rather than relying on higher-order representations, LEIGNN employs a scalar-vector dual representation to encode equivariant feature.
  • Arrow NN
    A hybrid wide-coverage intermolecular interaction model consisting of an analytically polarizable force field combined with a short-range neural network correction for the total intermolecular interaction energy.
  • PAMNet
    PAMNet(Physics-aware Multiplex Graph Neural Network) is an improved version of MXMNet and outperforms state-of-the-art baselines regarding both accuracy and efficiency in diverse tasks including small molecule property prediction, RNA 3D structure prediction, and protein-ligand binding affinity prediction.
  • Multi-fidelity GNNs
    Multi-fidelity GNNs for drug discovery and quantum mechanics
  • GPIP
    GPIP: Geometry-enhanced Pre-training on Interatomic Potentials.they propose a geometric structure learning framework that leverages the unlabeled configurations to improve the performance of MLIPs. Their framework consists of two stages: firstly, using CMD simulations to generate unlabeled configurations of the target molecular system; and secondly, applying geometry-enhanced self-supervised learning techniques, including masking, denoising, and contrastive learning, to capture structural information
  • ictp
    Official repository for the paper "Higher Rank Irreducible Cartesian Tensors for Equivariant Message Passing". It is built upon the ALEBREW repository and implements irreducible Cartesian tensors and their products.

  • CHGNet
    A pretrained universal neural network potential for charge-informed atomistic modeling (see publication)

  • GPTFF
    GPTFF: A high-accuracy out-of-the-box universal AI force field for arbitrary inorganic materials
  • rascaline
    Rascaline is a library for the efficient computing of representations for atomistic machine learning also called "descriptors" or "fingerprints". These representations can be used for atomistic machine learning (ml) models including ml potentials, visualization or similarity analysis.
  • PairNet-OPs/PairFE-Net
    In PairFE-Net, an atomic structure is encoded using pairwise nuclear repulsion forces

  • bamboo
    ByteDance AI Molecular Simulation BOOster (BAMBOO)

Transformer Domain

  • SpookyNet
    Spookynet: Learning force fields with electronic degrees of freedom and nonlocal effects.
  • trip
    Transformer Interatomic Potential (TrIP): a chemically sound potential based on the SE(3)-Transformer
  • e3x
    E3x is a JAX library for constructing efficient E(3)-equivariant deep learning architectures built on top of Flax. The goal is to provide common neural network building blocks for E(3)-equivariant architectures to make the development of models operating on three-dimensional data (point clouds, polygon meshes, etc.) easier.

Empirical force field

  • grappa
    A machine-learned molecular mechanics force field using a deep graph attentional network
  • espaloma
    Extensible Surrogate Potential of Ab initio Learned and Optimized by Message-passing Algorithm.
  • FeNNol
    FeNNol is a library for building, training and running neural network potentials for molecular simulations. It is based on the JAX library and is designed to be fast and flexible.
  • ByteFF
    In this study, we address this issue usinga modern data-driven approach, developing ByteFF, an Amber-compatible force fi eld for drug-like molecules. To create ByteFF, we generated an expansive and highly diverse molecular dataset at the B3LYP-D3(BJ)/DZVP level of theory. This dataset includes 2.4 million optimized molecular fragment geometries with analytical Hessian matrices, along with 3.2 million torsion profiles

Semi-Empirical Quantum Mechanical Method

  • OrbNet; OrbNet Denali
    OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy.
  • OrbNet-Equi
    INFORMING GEOMETRIC DEEP LEARNING WITH ELECTRONIC INTERACTIONS TO ACCELERATE QUANTUM CHEMISTRY
  • OrbNet-Spin
    OrbNet-Spin incorporates a spin-polarized treatment into the underlying semiempirical quantum mechanics orbital featurization and adjusts the model architecture accordingly while maintaining the geometrical constraints.

  • AIQM1
    Artificial intelligence-enhanced quantum chemical method with broad applicability.

  • BpopNN
    Incorporating Electronic Information into Machine Learning Potential Energy Surfaces via Approaching the Ground-State Electronic Energy as a Function of Atom-Based Electronic Populations.
  • Delfta
    The DelFTa application is an easy-to-use, open-source toolbox for predicting quantum-mechanical properties of drug-like molecules. Using either ∆-learning (with a GFN2-xTB baseline) or direct-learning (without a baseline), the application accurately approximates DFT reference values (ωB97X-D/def2-SVP).
  • PYSEQM
    PYSEQM is a Semi-Empirical Quantum Mechanics package implemented in PyTorch.
  • DFTBML
    DFTBML provides a systematic way to parameterize the Density Functional-based Tight Binding (DFTB) semiempirical quantum chemical method for different chemical systems by learning the underlying Hamiltonian parameters rather than fitting the potential energy surface directly.
  • mopac-ml
    MOPAC-ML implements the PM6-ML method, a semiempirical quantum-mechanical computational method that augments PM6 with a machine learning (ML) correction. It acts as a wrapper calling a modified version of MOPAC, to which it provides the ML correction.

Coarse-Grained Method

  • cgnet
    Coarse graining for molecular dynamics
  • SchNet-CG
    We explore the application of SchNet models to obtain a CG potential for liquid benzene, investigating the effect of model architecture and hyperparameters on the thermodynamic, dynamical, and structural properties of the simulated CG systems, reporting and discussing challenges encountered and future directions envisioned.
  • CG-SchNET
    By combining recent deep learning methods with a large and diverse training set of all-atom protein simulations, we here develop a bottom-up CG force field with chemical transferability, which can be used for extrapolative molecular dynamics on new sequences not used during model parametrization.
  • torchmd-protein-thermodynamics
    This repository contains code, data and tutarial for reproducing the paper "Machine Learning Coarse-Grained Potentials of Protein Thermodynamics". https://arxiv.org/abs/2212.07492
  • torchmd-exp This repository contains a method for training a neural network potential for coarse-grained proteins using unsupervised learning
  • AICG
    Learning coarse-grained force fields for fibrogenesis modeling(https://doi.org/10.1016/j.cpc.2023.108964)

Enhanced Sampling Method

  • Enhanced Sampling with Machine Learning: A Review
    we highlight successful strategies like dimensionality reduction, reinforcement learning, and fl ow-based methods. Finally, we discuss open problems at the exciting ML-enhanced MD interface
  • mlcolvar
    mlcolvar is a Python library aimed to help design data-driven collective-variables (CVs) for enhanced sampling simulations.

QM/MM Model

  • NNP-MM
    NNP/MM embeds a Neural Network Potential into a conventional molecular mechanical (MM) model. We have implemented this using the Custom QM/MM features of NAMD 2.13, which interface NAMD with the TorchANI NNP python library developed by the Roitberg and Isayev groups.
  • DeeP-HP
    Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects
  • PairF-Net
    Here, we further develop the PairF-Net model to intrinsically incorporate energy conservation and couple the model to a molecular mechanical (MM) environment within the OpenMM package
  • embedding
    This work presents a variant of an electrostatic embedding scheme that allows the embedding of arbitrary machine learned potentials trained on molecular systems in vacuo.
  • field_schnet
    FieldSchNet provides a deep neural network for modeling the interaction of molecules and external environments as described.
  • MLMM
    This repository contains data and software regarding the paper submited to JCIM, entitled "Assessment of embedding schemes in a hybrid machine learning/classical potentials (ML/MM) approach".

Charge Model

  • gimlet
    Graph Inference on Molecular Topology. A package for modelling, learning, and inference on molecular topological space written in Python and TensorFlow.

Post-HF Method

Best of Python

Best-of Python

🏆  A ranked list of awesome Python open-source libraries & tools. Updated weekly.

This curated list contains 390 awesome open-source projects with a total of 1.8M stars grouped into 28 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome!


🧙‍♂️  Discover other best-of lists or create your own.
📫  Subscribe to our newsletter for updates and trending projects.


Contents

Explanation

  • 🥇🥈🥉  Combined project-quality score
  • ⭐️  Star count from GitHub
  • 🐣  New project (less than 6 months old)
  • 💤  Inactive project (6 months no activity)
  • 💀  Dead project (12 months no activity)
  • 📈📉  Project is trending up or down
  • ➕  Project was recently added
  • ❗️  Warning (e.g. missing/risky license)
  • 👨‍💻  Contributors count from GitHub
  • 🔀  Fork count from GitHub
  • 📋  Issue count from GitHub
  • ⏱️  Last update timestamp on package manager
  • 📥  Download count from package manager
  • 📦  Number of dependent projects
  •   Pandas related project


Data Serialization

Back to top

protobuf (🥇52 · ⭐ 64K · 📉) - Protocol Buffers - Googles data interchange format. BSD-3 - [GitHub](https://github.com/protocolbuffers/protobuf) (👨‍💻 1.2K · 🔀 15K · 📥 44M · 📦 650K · 📋 6.2K - 6% open · ⏱️ 06.06.2024):
git clone https://github.com/protocolbuffers/protobuf
- [PyPi](https://pypi.org/project/protobuf) (📥 190M / month · 📦 6.8K · ⏱️ 23.05.2024):
pip install protobuf
- [Conda](https://anaconda.org/conda-forge/protobuf) (📥 18M · ⏱️ 06.03.2024):
conda install -c conda-forge protobuf
- [npm](https://www.npmjs.com/package/google-protobuf) (📥 7.6M / month · 📦 2.9K · ⏱️ 10.10.2022):
npm install google-protobuf
flatbuffers (🥇43 · ⭐ 22K) - FlatBuffers: Memory Efficient Serialization Library. Apache-2 - [GitHub](https://github.com/google/flatbuffers) (👨‍💻 680 · 🔀 3.2K · 📥 460K · 📦 110K · 📋 2.4K - 6% open · ⏱️ 03.06.2024):
git clone https://github.com/google/flatbuffers
- [PyPi](https://pypi.org/project/flatbuffers) (📥 19M / month · 📦 410 · ⏱️ 26.03.2024):
pip install flatbuffers
- [Conda](https://anaconda.org/conda-forge/flatbuffers) (📥 1.1M · ⏱️ 26.03.2024):
conda install -c conda-forge flatbuffers
- [npm](https://www.npmjs.com/package/flatbuffers) (📥 1.4M / month · 📦 230 · ⏱️ 26.03.2024):
npm install flatbuffers
marshmallow (🥈40 · ⭐ 6.9K) - A lightweight library for converting complex objects to and from.. MIT - [GitHub](https://github.com/marshmallow-code/marshmallow) (👨‍💻 210 · 🔀 620 · 📦 140K · 📋 1.2K - 14% open · ⏱️ 06.06.2024):
git clone https://github.com/marshmallow-code/marshmallow
- [PyPi](https://pypi.org/project/marshmallow) (📥 49M / month · 📦 2.2K · ⏱️ 06.06.2024):
pip install marshmallow
- [Conda](https://anaconda.org/conda-forge/marshmallow) (📥 2.5M · ⏱️ 06.06.2024):
conda install -c conda-forge marshmallow
orjson (🥈38 · ⭐ 5.7K) - Fast, correct Python JSON library supporting dataclasses, datetimes,.. Apache-2 - [GitHub](https://github.com/ijl/orjson) (👨‍💻 22 · 🔀 200 · 📦 98K · 📋 400 - 2% open · ⏱️ 03.05.2024):
git clone https://github.com/ijl/orjson
- [PyPi](https://pypi.org/project/orjson) (📥 32M / month · 📦 2.4K · ⏱️ 03.05.2024):
pip install orjson
- [Conda](https://anaconda.org/conda-forge/orjson) (📥 1.3M · ⏱️ 03.05.2024):
conda install -c conda-forge orjson
dill (🥈37 · ⭐ 2.2K) - serialize all of Python. BSD-3 - [GitHub](https://github.com/uqfoundation/dill) (👨‍💻 45 · 🔀 170 · 📥 290K · 📦 160K · 📋 520 - 35% open · ⏱️ 24.05.2024):
git clone https://github.com/uqfoundation/dill
- [PyPi](https://pypi.org/project/dill) (📥 60M / month · 📦 2.9K · ⏱️ 27.01.2024):
pip install dill
- [Conda](https://anaconda.org/conda-forge/dill) (📥 6.8M · ⏱️ 28.01.2024):
conda install -c conda-forge dill
jsonpickle (🥈36 · ⭐ 1.2K) - Python library for serializing any arbitrary object graph into.. BSD-3 - [GitHub](https://github.com/jsonpickle/jsonpickle) (👨‍💻 76 · 🔀 170 · 📋 320 - 22% open · ⏱️ 02.06.2024):
git clone https://github.com/jsonpickle/jsonpickle
- [PyPi](https://pypi.org/project/jsonpickle) (📥 12M / month · 📦 1.2K · ⏱️ 11.04.2024):
pip install jsonpickle
- [Conda](https://anaconda.org/conda-forge/jsonpickle) (📥 1.7M · ⏱️ 11.04.2024):
conda install -c conda-forge jsonpickle
msgpack (🥈35 · ⭐ 1.9K) - MessagePack serializer implementation for Python msgpack.org[Python]. Apache-2 - [GitHub](https://github.com/msgpack/msgpack-python) (👨‍💻 79 · 🔀 220 · 📥 1.3K · 📋 290 - 1% open · ⏱️ 07.05.2024):
git clone https://github.com/msgpack/msgpack-python
- [PyPi](https://pypi.org/project/msgpack) (📥 71M / month · 📦 1.9K · ⏱️ 07.05.2024):
pip install msgpack
- [Conda](https://anaconda.org/conda-forge/msgpack-python) (📥 16M · ⏱️ 14.05.2024):
conda install -c conda-forge msgpack-python
ultrajson (🥉34 · ⭐ 4.3K) - Ultra fast JSON decoder and encoder written in C with Python bindings. BSD-3 - [GitHub](https://github.com/ultrajson/ultrajson) (👨‍💻 88 · 🔀 360 · 📋 350 - 8% open · ⏱️ 01.06.2024):
git clone https://github.com/ultrajson/ultrajson
- [PyPi](https://pypi.org/project/ujson) (📥 21M / month · 📦 2.2K · ⏱️ 14.05.2024):
pip install ujson
- [Conda](https://anaconda.org/conda-forge/ujson) (📥 4.9M · ⏱️ 15.05.2024):
conda install -c conda-forge ujson
simplejson (🥉34 · ⭐ 1.6K) - simplejson is a simple, fast, extensible JSON encoder/decoder for.. MIT - [GitHub](https://github.com/simplejson/simplejson) (👨‍💻 43 · 🔀 330 · 📥 6.5K · 📦 130K · 📋 200 - 10% open · ⏱️ 03.12.2023):
git clone https://github.com/simplejson/simplejson
- [PyPi](https://pypi.org/project/simplejson) (📥 21M / month · 📦 2.5K · ⏱️ 06.10.2023):
pip install simplejson
- [Conda](https://anaconda.org/conda-forge/simplejson) (📥 3.3M · ⏱️ 15.02.2024):
conda install -c conda-forge simplejson
cloudpickle (🥉32 · ⭐ 1.6K) - Extended pickling support for Python objects. BSD-3 - [GitHub](https://github.com/cloudpipe/cloudpickle) (👨‍💻 59 · 🔀 160 · 📥 27 · 📋 260 - 34% open · ⏱️ 08.04.2024):
git clone https://github.com/cloudpipe/cloudpickle
- [PyPi](https://pypi.org/project/cloudpickle) (📥 44M / month · 📦 1.6K · ⏱️ 16.10.2023):
pip install cloudpickle
- [Conda](https://anaconda.org/conda-forge/cloudpickle) (📥 17M · ⏱️ 16.10.2023):
conda install -c conda-forge cloudpickle
python-rapidjson (🥉29 · ⭐ 490) - Python wrapper around rapidjson. MIT - [GitHub](https://github.com/python-rapidjson/python-rapidjson) (👨‍💻 23 · 🔀 47 · 📦 5.5K · 📋 110 - 12% open · ⏱️ 18.05.2024):
git clone https://github.com/python-rapidjson/python-rapidjson
- [PyPi](https://pypi.org/project/python-rapidjson) (📥 2M / month · 📦 240 · ⏱️ 18.05.2024):
pip install python-rapidjson
- [Conda](https://anaconda.org/conda-forge/python-rapidjson) (📥 1.7M · ⏱️ 18.05.2024):
conda install -c conda-forge python-rapidjson
srsly (🥉28 · ⭐ 420) - Modern high-performance serialization utilities for Python (JSON,.. MIT - [GitHub](https://github.com/explosion/srsly) (👨‍💻 15 · 🔀 30 · 📦 45K · 📋 30 - 13% open · ⏱️ 11.04.2024):
git clone https://github.com/explosion/srsly
- [PyPi](https://pypi.org/project/srsly) (📥 11M / month · 📦 170 · ⏱️ 22.09.2023):
pip install srsly
- [Conda](https://anaconda.org/conda-forge/srsly) (📥 1.5M · ⏱️ 25.09.2023):
conda install -c conda-forge srsly
pysimdjson (🥉26 · ⭐ 630) - Python bindings for the simdjson project. MIT - [GitHub](https://github.com/TkTech/pysimdjson) (👨‍💻 14 · 🔀 52 · 📦 1.3K · 📋 87 - 10% open · ⏱️ 05.02.2024):
git clone https://github.com/TkTech/pysimdjson
- [PyPi](https://pypi.org/project/pysimdjson) (📥 1.1M / month · 📦 49 · ⏱️ 06.02.2024):
pip install pysimdjson
- [Conda](https://anaconda.org/conda-forge/pysimdjson) (📥 98K · ⏱️ 06.02.2024):
conda install -c conda-forge pysimdjson
hickle (🥉26 · ⭐ 480) - a HDF5-based python pickle replacement. MIT - [GitHub](https://github.com/telegraphic/hickle) (👨‍💻 26 · 🔀 71 · 📦 760 · 📋 110 - 5% open · ⏱️ 31.03.2024):
git clone https://github.com/telegraphic/hickle
- [PyPi](https://pypi.org/project/hickle) (📥 49K / month · 📦 39 · ⏱️ 30.03.2024):
pip install hickle
- [Conda](https://anaconda.org/conda-forge/hickle) (📥 25K · ⏱️ 14.02.2024):
conda install -c conda-forge hickle
rtoml (🥉22 · ⭐ 300) - A fast TOML library for python implemented in rust. MIT - [GitHub](https://github.com/samuelcolvin/rtoml) (👨‍💻 15 · 🔀 30 · 📦 420 · 📋 26 - 57% open · ⏱️ 26.01.2024):
git clone https://github.com/samuelcolvin/rtoml
- [PyPi](https://pypi.org/project/rtoml) (📥 460K / month · 📦 110 · ⏱️ 21.12.2023):
pip install rtoml
Show 1 hidden projects... - pyasn1 (🥈35 · ⭐ 240 · 💀) - Generic ASN.1 library for Python. BSD-2


Data Containers & Dataframes

Back to top

General-purpose data containers as well as utilities & extensions for pandas.

pandas (🥇54 · ⭐ 42K) - Flexible and powerful data analysis / manipulation library for.. BSD-3 - [GitHub](https://github.com/pandas-dev/pandas) (👨‍💻 3.6K · 🔀 17K · 📥 270K · 📦 1.7M · 📋 27K - 14% open · ⏱️ 05.06.2024):
git clone https://github.com/pandas-dev/pandas
- [PyPi](https://pypi.org/project/pandas) (📥 230M / month · 📦 67K · ⏱️ 10.04.2024):
pip install pandas
- [Conda](https://anaconda.org/conda-forge/pandas) (📥 52M · ⏱️ 16.05.2024):
conda install -c conda-forge pandas
polars (🥇44 · ⭐ 27K · 📈) - Dataframes powered by a multithreaded, vectorized query engine, written.. MIT - [GitHub](https://github.com/pola-rs/polars) (👨‍💻 420 · 🔀 1.6K · 📥 980 · 📦 9.8K · 📋 7.7K - 21% open · ⏱️ 06.06.2024):
git clone https://github.com/pola-rs/polars
- [PyPi](https://pypi.org/project/polars) (📥 7.6M / month · 📦 980 · ⏱️ 01.06.2024):
pip install polars
h5py (🥈41 · ⭐ 2K) - HDF5 for Python -- The h5py package is a Pythonic interface to the HDF5.. BSD-3 - [GitHub](https://github.com/h5py/h5py) (👨‍💻 200 · 🔀 520 · 📥 3.4K · 📦 270K · 📋 1.5K - 18% open · ⏱️ 06.06.2024):
git clone https://github.com/h5py/h5py
- [PyPi](https://pypi.org/project/h5py) (📥 22M / month · 📦 6.7K · ⏱️ 10.04.2024):
pip install h5py
- [Conda](https://anaconda.org/conda-forge/h5py) (📥 16M · ⏱️ 06.06.2024):
conda install -c conda-forge h5py
xarray (🥈40 · ⭐ 3.4K) - N-D labeled arrays and datasets in Python. Apache-2 - [GitHub](https://github.com/pydata/xarray) (👨‍💻 500 · 🔀 1K · 📦 27K · 📋 4.3K - 26% open · ⏱️ 04.06.2024):
git clone https://github.com/pydata/xarray
- [PyPi](https://pypi.org/project/xarray) (📥 5.3M / month · 📦 3K · ⏱️ 13.05.2024):
pip install xarray
- [Conda](https://anaconda.org/conda-forge/xarray) (📥 10M · ⏱️ 13.05.2024):
conda install -c conda-forge xarray
Modin (🥈37 · ⭐ 9.5K) - Modin: Scale your Pandas workflows by changing a single line of.. Apache-2 - [GitHub](https://github.com/modin-project/modin) (👨‍💻 130 · 🔀 640 · 📥 200K · 📦 1.5K · 📋 4.2K - 16% open · ⏱️ 03.06.2024):
git clone https://github.com/modin-project/modin
- [PyPi](https://pypi.org/project/modin) (📥 1.4M / month · 📦 47 · ⏱️ 15.05.2024):
pip install modin
- [Conda](https://anaconda.org/conda-forge/modin-core) (📥 330K · ⏱️ 15.05.2024):
conda install -c conda-forge modin-core
numexpr (🥈37 · ⭐ 2.2K) - Fast numerical array expression evaluator for Python, NumPy, Pandas,.. MIT - [GitHub](https://github.com/pydata/numexpr) (👨‍💻 78 · 🔀 200 · 📥 640 · 📦 76K · 📋 380 - 1% open · ⏱️ 31.05.2024):
git clone https://github.com/pydata/numexpr
- [PyPi](https://pypi.org/project/numexpr) (📥 3.9M / month · 📦 860 · ⏱️ 02.04.2024):
pip install numexpr
- [Conda](https://anaconda.org/conda-forge/numexpr) (📥 8.2M · ⏱️ 27.05.2024):
conda install -c conda-forge numexpr
zarr (🥈36 · ⭐ 1.4K) - An implementation of chunked, compressed, N-dimensional arrays for Python. MIT - [GitHub](https://github.com/zarr-developers/zarr-python) (👨‍💻 98 · 🔀 260 · 📦 3.9K · 📋 770 - 42% open · ⏱️ 04.06.2024):
git clone https://github.com/zarr-developers/zarr-python
- [PyPi](https://pypi.org/project/zarr) (📥 610K / month · 📦 900 · ⏱️ 26.05.2024):
pip install zarr
- [Conda](https://anaconda.org/conda-forge/zarr) (📥 3.1M · ⏱️ 27.05.2024):
conda install -c conda-forge zarr
PyTables (🥈34 · ⭐ 1.3K) - A Python package to manage extremely large amounts of data. BSD-3 - [GitHub](https://github.com/PyTables/PyTables) (👨‍💻 140 · 🔀 270 · 📥 190 · 📋 730 - 23% open · ⏱️ 06.06.2024):
git clone https://github.com/PyTables/PyTables
- [PyPi](https://pypi.org/project/tables) (📥 970K / month · 📦 1.4K · ⏱️ 27.11.2023):
pip install tables
- [Conda](https://anaconda.org/conda-forge/pytables) (📥 7.3M · ⏱️ 11.04.2024):
conda install -c conda-forge pytables
pandera (🥈33 · ⭐ 3.1K) - A light-weight, flexible, and expressive statistical data testing.. MIT - [GitHub](https://github.com/unionai-oss/pandera) (👨‍💻 130 · 🔀 280 · 📦 1.6K · 📋 800 - 40% open · ⏱️ 31.05.2024):
git clone https://github.com/pandera-dev/pandera
- [PyPi](https://pypi.org/project/pandera) (📥 1.9M / month · 📦 180 · ⏱️ 14.05.2024):
pip install pandera
- [Conda](https://anaconda.org/conda-forge/pandera-core) (📥 40K · ⏱️ 08.05.2024):
conda install -c conda-forge pandera-core
Bottleneck (🥈33 · ⭐ 1K) - Fast NumPy array functions written in C. BSD-2 - [GitHub](https://github.com/pydata/bottleneck) (👨‍💻 32 · 🔀 99 · 📦 48K · 📋 240 - 20% open · ⏱️ 23.05.2024):
git clone https://github.com/pydata/bottleneck
- [PyPi](https://pypi.org/project/Bottleneck) (📥 1M / month · 📦 410 · ⏱️ 23.05.2024):
pip install Bottleneck
- [Conda](https://anaconda.org/conda-forge/bottleneck) (📥 4.1M · ⏱️ 26.02.2024):
conda install -c conda-forge bottleneck
TinyDB (🥈32 · ⭐ 6.6K · 💤) - TinyDB is a lightweight document oriented database optimized for your.. MIT - [GitHub](https://github.com/msiemens/tinydb) (👨‍💻 82 · 🔀 520 · 📦 13K · 📋 320 - 8% open · ⏱️ 24.07.2023):
git clone https://github.com/msiemens/tinydb
- [PyPi](https://pypi.org/project/tinydb) (📥 650K / month · 📦 650 · ⏱️ 12.06.2023):
pip install tinydb
- [Conda](https://anaconda.org/conda-forge/tinydb) (📥 400K · ⏱️ 12.06.2023):
conda install -c conda-forge tinydb
docarray (🥈32 · ⭐ 2.8K) - Represent, send, store and search multimodal data. Apache-2 - [GitHub](https://github.com/docarray/docarray) (👨‍💻 74 · 🔀 220 · 📦 4.4K · 📋 640 - 10% open · ⏱️ 06.06.2024):
git clone https://github.com/jina-ai/docarray
- [PyPi](https://pypi.org/project/docarray) (📥 86K / month · 📦 68 · ⏱️ 22.12.2023):
pip install docarray
- [Conda](https://anaconda.org/conda-forge/docarray) (📥 140K · ⏱️ 18.06.2023):
conda install -c conda-forge docarray
Koalas (🥉31 · ⭐ 3.3K · 💤) - Koalas: pandas API on Apache Spark. Apache-2 spark - [GitHub](https://github.com/databricks/koalas) (👨‍💻 51 · 🔀 360 · 📥 1K · 📦 340 · 📋 600 - 18% open · ⏱️ 21.09.2023):
git clone https://github.com/databricks/koalas
- [PyPi](https://pypi.org/project/koalas) (📥 2.3M / month · 📦 31 · ⏱️ 19.10.2021):
pip install koalas
- [Conda](https://anaconda.org/conda-forge/koalas) (📥 340K · ⏱️ 16.06.2023):
conda install -c conda-forge koalas
datasketch (🥉31 · ⭐ 2.4K) - MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog,.. MIT - [GitHub](https://github.com/ekzhu/datasketch) (👨‍💻 30 · 🔀 290 · 📥 27 · 📦 1.3K · 📋 170 - 30% open · ⏱️ 26.03.2024):
git clone https://github.com/ekzhu/datasketch
- [PyPi](https://pypi.org/project/datasketch) (📥 2.8M / month · 📦 44 · ⏱️ 04.06.2024):
pip install datasketch
Vaex (🥉30 · ⭐ 8.2K · 💤) - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML,.. MIT - [GitHub](https://github.com/vaexio/vaex) (👨‍💻 72 · 🔀 590 · 📥 280 · 📦 760 · 📋 1.3K - 40% open · ⏱️ 21.07.2023):
git clone https://github.com/vaexio/vaex
- [PyPi](https://pypi.org/project/vaex) (📥 22K / month · 📦 51 · ⏱️ 21.07.2023):
pip install vaex
- [Conda](https://anaconda.org/conda-forge/vaex) (📥 190K · ⏱️ 16.06.2023):
conda install -c conda-forge vaex
datatable (🥉28 · ⭐ 1.8K) - A Python package for manipulating 2-dimensional tabular data.. MPL-2.0 - [GitHub](https://github.com/h2oai/datatable) (👨‍💻 37 · 🔀 150 · 📥 2.4K · 📋 1.5K - 11% open · ⏱️ 01.12.2023):
git clone https://github.com/h2oai/datatable
- [PyPi](https://pypi.org/project/datatable) (📥 53K / month · 📦 45 · ⏱️ 01.12.2023):
pip install datatable
- [Conda](https://anaconda.org/conda-forge/datatable) (📥 26K · ⏱️ 16.06.2023):
conda install -c conda-forge datatable
Pandaral·lel (🥉27 · ⭐ 3.6K) - A simple and efficient tool to parallelize Pandas.. BSD-3 jupyter - [GitHub](https://github.com/nalepae/pandarallel) (👨‍💻 26 · 🔀 200 · 📋 220 - 40% open · ⏱️ 16.02.2024):
git clone https://github.com/nalepae/pandarallel
- [PyPi](https://pypi.org/project/pandarallel) (📥 420K / month · 📦 91 · ⏱️ 02.05.2023):
pip install pandarallel
- [Conda](https://anaconda.org/conda-forge/pandarallel) (📥 93K · ⏱️ 16.06.2023):
conda install -c conda-forge pandarallel
StaticFrame (🥉27 · ⭐ 410) - Immutable and statically-typeable DataFrames with runtime type and.. MIT - [GitHub](https://github.com/static-frame/static-frame) (👨‍💻 23 · 🔀 33 · 📦 22 · 📋 630 - 7% open · ⏱️ 21.05.2024):
git clone https://github.com/InvestmentSystems/static-frame
- [PyPi](https://pypi.org/project/static-frame) (📥 6.1K / month · 📦 4 · ⏱️ 21.05.2024):
pip install static-frame
- [Conda](https://anaconda.org/conda-forge/static-frame) (📥 340K · ⏱️ 21.05.2024):
conda install -c conda-forge static-frame
swifter (🥉26 · ⭐ 2.5K) - A package which efficiently applies any function to a pandas.. MIT - [GitHub](https://github.com/jmcarpenter2/swifter) (👨‍💻 18 · 🔀 100 · 📦 1.3K · 📋 150 - 13% open · ⏱️ 14.03.2024):
git clone https://github.com/jmcarpenter2/swifter
- [PyPi](https://pypi.org/project/swifter) (📥 720K / month · 📦 52 · ⏱️ 31.07.2023):
pip install swifter
- [Conda](https://anaconda.org/conda-forge/swifter) (📥 340K · ⏱️ 31.07.2023):
conda install -c conda-forge swifter
Pandas Summary (🥉24 · ⭐ 490) - Engine for ML/Data tracking, visualization,.. Apache-2 - [GitHub](https://github.com/polyaxon/traceml) (👨‍💻 99 · 🔀 43 · 📋 14 - 42% open · ⏱️ 16.05.2024):
git clone https://github.com/polyaxon/datatile
- [PyPi](https://pypi.org/project/pandas-summary) (📥 87K / month · 📦 21 · ⏱️ 25.11.2021):
pip install pandas-summary
Show 10 hidden projects... - numpy (🥇51 · ⭐ 27K) - The fundamental package for scientific computing with Python. ❗Unlicensed - Blaze (🥉31 · ⭐ 3.2K · 💀) - NumPy and Pandas interface to Big Data. BSD-3 - Arctic (🥉29 · ⭐ 3K) - Arctic is a high performance datastore for numeric data. ❗️LGPL-2.1 - sklearn-pandas (🥉28 · ⭐ 2.8K · 💀) - Pandas integration with sklearn. ❗️Zlib sklearn - pandasql (🥉28 · ⭐ 1.3K · 💀) - sqldf for pandas. MIT - bcolz (🥉26 · ⭐ 960 · 💀) - A columnar data container that can be compressed. BSD-3 - pickleDB (🥉22 · ⭐ 880 · 💀) - pickleDB is an open source key-value store using Pythons json module. BSD-3 - fletcher (🥉19 · ⭐ 230 · 💀) - Pandas ExtensionDType/Array backed by Apache Arrow. MIT - Bounter (🥉18 · ⭐ 940 · 💀) - Efficient Counter that uses a limited (bounded) amount of memory.. MIT - PandaPy (🥉13 · ⭐ 550 · 💀) - PandaPy has the speed of NumPy and the usability of Pandas 10x to.. MIT


Data Structures

Back to top

pyrsistent (🥇35 · ⭐ 2K · 💤) - Persistent/Immutable/Functional data structures for Python. MIT - [GitHub](https://github.com/tobgu/pyrsistent) (👨‍💻 73 · 🔀 140 · 📦 340K · 📋 180 - 14% open · ⏱️ 25.10.2023):
git clone https://github.com/tobgu/pyrsistent
- [PyPi](https://pypi.org/project/pyrsistent) (📥 41M / month · 📦 1K · ⏱️ 25.10.2023):
pip install pyrsistent
- [Conda](https://anaconda.org/conda-forge/pyrsistent) (📥 21M · ⏱️ 31.10.2023):
conda install -c conda-forge pyrsistent
python-sortedcontainers (🥇32 · ⭐ 3.3K) - Python Sorted Container Types: Sorted List, Sorted.. Apache-2 - [GitHub](https://github.com/grantjenks/python-sortedcontainers) (👨‍💻 24 · 🔀 200 · 📋 190 - 12% open · ⏱️ 01.03.2024):
git clone https://github.com/grantjenks/python-sortedcontainers
- [PyPi](https://pypi.org/project/sortedcontainers) (📥 59M / month · 📦 1.2K · ⏱️ 16.05.2021):
pip install sortedcontainers
- [Conda](https://anaconda.org/conda-forge/sortedcontainers) (📥 13M · ⏱️ 16.06.2023):
conda install -c conda-forge sortedcontainers
bidict (🥇32 · ⭐ 1.4K) - The bidirectional mapping library for Python. MPL-2.0 - [GitHub](https://github.com/jab/bidict) (👨‍💻 15 · 🔀 63 · 📥 53 · 📦 26K · 📋 62 - 3% open · ⏱️ 04.05.2024):
git clone https://github.com/jab/bidict
- [PyPi](https://pypi.org/project/bidict) (📥 3.9M / month · 📦 440 · ⏱️ 18.02.2024):
pip install bidict
- [Conda](https://anaconda.org/conda-forge/bidict) (📥 410K · ⏱️ 18.02.2024):
conda install -c conda-forge bidict
multidict (🥇32 · ⭐ 400) - The multidict implementation. Apache-2 - [GitHub](https://github.com/aio-libs/multidict) (👨‍💻 54 · 🔀 95 · 📥 6.8K · 📋 160 - 14% open · ⏱️ 19.04.2024):
git clone https://github.com/aio-libs/multidict
- [PyPi](https://pypi.org/project/multidict) (📥 110M / month · 📦 1.3K · ⏱️ 01.02.2024):
pip install multidict
- [Conda](https://anaconda.org/conda-forge/multidict) (📥 13M · ⏱️ 04.02.2024):
conda install -c conda-forge multidict
anytree (🥈31 · ⭐ 910 · 💤) - Python tree data library. Apache-2 - [GitHub](https://github.com/c0fec0de/anytree) (👨‍💻 29 · 🔀 130 · 📦 19K · 📋 190 - 14% open · ⏱️ 16.11.2023):
git clone https://github.com/c0fec0de/anytree
- [PyPi](https://pypi.org/project/anytree) (📥 1.5M / month · 📦 480 · ⏱️ 16.11.2023):
pip install anytree
- [Conda](https://anaconda.org/conda-forge/anytree) (📥 40K · ⏱️ 16.06.2023):
conda install -c conda-forge anytree
python-benedict (🥈29 · ⭐ 1.4K) - dict subclass with keylist/keypath support, built-in I/O.. MIT - [GitHub](https://github.com/fabiocaccamo/python-benedict) (👨‍💻 7 · 🔀 48 · 📦 1.7K · 📋 110 - 17% open · ⏱️ 15.05.2024):
git clone https://github.com/fabiocaccamo/python-benedict
- [PyPi](https://pypi.org/project/python-benedict) (📥 620K / month · 📦 67 · ⏱️ 04.03.2024):
pip install python-benedict
- [Conda](https://anaconda.org/conda-forge/python-benedict) (📥 160K · ⏱️ 05.03.2024):
conda install -c conda-forge python-benedict
glom (🥉28 · ⭐ 1.8K) - Pythons nested data operator (and CLI), for all your declarative.. BSD-3 - [GitHub](https://github.com/mahmoud/glom) (👨‍💻 23 · 🔀 60 · 📦 1.6K · 📋 190 - 59% open · ⏱️ 12.01.2024):
git clone https://github.com/mahmoud/glom
- [PyPi](https://pypi.org/project/glom) (📥 2.1M / month · 📦 170 · ⏱️ 27.11.2023):
pip install glom
- [Conda](https://anaconda.org/conda-forge/glom) (📥 34K · ⏱️ 27.11.2023):
conda install -c conda-forge glom
immutables (🥉27 · ⭐ 1.1K · 💤) - A high-performance immutable mapping type for Python. Apache-2 - [GitHub](https://github.com/MagicStack/immutables) (👨‍💻 16 · 🔀 54 · 📦 6.7K · 📋 48 - 22% open · ⏱️ 15.08.2023):
git clone https://github.com/MagicStack/immutables
- [PyPi](https://pypi.org/project/immutables) (📥 1.2M / month · 📦 130 · ⏱️ 14.08.2023):
pip install immutables
- [Conda](https://anaconda.org/conda-forge/immutables) (📥 1M · ⏱️ 25.09.2023):
conda install -c conda-forge immutables
janus (🥉27 · ⭐ 790) - Thread-safe asyncio-aware queue for Python. Apache-2 - [GitHub](https://github.com/aio-libs/janus) (👨‍💻 26 · 🔀 45 · 📋 42 - 21% open · ⏱️ 06.06.2024):
git clone https://github.com/aio-libs/janus
- [PyPi](https://pypi.org/project/janus) (📥 800K / month · 📦 120 · ⏱️ 17.12.2021):
pip install janus
- [Conda](https://anaconda.org/conda-forge/janus) (📥 19K · ⏱️ 16.06.2023):
conda install -c conda-forge janus
munch (🥉27 · ⭐ 760 · 💤) - A Munch is a Python dictionary that provides attribute-style access (a.. MIT - [GitHub](https://github.com/Infinidat/munch) (👨‍💻 27 · 🔀 84 · 📋 49 - 18% open · ⏱️ 01.07.2023):
git clone https://github.com/Infinidat/munch
- [PyPi](https://pypi.org/project/munch) (📥 1.9M / month · 📦 540 · ⏱️ 01.07.2023):
pip install munch
- [Conda](https://anaconda.org/conda-forge/munch) (📥 4M · ⏱️ 02.07.2023):
conda install -c conda-forge munch
python-box (🥉25 · ⭐ 2.4K · 💤) - Python dictionaries with advanced dot notation access. MIT - [GitHub](https://github.com/cdgriffith/Box) (👨‍💻 1 · 🔀 98 · 📥 39 · 📋 160 - 14% open · ⏱️ 26.08.2023):
git clone https://github.com/cdgriffith/Box
- [PyPi](https://pypi.org/project/python-box) (📥 3.1M / month · 📦 410 · ⏱️ 26.08.2023):
pip install python-box
- [Conda](https://anaconda.org/conda-forge/python-box) (📥 560K · ⏱️ 01.10.2023):
conda install -c conda-forge python-box
Show 4 hidden projects... - addict (🥈29 · ⭐ 2.4K · 💀) - The Python Dict thats better than heroin. MIT - sqlitedict (🥈29 · ⭐ 1.1K · 💀) - Persistent dict, backed by sqlite3 and pickle, multithread-.. Apache-2 - ordered-set (🥉28 · ⭐ 210 · 💀) - A mutable set that remembers the order of its entries. One of.. MIT - cleverdict (🥉15 · ⭐ 99 · 💀) - A JSON-friendly data structure which allows both object attributes.. MIT


Data Validation

Back to top

pydantic (🥇46 · ⭐ 19K) - Data validation using Python type hints. MIT - [GitHub](https://github.com/pydantic/pydantic) (👨‍💻 540 · 🔀 1.7K · 📦 420K · 📋 4.1K - 10% open · ⏱️ 06.06.2024):
git clone https://github.com/samuelcolvin/pydantic
- [PyPi](https://pypi.org/project/pydantic) (📥 200M / month · 📦 19K · ⏱️ 03.06.2024):
pip install pydantic
- [Conda](https://anaconda.org/conda-forge/pydantic) (📥 7.9M · ⏱️ 04.06.2024):
conda install -c conda-forge pydantic
jsonschema (🥇41 · ⭐ 4.5K · 📈) - An implementation of the JSON Schema specification for Python. MIT - [GitHub](https://github.com/python-jsonschema/jsonschema) (👨‍💻 110 · 🔀 570 · 📥 250 · 📦 570K · 📋 830 - 3% open · ⏱️ 05.06.2024):
git clone https://github.com/Julian/jsonschema
- [PyPi](https://pypi.org/project/jsonschema) (📥 120M / month · 📦 6.2K · ⏱️ 30.04.2024):
pip install jsonschema
- [Conda](https://anaconda.org/conda-forge/jsonschema) (📥 28M · ⏱️ 01.05.2024):
conda install -c conda-forge jsonschema
validators (🥈35 · ⭐ 920) - Python Data Validation for Humans. MIT - [GitHub](https://github.com/python-validators/validators) (👨‍💻 54 · 🔀 150 · 📥 40 · 📦 120K · 📋 170 - 0% open · ⏱️ 25.05.2024):
git clone https://github.com/kvesteri/validators
- [PyPi](https://pypi.org/project/validators) (📥 8.5M / month · 📦 7.1K · ⏱️ 25.05.2024):
pip install validators
- [Conda](https://anaconda.org/conda-forge/validators) (📥 650K · ⏱️ 28.05.2024):
conda install -c conda-forge validators
cerberus (🥈34 · ⭐ 3.1K · 💤) - Lightweight, extensible data validation library for Python. ISC - [GitHub](https://github.com/pyeve/cerberus) (👨‍💻 66 · 🔀 240 · 📦 16K · 📋 350 - 5% open · ⏱️ 23.10.2023):
git clone https://github.com/pyeve/cerberus
- [PyPi](https://pypi.org/project/cerberus) (📥 4.5M / month · 📦 660 · ⏱️ 09.08.2023):
pip install cerberus
- [Conda](https://anaconda.org/conda-forge/cerberus) (📥 380K · ⏱️ 06.10.2023):
conda install -c conda-forge cerberus
schema (🥈33 · ⭐ 2.8K) - Schema validation just got Pythonic. MIT - [GitHub](https://github.com/keleshev/schema) (👨‍💻 69 · 🔀 210 · 📦 9.4K · 📋 180 - 53% open · ⏱️ 06.05.2024):
git clone https://github.com/keleshev/schema
- [PyPi](https://pypi.org/project/schema) (📥 18M / month · 📦 740 · ⏱️ 04.05.2024):
pip install schema
- [Conda](https://anaconda.org/conda-forge/schema) (📥 170K · ⏱️ 04.05.2024):
conda install -c conda-forge schema
voluptuous (🥈32 · ⭐ 1.8K) - CONTRIBUTIONS ONLY: Voluptuous, despite the name, is a Python data.. BSD-3 - [GitHub](https://github.com/alecthomas/voluptuous) (👨‍💻 96 · 🔀 210 · 📦 16K · 📋 250 - 16% open · ⏱️ 02.02.2024):
git clone https://github.com/alecthomas/voluptuous
- [PyPi](https://pypi.org/project/voluptuous) (📥 2.5M / month · 📦 540 · ⏱️ 03.02.2024):
pip install voluptuous
- [Conda](https://anaconda.org/conda-forge/voluptuous) (📥 370K · ⏱️ 03.02.2024):
conda install -c conda-forge voluptuous
python-email-validator (🥉30 · ⭐ 1K) - A robust email syntax and deliverability validation.. Unlicense - [GitHub](https://github.com/JoshData/python-email-validator) (👨‍💻 24 · 🔀 150 · 📋 98 - 11% open · ⏱️ 10.05.2024):
git clone https://github.com/JoshData/python-email-validator
- [PyPi](https://pypi.org/project/email-validator) (📥 22M / month · 📦 690 · ⏱️ 26.02.2024):
pip install email-validator
- [Conda](https://anaconda.org/conda-forge/email-validator) (📥 210K · ⏱️ 27.02.2024):
conda install -c conda-forge email-validator
param (🥉30 · ⭐ 400) - Param: Make your Python code clearer and more reliable by declaring.. BSD-3 - [GitHub](https://github.com/holoviz/param) (👨‍💻 37 · 🔀 68 · 📦 11K · 📋 460 - 35% open · ⏱️ 15.05.2024):
git clone https://github.com/holoviz/param
- [PyPi](https://pypi.org/project/param) (📥 600K / month · 📦 150 · ⏱️ 02.05.2024):
pip install param
- [Conda](https://anaconda.org/conda-forge/param) (📥 1.6M · ⏱️ 22.03.2024):
conda install -c conda-forge param
dirty-equals (🥉21 · ⭐ 780 · 💤) - Doing dirty (but extremely useful) things with equals. MIT - [GitHub](https://github.com/samuelcolvin/dirty-equals) (👨‍💻 16 · 🔀 35 · 📦 330 · 📋 34 - 44% open · ⏱️ 15.11.2023):
git clone https://github.com/samuelcolvin/dirty-equals
- [PyPi](https://pypi.org/project/dirty-equals) (📥 140K / month · 📦 31 · ⏱️ 15.11.2023):
pip install dirty-equals
- [Conda](https://anaconda.org/conda-forge/dirty-equals) (📥 48K · ⏱️ 15.11.2023):
conda install -c conda-forge dirty-equals
validr (🥉17 · ⭐ 210) - A simple, fast, extensible python library for data validation. MIT - [GitHub](https://github.com/guyskk/validr) (👨‍💻 7 · 🔀 12 · 📋 25 - 12% open · ⏱️ 23.12.2023):
git clone https://github.com/guyskk/validr
- [PyPi](https://pypi.org/project/validr) (📥 620 / month · 📦 6 · ⏱️ 13.12.2023):
pip install validr
Show 5 hidden projects... - schematics (🥉30 · ⭐ 2.6K · 💀) - Python Data Structures for Humans. BSD-3 - strictyaml (🥉27 · ⭐ 1.4K · 💀) - Type-safe YAML parser and validator. MIT - valideer (🥉19 · ⭐ 260 · 💀) - Lightweight data validation and adaptation Python library. MIT - typical (🥉19 · ⭐ 180 · 💀) - Typical: Fast, simple, & correct data-validation using Python 3 typing. MIT - dataklasses (🥉7 · ⭐ 780 · 💀) - A different spin on dataclasses. ❗Unlicensed


Algorithms & Design Patterns

Back to top

🔗 python-patterns ( ⭐ 40K) - Collection of design patterns/idioms in Python.

transitions (🥇34 · ⭐ 5.4K) - A lightweight, object-oriented finite state machine implementation.. MIT - [GitHub](https://github.com/pytransitions/transitions) (👨‍💻 78 · 🔀 520 · 📦 3.5K · 📋 460 - 3% open · ⏱️ 28.05.2024):
git clone https://github.com/pytransitions/transitions
- [PyPi](https://pypi.org/project/transitions) (📥 600K / month · 📦 170 · ⏱️ 14.05.2024):
pip install transitions
- [Conda](https://anaconda.org/conda-forge/transitions) (📥 660K · ⏱️ 14.05.2024):
conda install -c conda-forge transitions
algorithms (🥉29 · ⭐ 24K) - Minimal examples of data structures and algorithms in Python. MIT - [GitHub](https://github.com/keon/algorithms) (👨‍💻 200 · 🔀 4.6K · 📦 110 · 📋 300 - 66% open · ⏱️ 05.02.2024):
git clone https://github.com/keon/algorithms
- [PyPi](https://pypi.org/project/algorithms) (📥 1.5K / month · 📦 4 · ⏱️ 04.10.2020):
pip install algorithms
- [Conda](https://anaconda.org/conda-forge/algorithms) (📥 2.2K · ⏱️ 16.06.2023):
conda install -c conda-forge algorithms
PyPattyrn (🥉21 · ⭐ 2.2K) - A simple library for implementing common design patterns. MIT - [GitHub](https://github.com/tylerlaberge/PyPattyrn) (👨‍💻 4 · 🔀 150 · 📦 49 · 📋 42 - 2% open · ⏱️ 26.05.2024):
git clone https://github.com/tylerlaberge/PyPattyrn
- [PyPi](https://pypi.org/project/pypattyrn) (📥 1.4K / month · 📦 14 · ⏱️ 11.09.2016):
pip install pypattyrn


Date & Time Utilities

Back to top

arrow (🥇39 · ⭐ 8.6K · 💤) - Better dates & times for Python. Apache-2 - [GitHub](https://github.com/arrow-py/arrow) (👨‍💻 270 · 🔀 660 · 📦 110K · 📋 500 - 20% open · ⏱️ 30.09.2023):
git clone https://github.com/arrow-py/arrow
- [PyPi](https://pypi.org/project/arrow) (📥 30M / month · 📦 1.9K · ⏱️ 30.09.2023):
pip install arrow
- [Conda](https://anaconda.org/conda-forge/arrow) (📥 4.9M · ⏱️ 01.10.2023):
conda install -c conda-forge arrow
pendulum (🥈35 · ⭐ 6.1K) - Python datetimes made easy. MIT - [GitHub](https://github.com/sdispater/pendulum) (👨‍💻 96 · 🔀 360 · 📥 650 · 📦 28K · 📋 560 - 42% open · ⏱️ 16.12.2023):
git clone https://github.com/sdispater/pendulum
- [PyPi](https://pypi.org/project/pendulum) (📥 48M / month · 📦 1.2K · ⏱️ 16.12.2023):
pip install pendulum
- [Conda](https://anaconda.org/conda-forge/pendulum) (📥 1M · ⏱️ 07.01.2024):
conda install -c conda-forge pendulum
python-dateutil (🥈35 · ⭐ 2.3K) - Useful extensions to the standard Python datetime features. Apache-2 - [GitHub](https://github.com/dateutil/dateutil) (👨‍💻 130 · 🔀 480 · 📥 35K · 📋 790 - 45% open · ⏱️ 20.05.2024):
git clone https://github.com/dateutil/dateutil
- [PyPi](https://pypi.org/project/python-dateutil) (📥 360M / month · 📦 10K · ⏱️ 01.03.2024):
pip install python-dateutil
- [Conda](https://anaconda.org/conda-forge/python-dateutil) (📥 58M · ⏱️ 01.03.2024):
conda install -c conda-forge python-dateutil
dateparser (🥈34 · ⭐ 2.5K) - python parser for human readable dates. BSD-3 - [GitHub](https://github.com/scrapinghub/dateparser) (👨‍💻 140 · 🔀 470 · 📦 28K · 📋 700 - 46% open · ⏱️ 08.04.2024):
git clone https://github.com/scrapinghub/dateparser
- [PyPi](https://pypi.org/project/dateparser) (📥 7.2M / month · 📦 1K · ⏱️ 17.11.2023):
pip install dateparser
- [Conda](https://anaconda.org/conda-forge/dateparser) (📥 220K · ⏱️ 17.11.2023):
conda install -c conda-forge dateparser
pytz (🥈34 · ⭐ 320) - pytz Python historical timezone library and database. MIT - [GitHub](https://github.com/stub42/pytz) (👨‍💻 21 · 🔀 86 · 📥 59 · 📦 2M · 📋 88 - 37% open · ⏱️ 02.02.2024):
git clone https://github.com/stub42/pytz
- [PyPi](https://pypi.org/project/pytz) (📥 180M / month · 📦 11K · ⏱️ 02.02.2024):
pip install pytz
- [Conda](https://anaconda.org/conda-forge/pytz) (📥 54M · ⏱️ 02.02.2024):
conda install -c conda-forge pytz
holidays (🥉31 · ⭐ 1.4K) - Generate and work with holidays in Python. MIT - [GitHub](https://github.com/dr-prodigy/python-holidays) (👨‍💻 230 · 🔀 440 · ⏱️ 12.04.2024):
git clone https://github.com/dr-prodigy/python-holidays
- [PyPi](https://pypi.org/project/holidays) (📥 7.4M / month · 📦 320 · ⏱️ 03.06.2024):
pip install holidays
- [Conda](https://anaconda.org/conda-forge/holidays) (📥 3.9M · ⏱️ 04.06.2024):
conda install -c conda-forge holidays
tzlocal (🥉31 · ⭐ 180) - A Python module that tries to figure out what your local timezone is. MIT - [GitHub](https://github.com/regebro/tzlocal) (👨‍💻 31 · 🔀 59 · 📦 170K · 📋 84 - 3% open · ⏱️ 08.12.2023):
git clone https://github.com/regebro/tzlocal
- [PyPi](https://pypi.org/project/tzlocal) (📥 47M / month · 📦 1.6K · ⏱️ 22.10.2023):
pip install tzlocal
- [Conda](https://anaconda.org/conda-forge/tzlocal) (📥 2.7M · ⏱️ 22.10.2023):
conda install -c conda-forge tzlocal
Show 2 hidden projects... - parsedatetime (🥉29 · ⭐ 690 · 💀) - Parse human-readable date/time strings. Apache-2 - isodate (🥉29 · ⭐ 140 · 💀) - ISO 8601 date/time parser. BSD-3


File & Path Utilities

Back to top

filesystem_spec (🥇40 · ⭐ 920) - A specification that python filesystems should adhere to. BSD-3 - [GitHub](https://github.com/fsspec/filesystem_spec) (👨‍💻 240 · 🔀 340 · 📦 130K · 📋 690 - 37% open · ⏱️ 04.06.2024):
git clone https://github.com/fsspec/filesystem_spec
- [PyPi](https://pypi.org/project/fsspec) (📥 260M / month · 📦 1.6K · ⏱️ 04.06.2024):
pip install fsspec
- [Conda](https://anaconda.org/conda-forge/fsspec) (📥 17M · ⏱️ 04.06.2024):
conda install -c conda-forge fsspec
watchdog (🥈36 · ⭐ 6.3K) - Python library and shell utilities to monitor filesystem events. Apache-2 - [GitHub](https://github.com/gorakhargosh/watchdog) (👨‍💻 150 · 🔀 680 · 📦 150K · 📋 650 - 29% open · ⏱️ 23.05.2024):
git clone https://github.com/gorakhargosh/watchdog
- [PyPi](https://pypi.org/project/watchdog) (📥 22M / month · 📦 2.4K · ⏱️ 23.05.2024):
pip install watchdog
- [Conda](https://anaconda.org/conda-forge/watchdog) (📥 3M · ⏱️ 24.05.2024):
conda install -c conda-forge watchdog
filelock (🥈35 · ⭐ 700) - A platform-independent file lock for Python. Unlicense - [GitHub](https://github.com/tox-dev/filelock) (👨‍💻 46 · 🔀 100 · 📦 450K · 📋 110 - 13% open · ⏱️ 04.06.2024):
git clone https://github.com/tox-dev/py-filelock
- [PyPi](https://pypi.org/project/filelock) (📥 140M / month · 📦 2.1K · ⏱️ 29.04.2024):
pip install filelock
- [Conda](https://anaconda.org/conda-forge/filelock) (📥 18M · ⏱️ 29.04.2024):
conda install -c conda-forge filelock
aiofiles (🥉33 · ⭐ 2.6K) - File support for asyncio. Apache-2 - [GitHub](https://github.com/Tinche/aiofiles) (👨‍💻 36 · 🔀 150 · 📦 150K · 📋 120 - 42% open · ⏱️ 06.02.2024):
git clone https://github.com/Tinche/aiofiles
- [PyPi](https://pypi.org/project/aiofiles) (📥 19M / month · 📦 2.5K · ⏱️ 09.08.2023):
pip install aiofiles
- [Conda](https://anaconda.org/conda-forge/aiofiles) (📥 1.1M · ⏱️ 02.11.2023):
conda install -c conda-forge aiofiles
path (🥉33 · ⭐ 1.1K) - Object-oriented file system path manipulation. MIT - [GitHub](https://github.com/jaraco/path) (👨‍💻 54 · 🔀 140 · 📦 15K · 📋 140 - 2% open · ⏱️ 27.05.2024):
git clone https://github.com/jaraco/path
- [PyPi](https://pypi.org/project/path) (📥 1.4M / month · 📦 200 · ⏱️ 09.04.2024):
pip install path
- [Conda](https://anaconda.org/conda-forge/path) (📥 550K · ⏱️ 15.04.2024):
conda install -c conda-forge path
scandir (🥉28 · ⭐ 530 · 💤) - Better directory iterator and faster os.walk(), now in the Python.. BSD-3 - [GitHub](https://github.com/benhoyt/scandir) (👨‍💻 23 · 🔀 69 · 📦 15K · 📋 96 - 6% open · ⏱️ 29.08.2023):
git clone https://github.com/benhoyt/scandir
- [PyPi](https://pypi.org/project/scandir) (📥 3.2M / month · 📦 210 · ⏱️ 09.03.2019):
pip install scandir
- [Conda](https://anaconda.org/conda-forge/scandir) (📥 1.4M · ⏱️ 23.09.2023):
conda install -c conda-forge scandir
Show 4 hidden projects... - zipp (🥈36 · ⭐ 52 · 📈) - Backport of pathlib-compatible object wrapper for zip files. MIT - appdirs (🥉31 · ⭐ 1K · 💀) - A small Python module for determining appropriate platform-specific.. MIT - pyfilesystem2 (🥉30 · ⭐ 2K · 💀) - Pythons Filesystem abstraction layer. MIT - Unipath (🥉22 · ⭐ 520 · 💀) - An object-oriented approach to Python file/directory operations. MIT


Compatiblity

Back to top

future (🥇38 · ⭐ 1.2K) - Easy, clean, reliable Python 2/3 compatibility. MIT - [GitHub](https://github.com/PythonCharmers/python-future) (👨‍💻 130 · 🔀 280 · 📦 330K · 📋 400 - 46% open · ⏱️ 21.02.2024):
git clone https://github.com/PythonCharmers/python-future
- [PyPi](https://pypi.org/project/future) (📥 41M / month · 📦 5.5K · ⏱️ 21.02.2024):
pip install future
- [Conda](https://anaconda.org/conda-forge/future) (📥 13M · ⏱️ 22.02.2024):
conda install -c conda-forge future
six (🥈37 · ⭐ 970) - Python 2 and 3 compatibility library. MIT - [GitHub](https://github.com/benjaminp/six) (👨‍💻 67 · 🔀 270 · 📦 2.2M · 📋 300 - 37% open · ⏱️ 27.03.2024):
git clone https://github.com/benjaminp/six
- [PyPi](https://pypi.org/project/six) (📥 320M / month · 📦 24K · ⏱️ 05.05.2021):
pip install six
- [Conda](https://anaconda.org/conda-forge/six) (📥 56M · ⏱️ 16.06.2023):
conda install -c conda-forge six
typing (🥈34 · ⭐ 1.6K) - Python static typing home. Hosts the documentation and a user help.. Python-2.0 - [GitHub](https://github.com/python/typing) (👨‍💻 100 · 🔀 220 · 📋 800 - 19% open · ⏱️ 05.06.2024):
git clone https://github.com/python/typing
- [PyPi](https://pypi.org/project/typing) (📥 9.1M / month · 📦 3.1K · ⏱️ 01.05.2021):
pip install typing
- [Conda](https://anaconda.org/conda-forge/typing) (📥 3M · ⏱️ 17.05.2024):
conda install -c conda-forge typing
Show 4 hidden projects... - contextlib2 (🥉28 · ⭐ 38) - contextlib2 is a backport of the standard librarys contextlib.. ❗️psfrag - dataclasses (🥉27 · ⭐ 580 · 💀) - A backport of the dataclasses module for Python 3.6. Apache-2 - futures (🥉27 · ⭐ 230 · 💀) - Backport of the concurrent.futures package to Python 2.6 and 2.7. Python-2.0 - pathlib2 (🥉27 · ⭐ 81 · 💤) - Backport of pathlib aiming to support the full stdlib Python API. MIT


Cryptography

Back to top

cryptography (🥇47 · ⭐ 6.4K) - cryptography is a package designed to expose cryptographic.. Apache-2 - [GitHub](https://github.com/pyca/cryptography) (👨‍💻 320 · 🔀 1.5K · 📦 680K · 📋 2.5K - 1% open · ⏱️ 06.06.2024):
git clone https://github.com/pyca/cryptography
- [PyPi](https://pypi.org/project/cryptography) (📥 270M / month · 📦 8.8K · ⏱️ 04.06.2024):
pip install cryptography
- [Conda](https://anaconda.org/conda-forge/cryptography) (📥 48M · ⏱️ 05.06.2024):
conda install -c conda-forge cryptography
pycryptodomex (🥈39 · ⭐ 2.7K) - A self-contained cryptographic library for Python. BSD-3 - [GitHub](https://github.com/Legrandin/pycryptodome) (👨‍💻 150 · 🔀 480 · 📥 540 · 📦 98K · 📋 580 - 10% open · ⏱️ 12.05.2024):
git clone https://github.com/Legrandin/pycryptodome
- [PyPi](https://pypi.org/project/pycryptodomex) (📥 36M / month · 📦 1.3K · ⏱️ 10.01.2024):
pip install pycryptodomex
- [Conda](https://anaconda.org/conda-forge/pycryptodomex) (📥 1.7M · ⏱️ 23.09.2023):
conda install -c conda-forge pycryptodomex
keyring (🥈39 · ⭐ 1.2K) - Store and access your passwords safely. MIT - [GitHub](https://github.com/jaraco/keyring) (👨‍💻 120 · 🔀 150 · 📦 120K · 📋 520 - 12% open · ⏱️ 13.05.2024):
git clone https://github.com/jaraco/keyring
- [PyPi](https://pypi.org/project/keyring) (📥 54M / month · 📦 2.9K · ⏱️ 13.05.2024):
pip install keyring
- [Conda](https://anaconda.org/conda-forge/keyring) (📥 4.8M · ⏱️ 14.05.2024):
conda install -c conda-forge keyring
bcrypt (🥉38 · ⭐ 1.2K) - Modern(-ish) password hashing for your software and your servers. Apache-2 - [GitHub](https://github.com/pyca/bcrypt) (👨‍💻 32 · 🔀 150 · 📦 230K · 📋 140 - 5% open · ⏱️ 03.06.2024):
git clone https://github.com/pyca/bcrypt
- [PyPi](https://pypi.org/project/bcrypt) (📥 61M / month · 📦 1.3K · ⏱️ 04.05.2024):
pip install bcrypt
- [Conda](https://anaconda.org/conda-forge/bcrypt) (📥 5M · ⏱️ 17.05.2024):
conda install -c conda-forge bcrypt
tink (🥉37 · ⭐ 13K) - Tink is a multi-language, cross-platform, open source library that.. Apache-2 - [GitHub](https://github.com/tink-crypto/tink) (👨‍💻 120 · 🔀 1.2K · 📥 1.1K · 📦 1.1K · ⏱️ 17.04.2024):
git clone https://github.com/google/tink
- [PyPi](https://pypi.org/project/tink) (📥 420K / month · 📦 8 · ⏱️ 02.05.2024):
pip install tink
- [npm](https://www.npmjs.com/package/tink-crypto) (📥 270 / month · 📦 3 · ⏱️ 02.05.2023):
npm install tink-crypto
asn1crypto (🥉33 · ⭐ 320 · 💤) - Python ASN.1 library with a focus on performance and a pythonic API. MIT - [GitHub](https://github.com/wbond/asn1crypto) (👨‍💻 39 · 🔀 140 · 📦 110K · 📋 190 - 25% open · ⏱️ 03.11.2023):
git clone https://github.com/wbond/asn1crypto
- [PyPi](https://pypi.org/project/asn1crypto) (📥 82M / month · 📦 590 · ⏱️ 15.03.2022):
pip install asn1crypto
- [Conda](https://anaconda.org/conda-forge/asn1crypto) (📥 8.5M · ⏱️ 16.06.2023):
conda install -c conda-forge asn1crypto
rsa (🥉29 · ⭐ 470) - Python-RSA is a pure-Python RSA implementation. Apache-2 - [GitHub](https://github.com/sybrenstuvel/python-rsa) (👨‍💻 43 · 🔀 100 · 📋 130 - 15% open · ⏱️ 30.01.2024):
git clone https://github.com/sybrenstuvel/python-rsa
- [PyPi](https://pypi.org/project/rsa) (📥 200M / month · 📦 1.4K · ⏱️ 20.07.2022):
pip install rsa
- [Conda](https://anaconda.org/conda-forge/rsa) (📥 14M · ⏱️ 16.06.2023):
conda install -c conda-forge rsa


Infrastructure & DevOps

Back to top

ansible (🥇48 · ⭐ 62K) - Ansible is a radically simple IT automation platform that makes your.. ❗️GPL-3.0 - [GitHub](https://github.com/ansible/ansible) (👨‍💻 6.8K · 🔀 24K · 📦 34K · 📋 33K - 2% open · ⏱️ 06.06.2024):
git clone https://github.com/ansible/ansible
- [PyPi](https://pypi.org/project/ansible) (📥 5.1M / month · 📦 460 · ⏱️ 06.06.2024):
pip install ansible
- [Conda](https://anaconda.org/conda-forge/ansible) (📥 1.1M · ⏱️ 06.06.2024):
conda install -c conda-forge ansible
botocore (🥇44 · ⭐ 1.4K) - The low-level, core functionality of boto3 and the AWS CLI. Apache-2 - [GitHub](https://github.com/boto/botocore) (👨‍💻 200 · 🔀 1.1K · 📦 330K · 📋 1.1K - 13% open · ⏱️ 05.06.2024):
git clone https://github.com/boto/botocore
- [PyPi](https://pypi.org/project/botocore) (📥 640M / month · 📦 2.6K · ⏱️ 05.06.2024):
pip install botocore
- [Conda](https://anaconda.org/conda-forge/botocore) (📥 27M · ⏱️ 05.06.2024):
conda install -c conda-forge botocore
pulumi (🥈43 · ⭐ 20K) - Pulumi - Infrastructure as Code in any programming language. Apache-2 - [GitHub](https://github.com/pulumi/pulumi) (👨‍💻 270 · 🔀 1.1K · 📥 3.4M · 📦 7.9K · 📋 7.3K - 29% open · ⏱️ 06.06.2024):
git clone https://github.com/pulumi/pulumi
- [PyPi](https://pypi.org/project/pulumi) (📥 940K / month · 📦 260 · ⏱️ 06.06.2024):
pip install pulumi
- [npm](https://www.npmjs.com/package/@pulumi/pulumi) (📥 2.7M / month · 📦 930 · ⏱️ 31.05.2024):
npm install @pulumi/pulumi
awscli (🥈43 · ⭐ 15K) - Universal Command Line Interface for Amazon Web Services. Apache-2 - [GitHub](https://github.com/aws/aws-cli) (👨‍💻 440 · 🔀 4K · 📥 1.7K · 📦 5 · 📋 4.6K - 11% open · ⏱️ 05.06.2024):
git clone https://github.com/aws/aws-cli
- [PyPi](https://pypi.org/project/awscli) (📥 140M / month · 📦 620 · ⏱️ 05.06.2024):
pip install awscli
- [Conda](https://anaconda.org/conda-forge/awscli) (📥 24M · ⏱️ 06.06.2024):
conda install -c conda-forge awscli
docker (🥈43 · ⭐ 6.7K) - A Python library for the Docker Engine API. Apache-2 - [GitHub](https://github.com/docker/docker-py) (👨‍💻 450 · 🔀 1.7K · 📥 980 · 📦 82K · 📋 1.7K - 27% open · ⏱️ 23.05.2024):
git clone https://github.com/docker/docker-py
- [PyPi](https://pypi.org/project/docker) (📥 44M / month · 📦 3.1K · ⏱️ 23.05.2024):
pip install docker
- [Conda](https://anaconda.org/conda-forge/docker-py) (📥 4.3M · ⏱️ 24.05.2024):
conda install -c conda-forge docker-py
docker-compose (🥈40 · ⭐ 33K) - Define and run multi-container applications with Docker. Apache-2 - [GitHub](https://github.com/docker/compose) (👨‍💻 540 · 🔀 5.1K · 📥 98M · 📦 560 · 📋 7.5K - 3% open · ⏱️ 05.06.2024):
git clone https://github.com/docker/compose
- [PyPi](https://pypi.org/project/docker-compose) (📥 1.9M / month · 📦 250 · ⏱️ 10.05.2021):
pip install docker-compose
- [Conda](https://anaconda.org/conda-forge/docker-compose) (📥 420K · ⏱️ 24.05.2024):
conda install -c conda-forge docker-compose
paramiko (🥈40 · ⭐ 8.9K · 📉) - The leading native Python SSHv2 protocol library. ❗️LGPL-2.1 - [GitHub](https://github.com/paramiko/paramiko) (👨‍💻 190 · 🔀 2K · 📦 97K · 📋 1.8K - 56% open · ⏱️ 11.02.2024):
git clone https://github.com/paramiko/paramiko
- [PyPi](https://pypi.org/project/paramiko) (📥 58M / month · 📦 2.8K · ⏱️ 18.12.2023):
pip install paramiko
- [Conda](https://anaconda.org/conda-forge/paramiko) (📥 4.6M · ⏱️ 19.12.2023):
conda install -c conda-forge paramiko
kubernetes (🥈39 · ⭐ 6.5K) - Official Python client library for kubernetes. Apache-2 - [GitHub](https://github.com/kubernetes-client/python) (👨‍💻 200 · 🔀 3.2K · 📋 1.3K - 7% open · ⏱️ 30.05.2024):
git clone https://github.com/kubernetes-client/python
- [PyPi](https://pypi.org/project/kubernetes) (📥 30M / month · 📦 1.3K · ⏱️ 30.05.2024):
pip install kubernetes
- [Conda](https://anaconda.org/conda-forge/kubernetes) (📥 500K · ⏱️ 30.05.2024):
conda install -c conda-forge kubernetes
netmiko (🥉37 · ⭐ 3.5K) - Multi-vendor library to simplify Paramiko SSH connections to network.. MIT - [GitHub](https://github.com/ktbyers/netmiko) (👨‍💻 240 · 🔀 1.3K · 📦 4.4K · 📋 2.1K - 8% open · ⏱️ 16.05.2024):
git clone https://github.com/ktbyers/netmiko
- [PyPi](https://pypi.org/project/netmiko) (📥 320K / month · 📦 180 · ⏱️ 17.11.2023):
pip install netmiko
fabric (🥉36 · ⭐ 15K) - Simple, Pythonic remote execution and deployment. BSD-2 - [GitHub](https://github.com/fabric/fabric) (👨‍💻 140 · 🔀 1.9K · 📦 21 · 📋 1.8K - 26% open · ⏱️ 26.01.2024):
git clone https://github.com/fabric/fabric
- [PyPi](https://pypi.org/project/fabric) (📥 6.5M / month · 📦 280 · ⏱️ 31.08.2023):
pip install fabric
- [Conda](https://anaconda.org/conda-forge/fabric) (📥 94K · ⏱️ 31.08.2023):
conda install -c conda-forge fabric
schedule (🥉36 · ⭐ 12K) - Python job scheduling for humans. MIT - [GitHub](https://github.com/dbader/schedule) (👨‍💻 60 · 🔀 950 · 📦 35K · 📋 460 - 34% open · ⏱️ 25.05.2024):
git clone https://github.com/dbader/schedule
- [PyPi](https://pypi.org/project/schedule) (📥 2.3M / month · 📦 660 · ⏱️ 25.05.2024):
pip install schedule
- [Conda](https://anaconda.org/conda-forge/schedule) (📥 58K · ⏱️ 02.10.2023):
conda install -c conda-forge schedule
plumbum (🥉34 · ⭐ 2.8K) - Plumbum: Shell Combinators. MIT - [GitHub](https://github.com/tomerfiliba/plumbum) (👨‍💻 110 · 🔀 180 · 📦 6.5K · 📋 360 - 37% open · ⏱️ 20.05.2024):
git clone https://github.com/tomerfiliba/plumbum
- [PyPi](https://pypi.org/project/plumbum) (📥 2.9M / month · 📦 290 · ⏱️ 29.04.2024):
pip install plumbum
- [Conda](https://anaconda.org/conda-forge/plumbum) (📥 1M · ⏱️ 29.04.2024):
conda install -c conda-forge plumbum
pyinfra (🥉31 · ⭐ 3.6K) - pyinfra turns Python code into shell commands and runs them on your.. MIT - [GitHub](https://github.com/pyinfra-dev/pyinfra) (👨‍💻 120 · 🔀 350 · 📦 120 · 📋 720 - 22% open · ⏱️ 27.05.2024):
git clone https://github.com/Fizzadar/pyinfra
- [PyPi](https://pypi.org/project/pyinfra) (📥 20K / month · 📦 16 · ⏱️ 04.05.2024):
pip install pyinfra
pypyr (🥉20 · ⭐ 570 · 💤) - pypyr task-runner cli & api for automation pipelines. Automate.. Apache-2 - [GitHub](https://github.com/pypyr/pypyr) (👨‍💻 10 · 🔀 26 · 📦 110 · 📋 140 - 11% open · ⏱️ 22.09.2023):
git clone https://github.com/pypyr/pypyr
- [PyPi](https://pypi.org/project/pypyr) (📥 2.6K / month · 📦 11 · ⏱️ 22.09.2023):
pip install pypyr
- [Conda](https://anaconda.org/conda-forge/pypyr) (📥 16K · ⏱️ 22.09.2023):
conda install -c conda-forge pypyr
Show 6 hidden projects... - sshtunnel (🥉31 · ⭐ 1.2K · 💀) - SSH tunnels to remote server. MIT - parallel-ssh (🥉26 · ⭐ 1.2K · 💀) - Asynchronous parallel SSH client library. ❗️LGPL-2.1 - storm (🥉24 · ⭐ 3.9K · 💀) - Manage your SSH like a boss. MIT - fabtools (🥉24 · ⭐ 1.2K · 💀) - Tools for writing awesome Fabric files. BSD-2 - wssh (🥉17 · ⭐ 1.4K · 💀) - SSH to WebSockets Bridge. MIT - Grai (🥉14 · ⭐ 280) - Platform to programmatically manage, test, and debug data.. ❗️MulanPSL-2.0


Process Utilities

Back to top

pexpect (🥇38 · ⭐ 2.5K · 💤) - A Python module for controlling interactive programs in a pseudo-.. ISC - [GitHub](https://github.com/pexpect/pexpect) (👨‍💻 110 · 🔀 480 · 📥 4.4K · 📦 390K · 📋 490 - 32% open · ⏱️ 25.11.2023):
git clone https://github.com/pexpect/pexpect
- [PyPi](https://pypi.org/project/pexpect) (📥 72M / month · 📦 1.6K · ⏱️ 25.11.2023):
pip install pexpect
- [Conda](https://anaconda.org/conda-forge/pexpect) (📥 19M · ⏱️ 24.01.2024):
conda install -c conda-forge pexpect
supervisor (🥈36 · ⭐ 8.3K) - Supervisor process control system for Unix.. ❗️Repoze Public License - [GitHub](https://github.com/Supervisor/supervisor) (👨‍💻 180 · 🔀 1.2K · 📦 11K · 📋 1.2K - 13% open · ⏱️ 22.05.2024):
git clone https://github.com/Supervisor/supervisor
- [PyPi](https://pypi.org/project/supervisor) (📥 1.5M / month · 📦 120 · ⏱️ 24.12.2022):
pip install supervisor
- [Conda](https://anaconda.org/conda-forge/supervisor) (📥 310K · ⏱️ 23.11.2023):
conda install -c conda-forge supervisor
sh (🥉35 · ⭐ 6.9K) - Python process launching. MIT - [GitHub](https://github.com/amoffat/sh) (👨‍💻 98 · 🔀 500 · 📦 15K · 📋 480 - 1% open · ⏱️ 31.05.2024):
git clone https://github.com/amoffat/sh
- [PyPi](https://pypi.org/project/sh) (📥 7.2M / month · 📦 720 · ⏱️ 01.06.2024):
pip install sh
- [Conda](https://anaconda.org/conda-forge/sh) (📥 210K · ⏱️ 01.06.2024):
conda install -c conda-forge sh
ptyprocess (🥉24 · ⭐ 210 · 💤) - Run a subprocess in a pseudo terminal. ISC - [GitHub](https://github.com/pexpect/ptyprocess) (👨‍💻 19 · 🔀 70 · 📋 37 - 51% open · ⏱️ 23.10.2023):
git clone https://github.com/pexpect/ptyprocess
- [PyPi](https://pypi.org/project/ptyprocess) (📥 73M / month · 📦 680 · ⏱️ 28.12.2020):
pip install ptyprocess
- [Conda](https://anaconda.org/conda-forge/ptyprocess) (📥 18M · ⏱️ 16.06.2023):
conda install -c conda-forge ptyprocess


Asynchronous Programming

Back to top

uvloop (🥇37 · ⭐ 10K · 💤) - Ultra fast asyncio event loop. Apache-2 - [GitHub](https://github.com/MagicStack/uvloop) (👨‍💻 60 · 🔀 530 · 📥 440 · 📦 130K · 📋 360 - 28% open · ⏱️ 22.10.2023):
git clone https://github.com/MagicStack/uvloop
- [PyPi](https://pypi.org/project/uvloop) (📥 18M / month · 📦 1.3K · ⏱️ 22.10.2023):
pip install uvloop
- [Conda](https://anaconda.org/conda-forge/uvloop) (📥 730K · ⏱️ 23.10.2023):
conda install -c conda-forge uvloop
anyio (🥇37 · ⭐ 1.6K) - High level asynchronous concurrency and networking framework that works on.. MIT - [GitHub](https://github.com/agronholm/anyio) (👨‍💻 51 · 🔀 130 · 📦 310K · 📋 350 - 16% open · ⏱️ 03.06.2024):
git clone https://github.com/agronholm/anyio
- [PyPi](https://pypi.org/project/anyio) (📥 74M / month · 📦 1.5K · ⏱️ 26.05.2024):
pip install anyio
- [Conda](https://anaconda.org/conda-forge/anyio) (📥 14M · ⏱️ 19.02.2024):
conda install -c conda-forge anyio
greenlet (🥇37 · ⭐ 1.6K) - Lightweight in-process concurrent programming. MIT - [GitHub](https://github.com/python-greenlet/greenlet) (👨‍💻 68 · 🔀 240 · 📦 390K · 📋 250 - 12% open · ⏱️ 21.12.2023):
git clone https://github.com/python-greenlet/greenlet
- [PyPi](https://pypi.org/project/greenlet) (📥 100M / month · 📦 1.1K · ⏱️ 21.12.2023):
pip install greenlet
- [Conda](https://anaconda.org/conda-forge/greenlet) (📥 10M · ⏱️ 21.12.2023):
conda install -c conda-forge greenlet
asyncer (🥉28 · ⭐ 1.5K) - Asyncer, async and await, focused on developer experience. MIT - [GitHub](https://github.com/tiangolo/asyncer) (👨‍💻 15 · 🔀 47 · 📦 3.9K · 📋 20 - 80% open · ⏱️ 23.05.2024):
git clone https://github.com/tiangolo/asyncer
- [PyPi](https://pypi.org/project/asyncer) (📥 210K / month · 📦 120 · ⏱️ 30.04.2024):
pip install asyncer
- [Conda](https://anaconda.org/conda-forge/asyncer) (📥 8.4K · ⏱️ 30.04.2024):
conda install -c conda-forge asyncer
aiomisc (🥉24 · ⭐ 370) - aiomisc - miscellaneous utils for asyncio. MIT - [GitHub](https://github.com/aiokitchen/aiomisc) (👨‍💻 20 · 🔀 26 · 📦 370 · 📋 24 - 25% open · ⏱️ 04.06.2024):
git clone https://github.com/aiokitchen/aiomisc
- [PyPi](https://pypi.org/project/aiomisc) (📥 19K / month · 📦 57 · ⏱️ 04.06.2024):
pip install aiomisc
unsync (🥉22 · ⭐ 870) - Unsynchronize asyncio. MIT - [GitHub](https://github.com/alex-sherman/unsync) (👨‍💻 11 · 🔀 51 · 📦 230 · 📋 31 - 9% open · ⏱️ 16.03.2024):
git clone https://github.com/alex-sherman/unsync
- [PyPi](https://pypi.org/project/unsync) (📥 67K / month · 📦 19 · ⏱️ 21.10.2021):
pip install unsync
- [Conda](https://anaconda.org/conda-forge/unsync) (📥 13K · ⏱️ 16.06.2023):
conda install -c conda-forge unsync
stopit (🥉21 · ⭐ 110) - Raise asynchronous exceptions in other thread, control the timeout of.. MIT - [GitHub](https://github.com/glenfant/stopit) (👨‍💻 7 · 🔀 21 · 📦 2.4K · 📋 20 - 25% open · ⏱️ 09.01.2024):
git clone https://github.com/glenfant/stopit
- [PyPi](https://pypi.org/project/stopit) (📥 390K / month · 📦 94 · ⏱️ 09.02.2018):
pip install stopit
- [Conda](https://anaconda.org/conda-forge/stopit) (📥 910K · ⏱️ 16.06.2023):
conda install -c conda-forge stopit


Configuration

Back to top

python-dotenv (🥇38 · ⭐ 7.2K) - Reads key-value pairs from a .env file and can set them as.. BSD-3 - [GitHub](https://github.com/theskumar/python-dotenv) (👨‍💻 95 · 🔀 410 · 📦 810K · 📋 290 - 19% open · ⏱️ 29.04.2024):
git clone https://github.com/theskumar/python-dotenv
- [PyPi](https://pypi.org/project/python-dotenv) (📥 70M / month · 📦 9.2K · ⏱️ 23.01.2024):
pip install python-dotenv
- [Conda](https://anaconda.org/conda-forge/python-dotenv) (📥 3.5M · ⏱️ 23.01.2024):
conda install -c conda-forge python-dotenv
traitlets (🥇38 · ⭐ 600) - A lightweight Traits like module. BSD-3 - [GitHub](https://github.com/ipython/traitlets) (👨‍💻 120 · 🔀 200 · 📥 350 · 📦 440K · 📋 300 - 33% open · ⏱️ 19.04.2024):
git clone https://github.com/ipython/traitlets
- [PyPi](https://pypi.org/project/traitlets) (📥 45M / month · 📦 1.3K · ⏱️ 19.04.2024):
pip install traitlets
- [Conda](https://anaconda.org/conda-forge/traitlets) (📥 28M · ⏱️ 19.04.2024):
conda install -c conda-forge traitlets
Dynaconf (🥈34 · ⭐ 3.6K) - Configuration Management for Python. MIT - [GitHub](https://github.com/dynaconf/dynaconf) (👨‍💻 120 · 🔀 290 · 📦 8.6K · 📋 510 - 23% open · ⏱️ 28.05.2024):
git clone https://github.com/rochacbruno/dynaconf
- [PyPi](https://pypi.org/project/dynaconf) (📥 2.9M / month · 📦 420 · ⏱️ 18.03.2024):
pip install dynaconf
- [Conda](https://anaconda.org/conda-forge/dynaconf) (📥 78K · ⏱️ 26.03.2024):
conda install -c conda-forge dynaconf
hydra (🥈33 · ⭐ 8.3K) - Hydra is a framework for elegantly configuring complex applications. MIT - [GitHub](https://github.com/facebookresearch/hydra) (👨‍💻 120 · 🔀 600 · 📦 24K · 📋 1.4K - 19% open · ⏱️ 03.04.2024):
git clone https://github.com/facebookresearch/hydra
- [PyPi](https://pypi.org/project/hydra) (📥 10K / month · 📦 11 · ⏱️ 03.08.2016):
pip install hydra
- [Conda](https://anaconda.org/conda-forge/hydra-core) (📥 990K · ⏱️ 16.06.2023):
conda install -c conda-forge hydra-core
python-decouple (🥉32 · ⭐ 2.7K) - Strict separation of config from code. MIT - [GitHub](https://github.com/HBNetwork/python-decouple) (👨‍💻 36 · 🔀 190 · 📥 12 · 📦 130K · 📋 94 - 4% open · ⏱️ 01.01.2024):
git clone https://github.com/henriquebastos/python-decouple
- [PyPi](https://pypi.org/project/python-decouple) (📥 3.9M / month · 📦 650 · ⏱️ 01.03.2023):
pip install python-decouple
- [Conda](https://anaconda.org/conda-forge/python-decouple) (📥 85K · ⏱️ 16.06.2023):
conda install -c conda-forge python-decouple
omegaconf (🥉31 · ⭐ 1.8K) - Flexible Python configuration system. The last one you will ever need. BSD-3 - [GitHub](https://github.com/omry/omegaconf) (👨‍💻 35 · 🔀 98 · 📦 31K · 📋 560 - 19% open · ⏱️ 30.05.2024):
git clone https://github.com/omry/omegaconf
- [PyPi](https://pypi.org/project/omegaconf) (📥 9.5M / month · 📦 910 · ⏱️ 29.02.2024):
pip install omegaconf
- [Conda](https://anaconda.org/conda-forge/omegaconf) (📥 1.4M · ⏱️ 16.06.2023):
conda install -c conda-forge omegaconf
gin-config (🥉29 · ⭐ 2K) - Gin provides a lightweight configuration framework for Python. Apache-2 - [GitHub](https://github.com/google/gin-config) (👨‍💻 24 · 🔀 120 · 📦 8.7K · 📋 95 - 55% open · ⏱️ 05.02.2024):
git clone https://github.com/google/gin-config
- [PyPi](https://pypi.org/project/gin-config) (📥 270K / month · 📦 72 · ⏱️ 03.11.2021):
pip install gin-config
- [Conda](https://anaconda.org/conda-forge/gin-config) (📥 25K · ⏱️ 16.06.2023):
conda install -c conda-forge gin-config
everett (🥉24 · ⭐ 150) - configuration library for python projects. MPL-2.0 - [GitHub](https://github.com/willkg/everett) (👨‍💻 8 · 🔀 33 · 📦 1.3K · 📋 88 - 4% open · ⏱️ 02.06.2024):
git clone https://github.com/willkg/everett
- [PyPi](https://pypi.org/project/everett) (📥 220K / month · 📦 22 · ⏱️ 06.11.2023):
pip install everett
- [Conda](https://anaconda.org/conda-forge/everett) (📥 63K · ⏱️ 06.11.2023):
conda install -c conda-forge everett
Show 1 hidden projects... - configobj (🥉28 · ⭐ 310 · 💀) - Python 3+ compatible port of the configobj library. BSD-3


CLI Development

Back to top

click (🥇46 · ⭐ 15K) - Python composable command line interface toolkit. BSD-3 - [GitHub](https://github.com/pallets/click) (👨‍💻 370 · 🔀 1.4K · 📥 370 · 📦 1.7M · 📋 1.6K - 7% open · ⏱️ 03.06.2024):
git clone https://github.com/pallets/click
- [PyPi](https://pypi.org/project/click) (📥 210M / month · 📦 37K · ⏱️ 17.08.2023):
pip install click
- [Conda](https://anaconda.org/conda-forge/click) (📥 35M · ⏱️ 17.08.2023):
conda install -c conda-forge click
rich (🥇43 · ⭐ 48K) - Rich is a Python library for rich text and beautiful formatting in the terminal. MIT - [GitHub](https://github.com/Textualize/rich) (👨‍💻 240 · 🔀 1.7K · 📦 220K · 📋 1.4K - 20% open · ⏱️ 01.05.2024):
git clone https://github.com/Textualize/rich
- [PyPi](https://pypi.org/project/rich) (📥 67M / month · 📦 11K · ⏱️ 28.02.2024):
pip install rich
- [Conda](https://anaconda.org/conda-forge/rich) (📥 7.1M · ⏱️ 28.02.2024):
conda install -c conda-forge rich
Typer (🥈40 · ⭐ 15K) - Typer, build great CLIs. Easy to code. Based on Python type hints. MIT - [GitHub](https://github.com/tiangolo/typer) (👨‍💻 55 · 🔀 620 · 📦 98K · 📋 390 - 53% open · ⏱️ 23.05.2024):
git clone https://github.com/tiangolo/typer
- [PyPi](https://pypi.org/project/typer) (📥 33M / month · 📦 5.2K · ⏱️ 09.04.2024):
pip install typer
- [Conda](https://anaconda.org/conda-forge/typer) (📥 2.5M · ⏱️ 09.04.2024):
conda install -c conda-forge typer
python-fire (🥈39 · ⭐ 26K) - Python Fire is a library for automatically generating command.. Apache-2 - [GitHub](https://github.com/google/python-fire) (👨‍💻 65 · 🔀 1.4K · 📦 34K · 📋 340 - 44% open · ⏱️ 05.04.2024):
git clone https://github.com/google/python-fire
- [PyPi](https://pypi.org/project/fire) (📥 6.9M / month · 📦 2.3K · ⏱️ 11.03.2024):
pip install fire
- [Conda](https://anaconda.org/conda-forge/fire) (📥 950K · ⏱️ 12.03.2024):
conda install -c conda-forge fire
python-prompt-toolkit (🥈39 · ⭐ 9K) - Library for building powerful interactive command line.. BSD-3 - [GitHub](https://github.com/prompt-toolkit/python-prompt-toolkit) (👨‍💻 230 · 🔀 710 · 📋 1.2K - 52% open · ⏱️ 04.06.2024):
git clone https://github.com/prompt-toolkit/python-prompt-toolkit
- [PyPi](https://pypi.org/project/prompt_toolkit) (📥 51M / month · 📦 2.6K · ⏱️ 04.06.2024):
pip install prompt_toolkit
- [Conda](https://anaconda.org/conda-forge/prompt-toolkit) (📥 23M · ⏱️ 05.06.2024):
conda install -c conda-forge prompt-toolkit
colorama (🥈36 · ⭐ 3.5K) - Simple cross-platform colored terminal text in Python. BSD-3 - [GitHub](https://github.com/tartley/colorama) (👨‍💻 51 · 🔀 240 · 📦 970K · 📋 260 - 45% open · ⏱️ 01.12.2023):
git clone https://github.com/tartley/colorama
- [PyPi](https://pypi.org/project/colorama) (📥 170M / month · 📦 11K · ⏱️ 25.10.2022):
pip install colorama
- [Conda](https://anaconda.org/conda-forge/colorama) (📥 31M · ⏱️ 16.06.2023):
conda install -c conda-forge colorama
argcomplete (🥈35 · ⭐ 1.4K) - Python and tab completion, better together. Apache-2 - [GitHub](https://github.com/kislyuk/argcomplete) (👨‍💻 73 · 🔀 120 · 📥 360 · 📦 53K · 📋 270 - 19% open · ⏱️ 12.05.2024):
git clone https://github.com/kislyuk/argcomplete
- [PyPi](https://pypi.org/project/argcomplete) (📥 29M / month · 📦 1.3K · ⏱️ 14.04.2024):
pip install argcomplete
- [Conda](https://anaconda.org/conda-forge/argcomplete) (📥 1.6M · ⏱️ 15.04.2024):
conda install -c conda-forge argcomplete
cleo (🥉33 · ⭐ 1.2K) - Cleo allows you to create beautiful and testable command-line interfaces. MIT - [GitHub](https://github.com/python-poetry/cleo) (👨‍💻 36 · 🔀 85 · 📦 22K · 📋 110 - 29% open · ⏱️ 03.06.2024):
git clone https://github.com/sdispater/cleo
- [PyPi](https://pypi.org/project/cleo) (📥 33M / month · 📦 310 · ⏱️ 30.10.2023):
pip install cleo
- [Conda](https://anaconda.org/conda-forge/cleo) (📥 730K · ⏱️ 30.10.2023):
conda install -c conda-forge cleo
wcwidth (🥉33 · ⭐ 380) - Python library that measures the width of unicode strings rendered to a.. MIT - [GitHub](https://github.com/jquast/wcwidth) (👨‍💻 19 · 🔀 56 · 📦 560K · 📋 59 - 32% open · ⏱️ 14.02.2024):
git clone https://github.com/jquast/wcwidth
- [PyPi](https://pypi.org/project/wcwidth) (📥 65M / month · 📦 1.6K · ⏱️ 06.01.2024):
pip install wcwidth
- [Conda](https://anaconda.org/conda-forge/wcwidth) (📥 25M · ⏱️ 08.01.2024):
conda install -c conda-forge wcwidth
questionary (🥉30 · ⭐ 1.4K) - Python library to build pretty command line user prompts Easy to use.. MIT - [GitHub](https://github.com/tmbo/questionary) (👨‍💻 40 · 🔀 85 · 📦 12K · 📋 150 - 35% open · ⏱️ 12.01.2024):
git clone https://github.com/tmbo/questionary
- [PyPi](https://pypi.org/project/questionary) (📥 2M / month · 📦 660 · ⏱️ 08.09.2023):
pip install questionary
- [Conda](https://anaconda.org/conda-forge/questionary) (📥 76K · ⏱️ 10.09.2023):
conda install -c conda-forge questionary
asciimatics (🥉29 · ⭐ 3.6K) - A cross platform package to do curses-like operations, plus.. Apache-2 - [GitHub](https://github.com/peterbrittain/asciimatics) (👨‍💻 45 · 🔀 240 · 📦 1K · 📋 300 - 8% open · ⏱️ 24.04.2024):
git clone https://github.com/peterbrittain/asciimatics
- [PyPi](https://pypi.org/project/asciimatics) (📥 24K / month · 📦 110 · ⏱️ 25.10.2023):
pip install asciimatics
- [Conda](https://anaconda.org/conda-forge/asciimatics) (📥 160K · ⏱️ 25.10.2023):
conda install -c conda-forge asciimatics
ConfigArgParse (🥉28 · ⭐ 700 · 💤) - A drop-in replacement for argparse that allows options to.. MIT - [GitHub](https://github.com/bw2/ConfigArgParse) (👨‍💻 53 · 🔀 120 · 📦 17K · 📋 200 - 36% open · ⏱️ 23.07.2023):
git clone https://github.com/bw2/ConfigArgParse
- [PyPi](https://pypi.org/project/configargparse) (📥 4.6M / month · 📦 570 · ⏱️ 23.07.2023):
pip install configargparse
- [Conda](https://anaconda.org/conda-forge/configargparse) (📥 860K · ⏱️ 23.07.2023):
conda install -c conda-forge configargparse
docopt-ng (🥉23 · ⭐ 180) - Humane command line arguments parser. Now with maintenance, typehints,.. MIT - [GitHub](https://github.com/jazzband/docopt-ng) (👨‍💻 49 · 🔀 20 · 📦 320 · 📋 35 - 54% open · ⏱️ 13.05.2024):
git clone https://github.com/jazzband/docopt-ng
- [PyPi](https://pypi.org/project/docopt-ng) (📥 210K / month · 📦 84 · ⏱️ 30.05.2023):
pip install docopt-ng
colout (🥉18 · ⭐ 1.1K) - Color text streams with a polished command line interface. ❗️GPL-3.0 - [GitHub](https://github.com/nojhan/colout) (👨‍💻 30 · 🔀 58 · 📦 6 · 📋 72 - 19% open · ⏱️ 29.01.2024):
git clone https://github.com/nojhan/colout
- [PyPi](https://pypi.org/project/colout) (📥 200 / month · ⏱️ 21.06.2020):
pip install colout
Show 5 hidden projects... - docopt (🥈36 · ⭐ 7.9K · 💀) - Create *beautiful* command-line interfaces with Python. MIT - blessings (🥉28 · ⭐ 1.4K · 💀) - A thin, practical wrapper around terminal capabilities in Python. MIT - clint (🥉24 · ⭐ 95 · 💀) - Python Command-line Application Tools. ISC - bashplotlib (🥉22 · ⭐ 1.8K · 💀) - plotting in the terminal. MIT - Click Extra (🥉22 · ⭐ 54) - Extra colorization and configuration loading for Click. ❗️GPL-2.0


Development Tools

Back to top

🔗 best-of-python-dev ( ⭐ 930) - A ranked list of awesome python developer tools and libraries. Updated..


Data Caching

Back to top

cachetools (🥇34 · ⭐ 2.2K) - Extensible memoizing collections and decorators. MIT - [GitHub](https://github.com/tkem/cachetools) (👨‍💻 13 · 🔀 160 · 📋 240 - 4% open · ⏱️ 02.06.2024):
git clone https://github.com/tkem/cachetools
- [PyPi](https://pypi.org/project/cachetools) (📥 140M / month · 📦 2.5K · ⏱️ 26.02.2024):
pip install cachetools
- [Conda](https://anaconda.org/conda-forge/cachetools) (📥 12M · ⏱️ 26.02.2024):
conda install -c conda-forge cachetools
aiocache (🥈30 · ⭐ 1K) - Asyncio cache manager for redis, memcached and memory. BSD-3 - [GitHub](https://github.com/aio-libs/aiocache) (👨‍💻 45 · 🔀 140 · 📥 16 · 📦 2.2K · 📋 300 - 13% open · ⏱️ 01.06.2024):
git clone https://github.com/aio-libs/aiocache
- [PyPi](https://pypi.org/project/aiocache) (📥 770K / month · 📦 120 · ⏱️ 06.08.2023):
pip install aiocache
beaker (🥉29 · ⭐ 510) - WSGI middleware for sessions and caching. BSD-3 - [GitHub](https://github.com/bbangert/beaker) (👨‍💻 91 · 🔀 140 · 📦 5.4K · 📋 140 - 55% open · ⏱️ 11.04.2024):
git clone https://github.com/bbangert/beaker
- [PyPi](https://pypi.org/project/beaker) (📥 220K / month · 📦 78 · ⏱️ 11.04.2024):
pip install beaker
- [Conda](https://anaconda.org/conda-forge/beaker) (📥 75K · ⏱️ 12.04.2024):
conda install -c conda-forge beaker
pylibmc (🥉27 · ⭐ 480 · 💤) - A Python wrapper around the libmemcached interface from TangentOrg. BSD-3 - [GitHub](https://github.com/lericson/pylibmc) (👨‍💻 54 · 🔀 130 · 📥 610 · 📦 5.1K · 📋 190 - 11% open · ⏱️ 11.10.2023):
git clone https://github.com/lericson/pylibmc
- [PyPi](https://pypi.org/project/pylibmc) (📥 250K / month · 📦 79 · ⏱️ 30.08.2022):
pip install pylibmc
- [Conda](https://anaconda.org/conda-forge/pylibmc) (📥 230K · ⏱️ 26.09.2023):
conda install -c conda-forge pylibmc
cachier (🥉26 · ⭐ 520) - Persistent, stale-free, local and cross-machine caching for Python.. MIT - [GitHub](https://github.com/python-cachier/cachier) (👨‍💻 20 · 🔀 59 · 📥 17 · 📦 460 · 📋 82 - 26% open · ⏱️ 01.06.2024):
git clone https://github.com/shaypal5/cachier
- [PyPi](https://pypi.org/project/cachier) (📥 100K / month · 📦 40 · ⏱️ 26.02.2024):
pip install cachier
Show 1 hidden projects... - cached-property (🥈30 · ⭐ 680 · 💀) - A decorator for caching properties in classes. BSD-3


GUI Development

Back to top

🔗 best-of-web-python - Web UI ( ⭐ 2.2K) - Collection of libraries to implement web-based UIs.

kivy (🥇41 · ⭐ 17K) - Open source UI framework written in Python, running on Windows, Linux, macOS,.. MIT - [GitHub](https://github.com/kivy/kivy) (👨‍💻 620 · 🔀 3K · 📥 37K · 📦 13K · 📋 5.1K - 15% open · ⏱️ 27.05.2024):
git clone https://github.com/kivy/kivy
- [PyPi](https://pypi.org/project/kivy) (📥 180K / month · 📦 310 · ⏱️ 05.01.2024):
pip install kivy
- [Conda](https://anaconda.org/conda-forge/kivy) (📥 360K · ⏱️ 08.04.2024):
conda install -c conda-forge kivy
DearPyGui (🥈32 · ⭐ 12K) - Dear PyGui: A fast and powerful Graphical User Interface Toolkit for.. MIT - [GitHub](https://github.com/hoffstadt/DearPyGui) (👨‍💻 65 · 🔀 650 · 📦 3K · 📋 1.3K - 21% open · ⏱️ 13.04.2024):
git clone https://github.com/hoffstadt/DearPyGui
- [PyPi](https://pypi.org/project/dearpygui) (📥 41K / month · 📦 100 · ⏱️ 15.03.2024):
pip install dearpygui
toga (🥈32 · ⭐ 4.2K) - A Python native, OS native GUI toolkit. BSD-3 - [GitHub](https://github.com/beeware/toga) (👨‍💻 270 · 🔀 650 · 📥 3.4K · 📦 3 · 📋 910 - 20% open · ⏱️ 03.06.2024):
git clone https://github.com/beeware/toga
- [PyPi](https://pypi.org/project/toga) (📥 4.8K / month · 📦 24 · ⏱️ 08.05.2024):
pip install toga
- [npm](https://www.npmjs.com/package/@pybee/toga) (📥 8 / month · 📦 5 · ⏱️ 23.04.2017):
npm install @pybee/toga
flexx (🥉26 · ⭐ 3.2K) - Write desktop and web apps in pure Python. BSD-2 - [GitHub](https://github.com/flexxui/flexx) (👨‍💻 37 · 🔀 260 · 📦 140 · 📋 460 - 19% open · ⏱️ 06.01.2024):
git clone https://github.com/flexxui/flexx
- [PyPi](https://pypi.org/project/flexx) (📥 810 / month · 📦 7 · ⏱️ 12.04.2022):
pip install flexx
- [Conda](https://anaconda.org/conda-forge/flexx) (📥 110K · ⏱️ 16.06.2023):
conda install -c conda-forge flexx
Show 5 hidden projects... - PySimpleGUI (🥈35 · ⭐ 13K) - PySimpleGUI is a Python package that enables Python.. ❗Unlicensed - Eel (🥉31 · ⭐ 6.2K · 💀) - A little Python library for making simple Electron-like HTML/JS GUI apps. MIT - Gooey (🥉30 · ⭐ 20K · 💀) - Turn (almost) any Python command line program into a full GUI.. MIT - enaml (🥉25 · ⭐ 1.5K) - Declarative User Interfaces for Python. ❗Unlicensed - Phoenix (🥉24 · ⭐ 2.2K) - wxPythons Project Phoenix. A new implementation of wxPython,.. ❗️wxWindows


Computer & Machine Vision

Back to top

🔗 best-of-ml-python - Computer Vision ( ⭐ 16K) - Collection of computer vision and image processing..

Pipeless (🥇18 · ⭐ 660) - An open-source framework to create and deploy computer vision.. Apache-2 - [GitHub](https://github.com/pipeless-ai/pipeless) (👨‍💻 8 · 🔀 31 · 📥 990 · 📋 26 - 26% open · ⏱️ 08.05.2024):
git clone https://github.com/pipeless-ai/pipeless
- [PyPi](https://pypi.org/project/pipeless-ai) (📥 80 / month · 📦 2 · ⏱️ 02.11.2023):
pip install pipeless-ai


Machine Learning & Data Engineering

Back to top

🔗 best-of-ml-python ( ⭐ 16K) - A ranked list of awesome machine learning Python libraries. Updated..


Text Data

Back to top

🔗 best-of-ml-python - NLP ( ⭐ 16K) - Collection of text processing and NLP libraries.

emoji (🥇37 · ⭐ 1.8K) - emoji terminal output for Python. BSD-3 - [GitHub](https://github.com/carpedm20/emoji) (👨‍💻 68 · 🔀 270 · 📦 71K · 📋 170 - 8% open · ⏱️ 20.05.2024):
git clone https://github.com/carpedm20/emoji
- [PyPi](https://pypi.org/project/emoji) (📥 4.1M / month · 📦 980 · ⏱️ 20.05.2024):
pip install emoji
- [Conda](https://anaconda.org/conda-forge/emoji) (📥 75K · ⏱️ 20.05.2024):
conda install -c conda-forge emoji
phonenumbers (🥇34 · ⭐ 3.4K) - Python port of Googles libphonenumber. Apache-2 - [GitHub](https://github.com/daviddrysdale/python-phonenumbers) (👨‍💻 31 · 🔀 410 · 📋 180 - 5% open · ⏱️ 04.06.2024):
git clone https://github.com/daviddrysdale/python-phonenumbers
- [PyPi](https://pypi.org/project/phonenumbers) (📥 7M / month · 📦 530 · ⏱️ 04.06.2024):
pip install phonenumbers
- [Conda](https://anaconda.org/conda-forge/phonenumbers) (📥 920K · ⏱️ 05.06.2024):
conda install -c conda-forge phonenumbers
inflect (🥇34 · ⭐ 930) - Correctly generate plurals, ordinals, indefinite articles; convert numbers.. MIT - [GitHub](https://github.com/jaraco/inflect) (👨‍💻 55 · 🔀 100 · 📦 22K · 📋 120 - 23% open · ⏱️ 24.04.2024):
git clone https://github.com/jaraco/inflect
- [PyPi](https://pypi.org/project/inflect) (📥 6M / month · 📦 610 · ⏱️ 23.04.2024):
pip install inflect
- [Conda](https://anaconda.org/conda-forge/inflect) (📥 380K · ⏱️ 23.04.2024):
conda install -c conda-forge inflect
python-slugify (🥈33 · ⭐ 1.5K) - Returns unicode slugs. MIT - [GitHub](https://github.com/un33k/python-slugify) (👨‍💻 36 · 🔀 110 · 📦 85K · 📋 73 - 2% open · ⏱️ 01.03.2024):
git clone https://github.com/un33k/python-slugify
- [PyPi](https://pypi.org/project/python-slugify) (📥 20M / month · 📦 1.4K · ⏱️ 08.02.2024):
pip install python-slugify
- [Conda](https://anaconda.org/conda-forge/python-slugify) (📥 2.1M · ⏱️ 08.02.2024):
conda install -c conda-forge python-slugify
chardet (🥈31 · ⭐ 2.1K · 💤) - Python character encoding detector. ❗️LGPL-2.1 - [GitHub](https://github.com/chardet/chardet) (👨‍💻 48 · 🔀 250 · 📦 6 · 📋 150 - 42% open · ⏱️ 01.08.2023):
git clone https://github.com/chardet/chardet
- [PyPi](https://pypi.org/project/chardet) (📥 68M / month · 📦 5.4K · ⏱️ 01.08.2023):
pip install chardet
- [Conda](https://anaconda.org/conda-forge/chardet) (📥 23M · ⏱️ 23.09.2023):
conda install -c conda-forge chardet
- [npm](https://www.npmjs.com/package/@pypi/chardet) (📥 58 / month · 📦 5 · ⏱️ 20.08.2017):
npm install @pypi/chardet
pyahocorasick (🥉29 · ⭐ 900) - Python module (C extension and plain python) implementing Aho-.. BSD-3 - [GitHub](https://github.com/WojciechMula/pyahocorasick) (👨‍💻 30 · 🔀 120 · 📥 50 · 📦 2.8K · 📋 130 - 18% open · ⏱️ 21.03.2024):
git clone https://github.com/WojciechMula/pyahocorasick
- [PyPi](https://pypi.org/project/pyahocorasick) (📥 830K / month · 📦 140 · ⏱️ 21.03.2024):
pip install pyahocorasick
- [Conda](https://anaconda.org/conda-forge/pyahocorasick) (📥 220K · ⏱️ 21.03.2024):
conda install -c conda-forge pyahocorasick
price-parser (🥉21 · ⭐ 300 · 💤) - Extract price amount and currency symbol from a raw text.. BSD-3 - [GitHub](https://github.com/scrapinghub/price-parser) (👨‍💻 14 · 🔀 48 · 📦 420 · 📋 39 - 66% open · ⏱️ 17.10.2023):
git clone https://github.com/scrapinghub/price-parser
- [PyPi](https://pypi.org/project/price-parser) (📥 120K / month · 📦 32 · ⏱️ 25.11.2020):
pip install price-parser
Show 4 hidden projects... - humanize (🥉30 · ⭐ 1.7K · 💀) - python humanize functions. MIT - coolname (🥉22 · ⭐ 130 · 💀) - Random Name and Slug Generator. BSD-2 - awesome-slugify (🥉20 · ⭐ 480 · 💀) - Python flexible slugify function. ❗️GPL-3.0 - millify (🥉16 · ⭐ 83 · 💀) - Convert long numbers into a human-readable format in Python. MIT


Web Development

Back to top

🔗 best-of-web-python ( ⭐ 2.2K) - A ranked list of awesome python libraries for web development. Updated..


Database Clients

Back to top

Libraries for connecting to, operating, and querying databases.

boto3 (🥇48 · ⭐ 8.8K · 📉) - AWS SDK for Python. Apache-2 - [GitHub](https://github.com/boto/boto3) (👨‍💻 160 · 🔀 1.8K · 📦 440K · 📋 3.3K - 5% open · ⏱️ 05.06.2024):
git clone https://github.com/boto/boto3
- [PyPi](https://pypi.org/project/boto3) (📥 1.3B / month · 📦 11K · ⏱️ 05.06.2024):
pip install boto3
- [Conda](https://anaconda.org/conda-forge/boto3) (📥 20M · ⏱️ 06.06.2024):
conda install -c conda-forge boto3
SQLAlchemy (🥇46 · ⭐ 9K) - The Database Toolkit for Python. MIT - [GitHub](https://github.com/sqlalchemy/sqlalchemy) (👨‍💻 710 · 🔀 1.3K · 📥 48K · 📦 790K · 📋 7.8K - 2% open · ⏱️ 04.06.2024):
git clone https://github.com/sqlalchemy/sqlalchemy
- [PyPi](https://pypi.org/project/SQLAlchemy) (📥 120M / month · 📦 11K · ⏱️ 05.05.2024):
pip install SQLAlchemy
- [Conda](https://anaconda.org/conda-forge/sqlalchemy) (📥 15M · ⏱️ 06.05.2024):
conda install -c conda-forge sqlalchemy
azure-storage-blob (🥇43 · ⭐ 4.3K) - This repository is for active development of the Azure SDK.. MIT - [GitHub](https://github.com/Azure/azure-sdk-for-python) (👨‍💻 720 · 🔀 2.7K · 📦 2.5K · 📋 9.8K - 10% open · ⏱️ 06.06.2024):
git clone https://github.com/Azure/azure-sdk-for-python
- [PyPi](https://pypi.org/project/azure-storage-blob) (📥 52M / month · 📦 880 · ⏱️ 08.05.2024):
pip install azure-storage-blob
- [Conda](https://anaconda.org/conda-forge/azure-storage-blob) (📥 1.1M · ⏱️ 09.05.2024):
conda install -c conda-forge azure-storage-blob
redis (🥇42 · ⭐ 12K) - Redis Python client. MIT - [GitHub](https://github.com/redis/redis-py) (👨‍💻 440 · 🔀 2.5K · 📋 1.7K - 13% open · ⏱️ 06.06.2024):
git clone https://github.com/redis/redis-py
- [PyPi](https://pypi.org/project/redis) (📥 41M / month · 📦 5.5K · ⏱️ 06.06.2024):
pip install redis
- [Conda](https://anaconda.org/conda-forge/redis-py) (📥 1.2M · ⏱️ 06.06.2024):
conda install -c conda-forge redis-py
google-cloud-storage (🥇42 · ⭐ 4.7K) - Google Cloud Client Library for Python. Apache-2 - [GitHub](https://github.com/googleapis/google-cloud-python) (👨‍💻 520 · 🔀 1.5K · 📋 3.8K - 2% open · ⏱️ 05.06.2024):
git clone https://github.com/googleapis/google-cloud-python
- [PyPi](https://pypi.org/project/google-cloud-storage) (📥 75M / month · 📦 1.6K · ⏱️ 18.03.2024):
pip install google-cloud-storage
- [Conda](https://anaconda.org/conda-forge/google-cloud-storage) (📥 4.5M · ⏱️ 19.03.2024):
conda install -c conda-forge google-cloud-storage
elasticsearch (🥇42 · ⭐ 4.2K) - Official Python client for Elasticsearch. Apache-2 - [GitHub](https://github.com/elastic/elasticsearch-py) (👨‍💻 200 · 🔀 1.2K · 📥 3.9K · 📦 49K · 📋 1.1K - 5% open · ⏱️ 06.06.2024):
git clone https://github.com/elastic/elasticsearch-py
- [PyPi](https://pypi.org/project/elasticsearch) (📥 28M / month · 📦 1.4K · ⏱️ 06.06.2024):
pip install elasticsearch
- [Conda](https://anaconda.org/conda-forge/elasticsearch) (📥 1M · ⏱️ 25.05.2024):
conda install -c conda-forge elasticsearch
peewee (🥇41 · ⭐ 11K) - a small, expressive orm -- supports postgresql, mysql, sqlite and.. MIT - [GitHub](https://github.com/coleifer/peewee) (👨‍💻 160 · 🔀 1.4K · 📦 30K · 📋 2.4K - 0% open · ⏱️ 22.05.2024):
git clone https://github.com/coleifer/peewee
- [PyPi](https://pypi.org/project/peewee) (📥 2.6M / month · 📦 900 · ⏱️ 10.05.2024):
pip install peewee
- [Conda](https://anaconda.org/conda-forge/peewee) (📥 670K · ⏱️ 18.04.2024):
conda install -c conda-forge peewee
PyMySQL (🥈40 · ⭐ 7.6K) - MySQL client library for Python. MIT - [GitHub](https://github.com/PyMySQL/PyMySQL) (👨‍💻 120 · 🔀 1.4K · 📦 220K · 📋 660 - 2% open · ⏱️ 21.05.2024):
git clone https://github.com/PyMySQL/PyMySQL
- [PyPi](https://pypi.org/project/PyMySQL) (📥 50M / month · 📦 7 · ⏱️ 21.05.2024):
pip install PyMySQL
- [Conda](https://anaconda.org/conda-forge/pymysql) (📥 1.4M · ⏱️ 26.06.2023):
conda install -c conda-forge pymysql
python-bigquery (🥈39 · ⭐ 720) - Google BigQuery API client library. Apache-2 - [GitHub](https://github.com/googleapis/python-bigquery) (👨‍💻 160 · 🔀 280 · 📦 30K · 📋 660 - 7% open · ⏱️ 04.06.2024):
git clone https://github.com/googleapis/python-bigquery
- [PyPi](https://pypi.org/project/google-cloud-bigquery) (📥 48M / month · 📦 880 · ⏱️ 04.06.2024):
pip install google-cloud-bigquery
- [Conda](https://anaconda.org/conda-forge/google-cloud-bigquery) (📥 2.9M · ⏱️ 05.06.2024):
conda install -c conda-forge google-cloud-bigquery
Ibis (🥈38 · ⭐ 4.4K) - the portable Python dataframe library. Apache-2 - [GitHub](https://github.com/ibis-project/ibis) (👨‍💻 310 · 🔀 540 · 📥 150 · 📦 1.6K · 📋 2.9K - 9% open · ⏱️ 05.06.2024):
git clone https://github.com/ibis-project/ibis
- [PyPi](https://pypi.org/project/ibis-framework) (📥 190K / month · 📦 67 · ⏱️ 02.06.2024):
pip install ibis-framework
- [Conda](https://anaconda.org/conda-forge/ibis-framework) (📥 340K · ⏱️ 13.05.2024):
conda install -c conda-forge ibis-framework
MongoEngine (🥈38 · ⭐ 4.2K) - A Python Object-Document-Mapper for working with MongoDB. MIT - [GitHub](https://github.com/MongoEngine/mongoengine) (👨‍💻 390 · 🔀 1.2K · 📦 24K · 📋 1.7K - 22% open · ⏱️ 10.03.2024):
git clone https://github.com/MongoEngine/mongoengine
- [PyPi](https://pypi.org/project/mongoengine) (📥 1.1M / month · 📦 390 · ⏱️ 07.03.2024):
pip install mongoengine
- [Conda](https://anaconda.org/conda-forge/mongoengine) (📥 250K · ⏱️ 28.09.2023):
conda install -c conda-forge mongoengine
pymongo (🥈38 · ⭐ 4.1K) - PyMongo - the Official MongoDB Python driver. Apache-2 - [GitHub](https://github.com/mongodb/mongo-python-driver) (👨‍💻 210 · 🔀 1.1K · ⏱️ 05.06.2024):
git clone https://github.com/mongodb/mongo-python-driver
- [PyPi](https://pypi.org/project/pymongo) (📥 29M / month · 📦 4K · ⏱️ 04.06.2024):
pip install pymongo
- [Conda](https://anaconda.org/conda-forge/pymongo) (📥 1.8M · ⏱️ 05.06.2024):
conda install -c conda-forge pymongo
AWS Data Wrangler (🥈38 · ⭐ 3.8K) - pandas on AWS - Easy integration with Athena, Glue,.. Apache-2 - [GitHub](https://github.com/aws/aws-sdk-pandas) (👨‍💻 150 · 🔀 670 · 📥 240K · 📦 1.6K · 📋 1.1K - 3% open · ⏱️ 05.06.2024):
git clone https://github.com/awslabs/aws-data-wrangler
- [PyPi](https://pypi.org/project/awswrangler) (📥 46M / month · 📦 97 · ⏱️ 05.06.2024):
pip install awswrangler
- [Conda](https://anaconda.org/conda-forge/awswrangler) (📥 500K · ⏱️ 05.06.2024):
conda install -c conda-forge awswrangler
sqlmodel (🥈37 · ⭐ 13K · 📈) - SQL databases in Python, designed for simplicity, compatibility,.. MIT pydantic - [GitHub](https://github.com/tiangolo/sqlmodel) (👨‍💻 77 · 🔀 610 · 📦 13K · 📋 390 - 60% open · ⏱️ 05.06.2024):
git clone https://github.com/tiangolo/sqlmodel
- [PyPi](https://pypi.org/project/sqlmodel) (📥 1.4M / month · 📦 360 · ⏱️ 04.06.2024):
pip install sqlmodel
- [Conda](https://anaconda.org/conda-forge/sqlmodel) (📥 31K · ⏱️ 04.06.2024):
conda install -c conda-forge sqlmodel
kafka-python (🥈37 · ⭐ 5.5K) - Python client for Apache Kafka. Apache-2 - [GitHub](https://github.com/dpkp/kafka-python) (👨‍💻 220 · 🔀 1.4K · 📥 1.8K · 📦 26K · 📋 1.5K - 20% open · ⏱️ 08.03.2024):
git clone https://github.com/dpkp/kafka-python
- [PyPi](https://pypi.org/project/kafka-python) (📥 13M / month · 📦 690 · ⏱️ 30.09.2020):
pip install kafka-python
- [Conda](https://anaconda.org/conda-forge/kafka-python) (📥 440K · ⏱️ 16.06.2023):
conda install -c conda-forge kafka-python
Elasticsearch DSL (🥈37 · ⭐ 3.8K) - High level Python client for Elasticsearch. Apache-2 - [GitHub](https://github.com/elastic/elasticsearch-dsl-py) (👨‍💻 140 · 🔀 800 · 📥 200 · 📦 10K · 📋 1.3K - 3% open · ⏱️ 30.05.2024):
git clone https://github.com/elastic/elasticsearch-dsl-py
- [PyPi](https://pypi.org/project/elasticsearch-dsl) (📥 4.5M / month · 📦 340 · ⏱️ 30.04.2024):
pip install elasticsearch-dsl
- [Conda](https://anaconda.org/anaconda/elasticsearch-dsl):
conda install -c anaconda elasticsearch-dsl
alembic (🥈36 · ⭐ 2.5K · 📉) - A database migrations tool for SQLAlchemy. MIT - [GitHub](https://github.com/sqlalchemy/alembic) (👨‍💻 180 · 🔀 230 · 📦 220K · 📋 1.1K - 10% open · ⏱️ 24.04.2024):
git clone https://github.com/sqlalchemy/alembic
- [PyPi](https://pypi.org/project/alembic) (📥 41M / month · 📦 1.5K · ⏱️ 20.12.2023):
pip install alembic
- [Conda](https://anaconda.org/conda-forge/alembic) (📥 4.7M · ⏱️ 13.01.2024):
conda install -c conda-forge alembic
SQLAlchemy-Utils (🥈36 · ⭐ 1.2K) - Various utility functions and datatypes for SQLAlchemy. BSD-3 - [GitHub](https://github.com/kvesteri/sqlalchemy-utils) (👨‍💻 120 · 🔀 320 · 📦 30K · 📋 440 - 45% open · ⏱️ 22.03.2024):
git clone https://github.com/kvesteri/sqlalchemy-utils
- [PyPi](https://pypi.org/project/sqlalchemy-utils) (📥 7.3M / month · 📦 860 · ⏱️ 24.03.2024):
pip install sqlalchemy-utils
- [Conda](https://anaconda.org/conda-forge/sqlalchemy-utils) (📥 580K · ⏱️ 24.03.2024):
conda install -c conda-forge sqlalchemy-utils
s3fs (🥈36 · ⭐ 830) - S3 Filesystem. BSD-3 - [GitHub](https://github.com/fsspec/s3fs) (👨‍💻 140 · 🔀 270 · 📦 18K · 📋 470 - 29% open · ⏱️ 04.06.2024):
git clone https://github.com/fsspec/s3fs
- [PyPi](https://pypi.org/project/s3fs) (📥 260M / month · 📦 950 · ⏱️ 04.06.2024):
pip install s3fs
- [Conda](https://anaconda.org/conda-forge/s3fs) (📥 6.9M · ⏱️ 04.06.2024):
conda install -c conda-forge s3fs
tortoise-orm (🥈35 · ⭐ 4.3K) - Familiar asyncio ORM for python, built with relations in mind. Apache-2 - [GitHub](https://github.com/tortoise/tortoise-orm) (👨‍💻 130 · 🔀 350 · 📥 13 · 📦 7.8K · 📋 1.1K - 50% open · ⏱️ 03.06.2024):
git clone https://github.com/tortoise/tortoise-orm
- [PyPi](https://pypi.org/project/tortoise-orm) (📥 140K / month · 📦 160 · ⏱️ 01.06.2024):
pip install tortoise-orm
- [Conda](https://anaconda.org/conda-forge/tortoise-orm):
conda install -c conda-forge tortoise-orm
Motor (🥈35 · ⭐ 2.3K) - Motor - the async Python driver for MongoDB and Tornado or asyncio. Apache-2 - [GitHub](https://github.com/mongodb/motor) (👨‍💻 52 · 🔀 210 · 📦 91K · ⏱️ 05.06.2024):
git clone https://github.com/mongodb/motor
- [PyPi](https://pypi.org/project/motor) (📥 2M / month · 📦 560 · ⏱️ 26.03.2024):
pip install motor
- [Conda](https://anaconda.org/conda-forge/motor) (📥 68K · ⏱️ 26.03.2024):
conda install -c conda-forge motor
s3transfer (🥈35 · ⭐ 200) - Amazon S3 Transfer Manager for Python. Apache-2 - [GitHub](https://github.com/boto/s3transfer) (👨‍💻 39 · 🔀 130 · 📦 290K · 📋 87 - 58% open · ⏱️ 23.05.2024):
git clone https://github.com/boto/s3transfer
- [PyPi](https://pypi.org/project/s3transfer) (📥 340M / month · 📦 670 · ⏱️ 14.03.2024):
pip install s3transfer
- [Conda](https://anaconda.org/conda-forge/s3transfer):
conda install -c conda-forge s3transfer
Prometheus Client (🥈34 · ⭐ 3.8K) - Prometheus instrumentation library for Python.. Apache-2 - [GitHub](https://github.com/prometheus/client_python) (👨‍💻 150 · 🔀 790 · 📋 550 - 19% open · ⏱️ 28.05.2024):
git clone https://github.com/prometheus/client_python
- [PyPi](https://pypi.org/project/prometheus_client) (📥 36M / month · 📦 1.5K · ⏱️ 14.02.2024):
pip install prometheus_client
- [Conda](https://anaconda.org/conda-forge/prometheus_client) (📥 17M · ⏱️ 14.02.2024):
conda install -c conda-forge prometheus_client
Databases (🥈34 · ⭐ 3.7K) - Async database support for Python. BSD-3 - [GitHub](https://github.com/encode/databases) (👨‍💻 59 · 🔀 260 · 📦 23K · 📋 330 - 39% open · ⏱️ 01.03.2024):
git clone https://github.com/encode/databases
- [PyPi](https://pypi.org/project/databases) (📥 720K / month · 📦 160 · ⏱️ 01.03.2024):
pip install databases
- [Conda](https://anaconda.org/conda-forge/databases):
conda install -c conda-forge databases
mysqlclient (🥈34 · ⭐ 2.4K) - MySQL database connector for Python (with Python 3 support). ❗️GPL-2.0 - [GitHub](https://github.com/PyMySQL/mysqlclient) (👨‍💻 84 · 🔀 430 · 📥 5.3K · 📦 170K · 📋 340 - 3% open · ⏱️ 08.02.2024):
git clone https://github.com/PyMySQL/mysqlclient
- [PyPi](https://pypi.org/project/mysqlclient) (📥 8.3M / month · 📦 800 · ⏱️ 08.02.2024):
pip install mysqlclient
- [Conda](https://anaconda.org/conda-forge/mysqlclient) (📥 370K · ⏱️ 10.03.2024):
conda install -c conda-forge mysqlclient
Cassandra Driver (🥈34 · ⭐ 1.4K) - DataStax Python Driver for Apache Cassandra. Apache-2 - [GitHub](https://github.com/datastax/python-driver) (👨‍💻 200 · 🔀 540 · 📦 7K · ⏱️ 31.05.2024):
git clone https://github.com/datastax/python-driver
- [PyPi](https://pypi.org/project/cassandra-driver) (📥 2.1M / month · 📦 200 · ⏱️ 20.03.2024):
pip install cassandra-driver
- [Conda](https://anaconda.org/conda-forge/cassandra-driver) (📥 220K · ⏱️ 20.03.2024):
conda install -c conda-forge cassandra-driver
PyPika (🥉33 · ⭐ 2.4K) - PyPika is a python SQL query builder that exposes the full richness.. Apache-2 - [GitHub](https://github.com/kayak/pypika) (👨‍💻 100 · 🔀 290 · 📦 22K · 📋 470 - 44% open · ⏱️ 26.04.2024):
git clone https://github.com/kayak/pypika
- [PyPi](https://pypi.org/project/pypika) (📥 3.1M / month · 📦 160 · ⏱️ 15.03.2022):
pip install pypika
- [Conda](https://anaconda.org/conda-forge/pypika) (📥 16K · ⏱️ 16.06.2023):
conda install -c conda-forge pypika
neo4j-driver (🥉33 · ⭐ 870) - Neo4j Bolt driver for Python. Apache-2 - [GitHub](https://github.com/neo4j/neo4j-python-driver) (👨‍💻 43 · 🔀 190 · 📦 9.5K · 📋 240 - 1% open · ⏱️ 15.05.2024):
git clone https://github.com/neo4j/neo4j-python-driver
- [PyPi](https://pypi.org/project/neo4j-driver) (📥 130K / month · 📦 61 · ⏱️ 26.04.2024):
pip install neo4j-driver
- [Conda](https://anaconda.org/conda-forge/neo4j-python-driver):
conda install -c conda-forge neo4j-python-driver
minio (🥉33 · ⭐ 790) - MinIO Client SDK for Python. Apache-2 - [GitHub](https://github.com/minio/minio-py) (👨‍💻 130 · 🔀 310 · 📦 7.7K · 📋 560 - 1% open · ⏱️ 30.04.2024):
git clone https://github.com/minio/minio-py
- [PyPi](https://pypi.org/project/minio) (📥 2.7M / month · 📦 510 · ⏱️ 30.04.2024):
pip install minio
- [Conda](https://anaconda.org/conda-forge/minio) (📥 170K · ⏱️ 01.05.2024):
conda install -c conda-forge minio
pandas-gbq (🥉33 · ⭐ 420) - Google BigQuery connector for pandas. BSD-3 - [GitHub](https://github.com/googleapis/python-bigquery-pandas) (👨‍💻 51 · 🔀 120 · 📥 350 · 📦 10K · 📋 350 - 10% open · ⏱️ 04.06.2024):
git clone https://github.com/googleapis/python-bigquery-pandas
- [PyPi](https://pypi.org/project/pandas-gbq) (📥 16M / month · 📦 180 · ⏱️ 20.05.2024):
pip install pandas-gbq
- [Conda](https://anaconda.org/conda-forge/pandas-gbq) (📥 1.9M · ⏱️ 30.05.2024):
conda install -c conda-forge pandas-gbq
Pony (🥉32 · ⭐ 3.6K · 💤) - Pony Object Relational Mapper. Apache-2 - [GitHub](https://github.com/ponyorm/pony) (👨‍💻 30 · 🔀 240 · 📥 110 · 📦 4K · 📋 650 - 48% open · ⏱️ 25.09.2023):
git clone https://github.com/ponyorm/pony
- [PyPi](https://pypi.org/project/pony) (📥 180K / month · 📦 160 · ⏱️ 25.09.2023):
pip install pony
- [Conda](https://anaconda.org/conda-forge/pony) (📥 100K · ⏱️ 25.09.2023):
conda install -c conda-forge pony
PynamoDB (🥉32 · ⭐ 2.4K) - A pythonic interface to Amazons DynamoDB. MIT - [GitHub](https://github.com/pynamodb/PynamoDB) (👨‍💻 110 · 🔀 430 · 📦 1.7K · 📋 660 - 42% open · ⏱️ 29.05.2024):
git clone https://github.com/pynamodb/PynamoDB
- [PyPi](https://pypi.org/project/pynamodb) (📥 2.3M / month · 📦 80 · ⏱️ 29.05.2024):
pip install pynamodb
- [Conda](https://anaconda.org/conda-forge/pynamodb) (📥 660K · ⏱️ 31.05.2024):
conda install -c conda-forge pynamodb
libcloud (🥉32 · ⭐ 2K) - Apache Libcloud is a Python library which hides differences between.. Apache-2 - [GitHub](https://github.com/apache/libcloud) (👨‍💻 480 · 🔀 930 · 📋 210 - 40% open · ⏱️ 27.04.2024):
git clone https://github.com/apache/libcloud
- [PyPi](https://pypi.org/project/apache-libcloud) (📥 180K / month · 📦 160 · ⏱️ 10.08.2023):
pip install apache-libcloud
pygsheets (🥉32 · ⭐ 1.5K) - Google Sheets Python API v4. MIT - [GitHub](https://github.com/nithinmurali/pygsheets) (👨‍💻 91 · 🔀 220 · 📦 2.5K · 📋 400 - 15% open · ⏱️ 14.01.2024):
git clone https://github.com/nithinmurali/pygsheets
- [PyPi](https://pypi.org/project/pygsheets) (📥 1.8M / month · 📦 76 · ⏱️ 30.11.2022):
pip install pygsheets
Records (🥉31 · ⭐ 7.1K) - SQL for Humans. ISC - [GitHub](https://github.com/kennethreitz/records) (👨‍💻 50 · 🔀 570 · 📦 1.2K · 📋 130 - 29% open · ⏱️ 30.03.2024):
git clone https://github.com/kennethreitz/records
- [PyPi](https://pypi.org/project/records) (📥 190K / month · 📦 46 · ⏱️ 29.03.2024):
pip install records
- [Conda](https://anaconda.org/conda-forge/records):
conda install -c conda-forge records
influxdb (🥉31 · ⭐ 1.7K) - Python client for InfluxDB. MIT - [GitHub](https://github.com/influxdata/influxdb-python) (👨‍💻 140 · 🔀 520 · 📋 550 - 30% open · ⏱️ 17.04.2024):
git clone https://github.com/influxdata/influxdb-python
- [PyPi](https://pypi.org/project/influxdb) (📥 2.3M / month · 📦 350 · ⏱️ 18.04.2024):
pip install influxdb
- [Conda](https://anaconda.org/conda-forge/influxdb) (📥 150K · ⏱️ 16.06.2023):
conda install -c conda-forge influxdb
cx-Oracle (🥉31 · ⭐ 880) - Python interface to Oracle Database now superseded by python-oracledb. BSD-3 - [GitHub](https://github.com/oracle/python-cx_Oracle) (👨‍💻 17 · 🔀 360 · 📦 8.3K · 📋 650 - 4% open · ⏱️ 31.05.2024):
git clone https://github.com/oracle/python-cx_Oracle
- [PyPi](https://pypi.org/project/cx-Oracle) (📥 3.9M / month · 📦 420 · ⏱️ 20.07.2023):
pip install cx-Oracle
- [Conda](https://anaconda.org/conda-forge/cx_oracle):
conda install -c conda-forge cx_oracle
dataset (🥉30 · ⭐ 4.7K · 💤) - Easy-to-use data handling for SQL data stores with support for.. MIT - [GitHub](https://github.com/pudo/dataset) (👨‍💻 78 · 🔀 300 · 📦 3.9K · 📋 300 - 12% open · ⏱️ 12.07.2023):
git clone https://github.com/pudo/dataset
- [PyPi](https://pypi.org/project/dataset) (📥 120K / month · 📦 130 · ⏱️ 12.07.2023):
pip install dataset
- [Conda](https://anaconda.org/conda-forge/dataset) (📥 8.9K · ⏱️ 12.07.2023):
conda install -c conda-forge dataset
confluent-kafka-python (🥉29 · ⭐ 3.6K) - Confluents Kafka Python Client. Apache-2 - [GitHub](https://github.com/confluentinc/confluent-kafka-python) (👨‍💻 100 · 🔀 880 · 📦 10K):
git clone https://github.com/confluentinc/confluent-kafka-python
- [PyPi](https://pypi.org/project/confluent-kafka) (📥 15M / month · 📦 530 · ⏱️ 07.05.2024):
pip install confluent-kafka
- [Conda](https://anaconda.org/conda-forge/python-confluent-kafka) (📥 890K · ⏱️ 21.05.2024):
conda install -c conda-forge python-confluent-kafka
piccolos (🥉29 · ⭐ 1.3K) - A fast, user friendly ORM and query builder which supports asyncio. MIT - [GitHub](https://github.com/piccolo-orm/piccolo) (👨‍💻 43 · 🔀 85 · 📦 360 · 📋 390 - 32% open · ⏱️ 03.06.2024):
git clone https://github.com/piccolo-orm/piccolo
- [PyPi](https://pypi.org/project/piccolo) (📥 19K / month · 📦 16 · ⏱️ 31.05.2024):
pip install piccolo
pysolr (🥉29 · ⭐ 660) - Pysolr Python Solr client. BSD-3 - [GitHub](https://github.com/django-haystack/pysolr) (👨‍💻 72 · 🔀 340 · 📦 3.4K · 📋 160 - 18% open · ⏱️ 21.05.2024):
git clone https://github.com/django-haystack/pysolr
- [PyPi](https://pypi.org/project/pysolr) (📥 290K / month · 📦 54 · ⏱️ 13.10.2023):
pip install pysolr
- [Conda](https://anaconda.org/conda-forge/pysolr) (📥 34K · ⏱️ 16.06.2023):
conda install -c conda-forge pysolr
prisma (🥉27 · ⭐ 1.7K) - Prisma Client Python is an auto-generated and fully type-safe.. Apache-2 - [GitHub](https://github.com/RobertCraigie/prisma-client-py) (👨‍💻 28 · 🔀 69 · 📋 390 - 52% open · ⏱️ 30.05.2024):
git clone https://github.com/RobertCraigie/prisma-client-py
- [PyPi](https://pypi.org/project/prisma) (📥 92K / month · 📦 16 · ⏱️ 24.03.2024):
pip install prisma
HappyBase (🥉27 · ⭐ 610) - A developer-friendly Python library to interact with Apache HBase. MIT - [GitHub](https://github.com/python-happybase/happybase) (👨‍💻 21 · 🔀 160 · 📦 860 · 📋 220 - 15% open · ⏱️ 04.12.2023):
git clone https://github.com/python-happybase/happybase
- [PyPi](https://pypi.org/project/happybase) (📥 38K / month · 📦 35 · ⏱️ 14.05.2019):
pip install happybase
- [Conda](https://anaconda.org/conda-forge/happybase) (📥 160K · ⏱️ 16.06.2023):
conda install -c conda-forge happybase
ODMantic (🥉26 · ⭐ 1K) - Sync and Async ODM (Object Document Mapper) for MongoDB based on python.. ISC - [GitHub](https://github.com/art049/odmantic) (👨‍💻 19 · 🔀 92 · 📦 3.3K · 📋 180 - 50% open · ⏱️ 26.04.2024):
git clone https://github.com/art049/odmantic
- [PyPi](https://pypi.org/project/odmantic) (📥 30K / month · 📦 8 · ⏱️ 26.04.2024):
pip install odmantic
filedepot (🥉25 · ⭐ 160) - Toolkit for storing files and attachments in web applications. MIT - [GitHub](https://github.com/amol-/depot) (👨‍💻 21 · 🔀 43 · 📦 1.1K · 📋 46 - 15% open · ⏱️ 22.02.2024):
git clone https://github.com/amol-/depot
- [PyPi](https://pypi.org/project/filedepot) (📥 13K / month · 📦 9 · ⏱️ 22.02.2024):
pip install filedepot
aioprometheus (🥉21 · ⭐ 170) - A Prometheus Python client library for asyncio-based applications. MIT - [GitHub](https://github.com/claws/aioprometheus) (👨‍💻 12 · 🔀 19 · 📦 330 · 📋 36 - 33% open · ⏱️ 27.12.2023):
git clone https://github.com/claws/aioprometheus
- [PyPi](https://pypi.org/project/aioprometheus) (📥 140K / month · 📦 15 · ⏱️ 27.12.2023):
pip install aioprometheus
psycopg3 (🥉19 · ⭐ 1.5K) - New generation PostgreSQL database adapter for the Python.. ❗️LGPL-3.0 - [GitHub](https://github.com/psycopg/psycopg) (👨‍💻 56 · 🔀 150 · 📋 460 - 7% open · ⏱️ 04.06.2024):
git clone https://github.com/psycopg/psycopg
Show 17 hidden projects... - psycopg2 (🥈38 · ⭐ 3.2K) - PostgreSQL database adapter for the Python.. ❗️BSD-3-Clause-Attribution - pyodbc (🥈35 · ⭐ 2.9K) - Python ODBC bridge. ❗️MIT-0 - google-cloud-bigtable (🥉31 · ⭐ 63) - Google Cloud Bigtable API client library. Apache-2 - gino (🥉29 · ⭐ 2.7K · 💀) - GINO Is Not ORM - a Python asyncio ORM on SQLAlchemy core. BSD-3 - redis-py-cluster (🥉29 · ⭐ 1.1K · 💀) - Python cluster client for the official redis cluster... MIT - umongo (🥉28 · ⭐ 440 · 💀) - sync/async MongoDB ODM, yes. MIT - cloudant (🥉28 · ⭐ 160 · 💀) - A Python library for Cloudant and CouchDB. Apache-2 - mongo-connector (🥉27 · ⭐ 1.9K · 💀) - MongoDB data stream pipeline tools by YouGov (adopted.. Apache-2 - pyhdb (🥉24 · ⭐ 320 · 💀) - SAP HANA Connector in pure Python. Apache-2 - PyMODM (🥉21 · ⭐ 350 · 💀) - A Pythonic, object-oriented interface for working with MongoDB. Apache-2 - gsheets-db-api (🥉21 · ⭐ 210 · 💀) - A Python DB-API and SQLAlchemy dialect to Google Spreasheets. MIT - py2neo (🥉21 · ⭐ 14 · 💤) - EOL! Py2neo is a comprehensive Neo4j driver library and toolkit for.. Apache-2 - PugSQL (🥉20 · ⭐ 670 · 💀) - A HugSQL-inspired database library for Python. Apache-2 - db.py (🥉19 · ⭐ 1.2K · 💀) - db.py is an easier way to interact with your databases. BSD-2 - Queries (🥉19 · ⭐ 260 · 💀) - PostgreSQL database access simplified. BSD-3 - SuperSQLite (🥉15 · ⭐ 720 · 💀) - A supercharged SQLite library for Python. MIT - lazydata (🥉15 · ⭐ 630 · 💀) - Lazydata: Scalable data dependencies for Python projects. Apache-2


Data Loading & Extraction

Back to top

Libraries for loading, collecting, and extracting data from a variety of data sources and formats.

Datasets (🥇43 · ⭐ 19K) - The largest hub of ready-to-use datasets for ML models with fast,.. Apache-2 - [GitHub](https://github.com/huggingface/datasets) (👨‍💻 560 · 🔀 2.5K · 📦 51K · 📋 2.9K - 24% open · ⏱️ 06.06.2024):
git clone https://github.com/huggingface/datasets
- [PyPi](https://pypi.org/project/datasets) (📥 10M / month · 📦 1.7K · ⏱️ 03.06.2024):
pip install datasets
- [Conda](https://anaconda.org/conda-forge/datasets) (📥 790K · ⏱️ 03.06.2024):
conda install -c conda-forge datasets
Faker (🥇43 · ⭐ 17K) - Faker is a Python package that generates fake data for you. MIT - [GitHub](https://github.com/joke2k/faker) (👨‍💻 580 · 🔀 1.9K · 📦 220K · 📋 720 - 2% open · ⏱️ 04.06.2024):
git clone https://github.com/joke2k/faker
- [PyPi](https://pypi.org/project/Faker) (📥 16M / month · 📦 1.8K · ⏱️ 04.06.2024):
pip install Faker
- [Conda](https://anaconda.org/conda-forge/faker) (📥 950K · ⏱️ 05.06.2024):
conda install -c conda-forge faker
Tablib (🥇36 · ⭐ 4.5K) - Python Module for Tabular Datasets in XLS, CSV, JSON, YAML, &c. MIT - [GitHub](https://github.com/jazzband/tablib) (👨‍💻 130 · 🔀 590 · 📦 98K · 📋 260 - 12% open · ⏱️ 05.04.2024):
git clone https://github.com/jazzband/tablib
- [PyPi](https://pypi.org/project/tablib) (📥 1.9M / month · 📦 170 · ⏱️ 04.04.2024):
pip install tablib
- [Conda](https://anaconda.org/conda-forge/tablib) (📥 98K · ⏱️ 04.04.2024):
conda install -c conda-forge tablib
xlwings (🥇36 · ⭐ 2.9K) - xlwings is a Python library that makes it easy to call Python from.. BSD-3 - [GitHub](https://github.com/xlwings/xlwings) (👨‍💻 65 · 🔀 480 · 📥 17K · 📦 31K · 📋 1.9K - 18% open · ⏱️ 03.06.2024):
git clone https://github.com/xlwings/xlwings
- [PyPi](https://pypi.org/project/xlwings) (📥 160K / month · 📦 150 · ⏱️ 03.06.2024):
pip install xlwings
- [Conda](https://anaconda.org/conda-forge/xlwings) (📥 770K · ⏱️ 04.06.2024):
conda install -c conda-forge xlwings
xmltodict (🥈35 · ⭐ 5.4K) - Python module that makes working with XML feel like you are working.. MIT - [GitHub](https://github.com/martinblech/xmltodict) (👨‍💻 51 · 🔀 460 · 📦 67K · 📋 260 - 36% open · ⏱️ 03.05.2024):
git clone https://github.com/martinblech/xmltodict
- [PyPi](https://pypi.org/project/xmltodict) (📥 48M / month · 📦 2.9K · ⏱️ 08.05.2022):
pip install xmltodict
- [Conda](https://anaconda.org/conda-forge/xmltodict) (📥 4M · ⏱️ 16.06.2023):
conda install -c conda-forge xmltodict
python-magic (🥈35 · ⭐ 2.6K) - A python wrapper for libmagic. MIT - [GitHub](https://github.com/ahupp/python-magic) (👨‍💻 63 · 🔀 270 · 📦 58K · 📋 210 - 8% open · ⏱️ 26.05.2024):
git clone https://github.com/ahupp/python-magic
- [PyPi](https://pypi.org/project/python-magic) (📥 9.2M / month · 📦 1.4K · ⏱️ 07.06.2022):
pip install python-magic
- [Conda](https://anaconda.org/conda-forge/python-magic) (📥 260K · ⏱️ 25.09.2023):
conda install -c conda-forge python-magic
gdown (🥈34 · ⭐ 4K) - Google Drive Public File Downloader when Curl/Wget Fails. MIT - [GitHub](https://github.com/wkentaro/gdown) (👨‍💻 24 · 🔀 330 · 📦 32K · 📋 170 - 19% open · ⏱️ 12.05.2024):
git clone https://github.com/wkentaro/gdown
- [PyPi](https://pypi.org/project/gdown) (📥 1.5M / month · 📦 800 · ⏱️ 12.05.2024):
pip install gdown
- [Conda](https://anaconda.org/conda-forge/gdown) (📥 280K · ⏱️ 12.05.2024):
conda install -c conda-forge gdown
smart-open (🥈34 · ⭐ 3.1K) - Utils for streaming large files (S3, HDFS, gzip, bz2...). MIT - [GitHub](https://github.com/piskvorky/smart_open) (👨‍💻 120 · 🔀 380 · 📋 390 - 16% open · ⏱️ 08.05.2024):
git clone https://github.com/RaRe-Technologies/smart_open
- [PyPi](https://pypi.org/project/smart-open) (📥 25M / month · 📦 510 · ⏱️ 26.03.2024):
pip install smart-open
- [Conda](https://anaconda.org/conda-forge/smart_open) (📥 2.5M · ⏱️ 26.03.2024):
conda install -c conda-forge smart_open
csvkit (🥈33 · ⭐ 5.9K) - A suite of utilities for converting to and working with CSV, the king of.. MIT - [GitHub](https://github.com/wireservice/csvkit) (👨‍💻 110 · 🔀 600 · 📦 1.6K · 📋 910 - 3% open · ⏱️ 22.05.2024):
git clone https://github.com/wireservice/csvkit
- [PyPi](https://pypi.org/project/csvkit) (📥 140K / month · 📦 39 · ⏱️ 01.05.2024):
pip install csvkit
- [Conda](https://anaconda.org/conda-forge/csvkit) (📥 110K · ⏱️ 02.05.2024):
conda install -c conda-forge csvkit
pandas-datareader (🥈32 · ⭐ 2.8K · 💤) - Extract data from a wide range of Internet sources.. BSD-3 - [GitHub](https://github.com/pydata/pandas-datareader) (👨‍💻 92 · 🔀 670 · 📦 24K · 📋 540 - 26% open · ⏱️ 24.10.2023):
git clone https://github.com/pydata/pandas-datareader
- [PyPi](https://pypi.org/project/pandas-datareader) (📥 500K / month · 📦 260 · ⏱️ 13.07.2021):
pip install pandas-datareader
- [Conda](https://anaconda.org/conda-forge/pandas-datareader) (📥 360K · ⏱️ 16.06.2023):
conda install -c conda-forge pandas-datareader
Intake (🥈32 · ⭐ 990) - Intake is a lightweight package for finding, investigating, loading and.. BSD-2 - [GitHub](https://github.com/intake/intake) (👨‍💻 89 · 🔀 140 · 📦 2.4K · 📋 380 - 28% open · ⏱️ 05.06.2024):
git clone https://github.com/intake/intake
- [PyPi](https://pypi.org/project/intake) (📥 67K / month · 📦 170 · ⏱️ 24.04.2024):
pip install intake
- [Conda](https://anaconda.org/conda-forge/intake) (📥 590K · ⏱️ 24.04.2024):
conda install -c conda-forge intake
snorkel (🥉31 · ⭐ 5.7K) - A system for quickly generating training data with weak supervision. Apache-2 - [GitHub](https://github.com/snorkel-team/snorkel) (👨‍💻 81 · 🔀 860 · 📥 1.1K · 📦 520 · 📋 980 - 1% open · ⏱️ 27.02.2024):
git clone https://github.com/snorkel-team/snorkel
- [PyPi](https://pypi.org/project/snorkel) (📥 35K / month · 📦 18 · ⏱️ 27.02.2024):
pip install snorkel
- [Conda](https://anaconda.org/conda-forge/snorkel) (📥 50K · ⏱️ 28.02.2024):
conda install -c conda-forge snorkel
textract (🥉27 · ⭐ 3.8K) - extract text from any document. no muss. no fuss. MIT - [GitHub](https://github.com/deanmalmgren/textract) (👨‍💻 41 · 🔀 580 · 📋 260 - 50% open · ⏱️ 10.03.2024):
git clone https://github.com/deanmalmgren/textract
- [PyPi](https://pypi.org/project/textract) (📥 290K / month · 📦 58 · ⏱️ 10.03.2022):
pip install textract
- [Conda](https://anaconda.org/conda-forge/textract) (📥 24K · ⏱️ 16.06.2023):
conda install -c conda-forge textract
img2dataset (🥉27 · ⭐ 3.4K) - Easily turn large sets of image urls to an image dataset. Can.. MIT - [GitHub](https://github.com/rom1504/img2dataset) (👨‍💻 34 · 🔀 310 · 📥 1.7K · 📦 150 · 📋 250 - 43% open · ⏱️ 22.02.2024):
git clone https://github.com/rom1504/img2dataset
- [PyPi](https://pypi.org/project/img2dataset) (📥 22K / month · 📦 2 · ⏱️ 22.01.2024):
pip install img2dataset
deepdish (🥉24 · ⭐ 270) - Flexible HDF5 saving/loading and other data science tools from the.. BSD-3 - [GitHub](https://github.com/uchicago-cs/deepdish) (👨‍💻 11 · 🔀 58 · 📦 880 · 📋 42 - 42% open · ⏱️ 29.05.2024):
git clone https://github.com/uchicago-cs/deepdish
- [PyPi](https://pypi.org/project/deepdish) (📥 18K / month · 📦 64 · ⏱️ 24.09.2021):
pip install deepdish
- [Conda](https://anaconda.org/conda-forge/deepdish) (📥 96K · ⏱️ 16.06.2023):
conda install -c conda-forge deepdish
camelot (🥉23 · ⭐ 2.7K · 💤) - A Python library to extract tabular data from PDFs. MIT - [GitHub](https://github.com/camelot-dev/camelot) (👨‍💻 46 · 🔀 430 · 📋 380 - 70% open · ⏱️ 02.10.2023):
git clone https://github.com/camelot-dev/camelot
- [PyPi](https://pypi.org/project/camelot) (📥 6.4K / month · 📦 6 · ⏱️ 15.12.2021):
pip install camelot
rows (🥉23 · ⭐ 860) - A common, beautiful interface to tabular data, no matter the format. ❗️LGPL-3.0 - [GitHub](https://github.com/turicas/rows) (👨‍💻 31 · 🔀 140 · 📥 38 · 📦 170 · 📋 320 - 52% open · ⏱️ 16.05.2024):
git clone https://github.com/turicas/rows
- [PyPi](https://pypi.org/project/rows) (📥 1.4K / month · 📦 6 · ⏱️ 15.12.2021):
pip install rows
excalibur (🥉21 · ⭐ 1.5K · 💤) - A web interface to extract tabular data from PDFs. MIT - [GitHub](https://github.com/camelot-dev/excalibur) (👨‍💻 13 · 🔀 220 · 📥 12K · 📋 130 - 68% open · ⏱️ 15.07.2023):
git clone https://github.com/camelot-dev/excalibur
- [PyPi](https://pypi.org/project/excalibur-py) (📥 1.5K / month · ⏱️ 21.03.2020):
pip install excalibur-py
Upgini (🥉21 · ⭐ 300) - Data search & enrichment library for Machine Learning Easily find and add.. BSD-3 - [GitHub](https://github.com/upgini/upgini) (👨‍💻 12 · 🔀 25 · 📦 6 · ⏱️ 01.06.2024):
git clone https://github.com/upgini/upgini
- [PyPi](https://pypi.org/project/upgini) (📥 8.5K / month · ⏱️ 05.06.2024):
pip install upgini
Squirrel (🥉17 · ⭐ 280) - A Python library that enables ML teams to share, load, and transform.. Apache-2 - [GitHub](https://github.com/merantix-momentum/squirrel-core) (👨‍💻 19 · 🔀 8 · 📦 2 · 📋 14 - 21% open · ⏱️ 08.05.2024):
git clone https://github.com/merantix-momentum/squirrel-core
- [PyPi](https://pypi.org/project/squirrel-core) (📥 1.3K / month · ⏱️ 08.05.2024):
pip install squirrel-core
- [Conda](https://anaconda.org/anaconda/squirrel-core) (📦 1 · ⏱️ 18.11.2022):
conda install -c anaconda squirrel-core
Show 10 hidden projects... - xlrd (🥈33 · ⭐ 2.1K · 💀) - Please use openpyxl where you can... BSD-3 - SDV (🥉31 · ⭐ 2.2K) - Synthetic data generation for tabular data. ❗️SSPL-1.0 - PDFMiner (🥉27 · ⭐ 5.2K · 💀) - Python PDF Parser (Not actively maintained). Check out pdfminer.six. MIT - tabulator-py (🥉27 · ⭐ 240 · 💀) - Python library for reading and writing tabular data via streams. MIT - Singer (🥉26 · ⭐ 1.2K · 💀) - Standard for moving data between databases, web APIs, files,.. ❗️AGPL-3.0 - messytables (🥉24 · ⭐ 390 · 💀) - Tools for parsing messy tabular data. This is now superseded by.. MIT - pyexcel-xlsx (🥉23 · ⭐ 110 · 💀) - A wrapper library to read, manipulate and write data in xlsx.. BSD-3 - borb (🥉22 · ⭐ 3.3K) - borb is a library for reading, creating and manipulating PDF files.. ❗Unlicensed - datatest (🥉21 · ⭐ 290 · 💀) - Tools for test driven data-wrangling and data validation. Apache-2 - csvs-to-sqlite (🥉15 · ⭐ 860 · 💀) - Convert CSV files into a SQLite database. Apache-2


Data Pipelines & Streaming

Back to top

Libraries for data batch- and stream-processing, workflow automation, job scheduling, and other data pipeline tasks.

Airflow (🥇49 · ⭐ 35K) - Platform to programmatically author, schedule, and monitor workflows. Apache-2 - [GitHub](https://github.com/apache/airflow) (👨‍💻 3.3K · 🔀 14K · 📥 620K · 📦 11K · 📋 9.3K - 10% open · ⏱️ 06.06.2024):
git clone https://github.com/apache/airflow
- [PyPi](https://pypi.org/project/apache-airflow) (📥 24M / month · 📦 470 · ⏱️ 06.06.2024):
pip install apache-airflow
- [Conda](https://anaconda.org/conda-forge/airflow) (📥 1.1M · ⏱️ 07.05.2024):
conda install -c conda-forge airflow
- [Docker Hub](https://hub.docker.com/r/apache/airflow) (📥 1.3B · ⭐ 520 · ⏱️ 06.06.2024):
docker pull apache/airflow
Celery (🥇46 · ⭐ 24K) - Asynchronous task queue/job queue based on distributed message passing. BSD-3 - [GitHub](https://github.com/celery/celery) (👨‍💻 1.4K · 🔀 4.6K · 📦 130K · 📋 5.1K - 14% open · ⏱️ 05.06.2024):
git clone https://github.com/celery/celery
- [PyPi](https://pypi.org/project/celery) (📥 11M / month · 📦 1.7K · ⏱️ 17.04.2024):
pip install celery
- [Conda](https://anaconda.org/conda-forge/celery) (📥 1.7M · ⏱️ 30.12.2023):
conda install -c conda-forge celery
Beam (🥇44 · ⭐ 7.6K) - Unified programming model to define and execute data processing.. Apache-2 - [GitHub](https://github.com/apache/beam) (👨‍💻 1.6K · 🔀 4.1K · 📦 7.1K · 📋 6.8K - 64% open · ⏱️ 06.06.2024):
git clone https://github.com/apache/beam
- [PyPi](https://pypi.org/project/apache-beam) (📥 8.6M / month · 📦 150 · ⏱️ 02.05.2024):
pip install apache-beam
- [Conda](https://anaconda.org/conda-forge/apache-beam-with-aws) (📥 77K · ⏱️ 08.05.2024):
conda install -c conda-forge apache-beam-with-aws
Prefect (🥇43 · ⭐ 15K) - Prefect is a workflow orchestration tool empowering developers to.. Apache-2 - [GitHub](https://github.com/PrefectHQ/prefect) (👨‍💻 470 · 🔀 1.5K · 📦 4.9K · 📋 5K - 17% open · ⏱️ 06.06.2024):
git clone https://github.com/PrefectHQ/prefect
- [PyPi](https://pypi.org/project/prefect) (📥 1.7M / month · 📦 250 · ⏱️ 04.06.2024):
pip install prefect
- [Conda](https://anaconda.org/conda-forge/prefect) (📥 660K · ⏱️ 05.06.2024):
conda install -c conda-forge prefect
Dagster (🥇42 · ⭐ 10K) - An orchestration platform for the development, production, and.. Apache-2 - [GitHub](https://github.com/dagster-io/dagster) (👨‍💻 430 · 🔀 1.3K · 📦 2.4K · 📋 7.4K - 33% open · ⏱️ 06.06.2024):
git clone https://github.com/dagster-io/dagster
- [PyPi](https://pypi.org/project/dagster) (📥 980K / month · 📦 170 · ⏱️ 30.05.2024):
pip install dagster
- [Conda](https://anaconda.org/conda-forge/dagster) (📥 1.2M · ⏱️ 31.05.2024):
conda install -c conda-forge dagster
Great Expectations (🥈40 · ⭐ 9.6K) - Always know what to expect from your data. Apache-2 - [GitHub](https://github.com/great-expectations/great_expectations) (👨‍💻 430 · 🔀 1.5K · 📋 1.9K - 11% open · ⏱️ 06.06.2024):
git clone https://github.com/great-expectations/great_expectations
- [PyPi](https://pypi.org/project/great_expectations) (📥 21M / month · 📦 92 · ⏱️ 28.05.2024):
pip install great_expectations
- [Conda](https://anaconda.org/conda-forge/great-expectations) (📥 810K · ⏱️ 29.05.2024):
conda install -c conda-forge great-expectations
joblib (🥈40 · ⭐ 3.7K) - Computing with Python functions. BSD-3 - [GitHub](https://github.com/joblib/joblib) (👨‍💻 130 · 🔀 410 · 📦 450K · 📋 900 - 45% open · ⏱️ 02.05.2024):
git clone https://github.com/joblib/joblib
- [PyPi](https://pypi.org/project/joblib) (📥 54M / month · 📦 6K · ⏱️ 02.05.2024):
pip install joblib
- [Conda](https://anaconda.org/conda-forge/joblib) (📥 26M · ⏱️ 02.05.2024):
conda install -c conda-forge joblib
rq (🥈39 · ⭐ 9.6K) - Simple job queues for Python. BSD-3 - [GitHub](https://github.com/rq/rq) (👨‍💻 320 · 🔀 1.4K · 📦 17K · 📋 1.2K - 17% open · ⏱️ 26.05.2024):
git clone https://github.com/rq/rq
- [PyPi](https://pypi.org/project/rq) (📥 1.4M / month · 📦 220 · ⏱️ 01.05.2024):
pip install rq
- [Conda](https://anaconda.org/conda-forge/rq) (📥 110K · ⏱️ 26.03.2024):
conda install -c conda-forge rq
luigi (🥈38 · ⭐ 17K · 📈) - Luigi is a Python module that helps you build complex pipelines of.. Apache-2 - [GitHub](https://github.com/spotify/luigi) (👨‍💻 620 · 🔀 2.4K · 📦 2.4K · 📋 1K - 12% open · ⏱️ 20.05.2024):
git clone https://github.com/spotify/luigi
- [PyPi](https://pypi.org/project/luigi) (📥 480K / month · 📦 140 · ⏱️ 20.05.2024):
pip install luigi
- [Conda](https://anaconda.org/anaconda/luigi) (📥 14K · 📦 3 · ⏱️ 16.06.2023):
conda install -c anaconda luigi
Kedro (🥈38 · ⭐ 9.4K) - Kedro is a toolbox for production-ready data science. It uses software.. Apache-2 - [GitHub](https://github.com/kedro-org/kedro) (👨‍💻 230 · 🔀 870 · 📦 2.4K · 📋 1.8K - 14% open · ⏱️ 06.06.2024):
git clone https://github.com/kedro-org/kedro
- [PyPi](https://pypi.org/project/kedro) (📥 560K / month · 📦 110 · ⏱️ 27.05.2024):
pip install kedro
dbt (🥈38 · ⭐ 9.1K) - dbt enables data analysts and engineers to transform their data using the.. Apache-2 - [GitHub](https://github.com/dbt-labs/dbt-core) (👨‍💻 320 · 🔀 1.5K · 📥 4.1K · 📦 5.1K · 📋 5.2K - 10% open · ⏱️ 05.06.2024):
git clone https://github.com/dbt-labs/dbt-core
- [PyPi](https://pypi.org/project/dbt) (📥 47K / month · 📦 35 · ⏱️ 04.06.2024):
pip install dbt
- [Conda](https://anaconda.org/conda-forge/dbt) (📥 260K · ⏱️ 16.06.2023):
conda install -c conda-forge dbt
petl (🥈35 · ⭐ 1.2K) - Python Extract Transform and Load Tables of Data. MIT - [GitHub](https://github.com/petl-developers/petl) (👨‍💻 64 · 🔀 190 · 📦 3.7K · 📋 460 - 18% open · ⏱️ 17.04.2024):
git clone https://github.com/petl-developers/petl
- [PyPi](https://pypi.org/project/petl) (📥 1.6M / month · 📦 44 · ⏱️ 12.03.2024):
pip install petl
- [Conda](https://anaconda.org/conda-forge/petl) (📥 230K · ⏱️ 13.03.2024):
conda install -c conda-forge petl
Activeloop (🥈33 · ⭐ 7.8K) - Database for AI. Store Vectors, Images, Texts, Videos, etc. Use.. MPL-2.0 - [GitHub](https://github.com/activeloopai/deeplake) (👨‍💻 130 · 🔀 600 · 📦 2.8K · 📋 450 - 11% open · ⏱️ 05.06.2024):
git clone https://github.com/activeloopai/Hub
- [PyPi](https://pypi.org/project/hub) (📥 4.7K / month · 📦 4 · ⏱️ 02.02.2023):
pip install hub
zenml (🥈32 · ⭐ 3.7K) - ZenML : Build portable, production-ready MLOps pipelines... Apache-2 - [GitHub](https://github.com/zenml-io/zenml) (👨‍💻 93 · 🔀 400 · 📥 1 · 📦 540 · 📋 320 - 23% open · ⏱️ 27.05.2024):
git clone https://github.com/zenml-io/zenml
- [PyPi](https://pypi.org/project/zenml) (📥 42K / month · 📦 3 · ⏱️ 27.05.2024):
pip install zenml
whylogs (🥈31 · ⭐ 2.6K) - Open standard for end-to-end data and ML monitoring for any scale in.. Apache-2 - [GitHub](https://github.com/whylabs/whylogs) (👨‍💻 34 · 🔀 120 · 📥 27 · 📦 260 · 📋 430 - 2% open · ⏱️ 29.05.2024):
git clone https://github.com/whylabs/whylogs
- [PyPi](https://pypi.org/project/whylogs) (📥 530K / month · 📦 7 · ⏱️ 22.05.2024):
pip install whylogs
arq (🥈31 · ⭐ 2K) - Fast job queuing and RPC in python with asyncio and redis. MIT - [GitHub](https://github.com/samuelcolvin/arq) (👨‍💻 61 · 🔀 160 · 📦 620 · 📋 220 - 30% open · ⏱️ 01.05.2024):
git clone https://github.com/samuelcolvin/arq
- [PyPi](https://pypi.org/project/arq) (📥 97K / month · 📦 31 · ⏱️ 01.05.2024):
pip install arq
- [Conda](https://anaconda.org/conda-forge/arq) (📥 10K · ⏱️ 02.05.2024):
conda install -c conda-forge arq
huey (🥉30 · ⭐ 4.9K) - a little task queue for python. MIT - [GitHub](https://github.com/coleifer/huey) (👨‍💻 67 · 🔀 360 · 📦 1.5K · ⏱️ 05.06.2024):
git clone https://github.com/coleifer/huey
- [PyPi](https://pypi.org/project/huey) (📥 100K / month · 📦 70 · ⏱️ 20.09.2023):
pip install huey
- [Conda](https://anaconda.org/conda-forge/huey) (📥 34K · ⏱️ 16.06.2023):
conda install -c conda-forge huey
ploomber (🥉29 · ⭐ 3.4K) - The fastest way to build data pipelines. Develop iteratively,.. Apache-2 - [GitHub](https://github.com/ploomber/ploomber) (👨‍💻 80 · 🔀 230 · 📦 130 · 📋 860 - 11% open · ⏱️ 20.02.2024):
git clone https://github.com/ploomber/ploomber
- [PyPi](https://pypi.org/project/ploomber) (📥 6.9K / month · 📦 11 · ⏱️ 08.02.2024):
pip install ploomber
- [Conda](https://anaconda.org/conda-forge/ploomber) (📥 91K · ⏱️ 09.02.2024):
conda install -c conda-forge ploomber
mleap (🥉28 · ⭐ 1.5K · 💤) - MLeap: Deploy ML Pipelines to Production. Apache-2 - [GitHub](https://github.com/combust/mleap) (👨‍💻 85 · 🔀 310 · 📦 230 · 📋 480 - 23% open · ⏱️ 14.11.2023):
git clone https://github.com/combust/mleap
- [PyPi](https://pypi.org/project/mleap) (📥 170K / month · 📦 11 · ⏱️ 14.11.2023):
pip install mleap
- [Conda](https://anaconda.org/conda-forge/mleap) (📥 81K · ⏱️ 15.11.2023):
conda install -c conda-forge mleap
PyFunctional (🥉27 · ⭐ 2.4K) - Python library for creating data pipelines with chain functional.. MIT - [GitHub](https://github.com/EntilZha/PyFunctional) (👨‍💻 31 · 🔀 130 · 📦 800 · 📋 140 - 10% open · ⏱️ 13.03.2024):
git clone https://github.com/EntilZha/PyFunctional
- [PyPi](https://pypi.org/project/pyfunctional) (📥 170K / month · 📦 27 · ⏱️ 13.03.2024):
pip install pyfunctional
streamparse (🥉25 · ⭐ 1.5K) - Run Python in Apache Storm topologies. Pythonic API, CLI.. Apache-2 - [GitHub](https://github.com/pystorm/streamparse) (👨‍💻 45 · 🔀 220 · 📦 65 · 📋 340 - 21% open · ⏱️ 21.04.2024):
git clone https://github.com/Parsely/streamparse
- [PyPi](https://pypi.org/project/streamparse) (📥 1.7K / month · 📦 2 · ⏱️ 10.01.2022):
pip install streamparse
TaskTiger (🥉25 · ⭐ 1.4K) - Python task queue using Redis. MIT - [GitHub](https://github.com/closeio/tasktiger) (👨‍💻 30 · 🔀 81 · 📦 30 · 📋 84 - 51% open · ⏱️ 25.04.2024):
git clone https://github.com/closeio/tasktiger
- [PyPi](https://pypi.org/project/tasktiger) (📥 4.4K / month · 📦 2 · ⏱️ 25.04.2024):
pip install tasktiger
dbnd (🥉25 · ⭐ 250) - DBND is an agile pipeline framework that helps data engineering teams.. Apache-2 - [GitHub](https://github.com/databand-ai/dbnd) (👨‍💻 82 · 🔀 34 · 📦 36 · 📋 30 - 86% open · ⏱️ 19.05.2024):
git clone https://github.com/databand-ai/dbnd
- [PyPi](https://pypi.org/project/dbnd) (📥 270K / month · 📦 26 · ⏱️ 19.05.2024):
pip install dbnd
Databolt Flow (🥉19 · ⭐ 950 · 💤) - Python library for building highly effective data science.. MIT - [GitHub](https://github.com/d6t/d6tflow) (👨‍💻 13 · 🔀 77 · 📦 28 · 📋 24 - 45% open · ⏱️ 20.07.2023):
git clone https://github.com/d6t/d6tflow
- [PyPi](https://pypi.org/project/d6tflow) (📥 270 / month · ⏱️ 20.02.2024):
pip install d6tflow
BatchFlow (🥉19 · ⭐ 200) - BatchFlow helps you conveniently work with random or sequential.. Apache-2 - [GitHub](https://github.com/analysiscenter/batchflow) (👨‍💻 37 · 🔀 44 · 📦 9 · 📋 110 - 29% open · ⏱️ 18.05.2024):
git clone https://github.com/analysiscenter/batchflow
- [PyPi](https://pypi.org/project/batchflow) (📥 210 / month · ⏱️ 01.08.2023):
pip install batchflow
flupy (🥉18 · ⭐ 190) - Fluent data pipelines for python and your shell. MIT - [GitHub](https://github.com/olirice/flupy) (👨‍💻 6 · 🔀 15 · 📋 14 - 14% open · ⏱️ 27.02.2024):
git clone https://github.com/olirice/flupy
- [PyPi](https://pypi.org/project/flupy) (📥 230K / month · ⏱️ 21.10.2022):
pip install flupy
Mara Pipelines (🥉16 · ⭐ 2.1K) - A lightweight opinionated ETL framework, halfway between plain.. MIT - [GitHub](https://github.com/mara/mara-pipelines) (👨‍💻 17 · 🔀 100 · 📋 42 - 61% open · ⏱️ 07.12.2023):
git clone https://github.com/mara/mara-pipelines
- [PyPi](https://pypi.org/project/mara-pipelines) (📥 59 / month · 📦 1 · ⏱️ 06.12.2023):
pip install mara-pipelines
Show 16 hidden projects... - mrjob (🥈31 · ⭐ 2.6K · 💀) - Run MapReduce jobs on Hadoop or Amazon Web Services. Apache-2 - faust (🥉29 · ⭐ 6.7K · 💀) - Python Stream Processing. BSD-3 - Optimus (🥉25 · ⭐ 1.4K · 💀) - Agile Data Preparation Workflows madeeasy with Pandas,.. Apache-2 spark - bonobo (🥉24 · ⭐ 1.6K · 💀) - Extract Transform Load for Python 3.5+. Apache-2 - Pypeline (🥉24 · ⭐ 1.5K · 💀) - Concurrent data pipelines in Python . MIT - pysparkling (🥉23 · ⭐ 260 · 💀) - A pure Python implementation of Apache Sparks RDD and DStream.. MIT - dpark (🥉22 · ⭐ 2.7K · 💀) - Python clone of Spark, a MapReduce alike framework in Python. BSD-3 spark - pdpipe (🥉20 · ⭐ 720 · 💀) - Easy pipelines for pandas DataFrames. MIT - spark-deep-learning (🥉19 · ⭐ 2K · 💀) - Deep Learning Pipelines for Apache Spark. Apache-2 spark - mrq (🥉19 · ⭐ 880 · 💀) - Mr. Queue - A distributed worker task queue in Python using Redis & gevent. MIT - riko (🥉18 · ⭐ 1.6K · 💀) - A Python stream processing engine modeled after Yahoo! Pipes. MIT - bodywork-core (🥉17 · ⭐ 430 · 💀) - ML pipeline orchestration and model deployments on.. ❗️AGPL-3.0 - kale (🥉16 · ⭐ 630 · 💀) - Kubeflows superfood for Data Scientists. Apache-2 jupyter - Botflow (🥉15 · ⭐ 1.2K · 💀) - Python Fast Dataflow programming framework for Data pipeline work(.. BSD-3 - RasgoQL (🥉13 · ⭐ 270 · 💀) - Write python locally, execute SQL in your data warehouse. ❗️AGPL-3.0 - datajob (🥉13 · ⭐ 110 · 💀) - Build and deploy a serverless data pipeline on AWS with no effort. Apache-2


File Formats

Back to top

PyYAML (🥇38 · ⭐ 2.4K · 💤) - Canonical source repository for PyYAML. MIT - [GitHub](https://github.com/yaml/pyyaml) (👨‍💻 40 · 🔀 500 · 📦 1.2M · 📋 610 - 46% open · ⏱️ 14.11.2023):
git clone https://github.com/yaml/pyyaml
- [PyPi](https://pypi.org/project/pyyaml) (📥 320M / month · 📦 37K · ⏱️ 18.07.2023):
pip install pyyaml
- [Conda](https://anaconda.org/conda-forge/pyyaml) (📥 45M · ⏱️ 22.09.2023):
conda install -c conda-forge pyyaml
XlsxWriter (🥉36 · ⭐ 3.5K) - A Python module for creating Excel XLSX files. BSD-2 - [GitHub](https://github.com/jmcnamara/XlsxWriter) (👨‍💻 52 · 🔀 620 · 📦 78K · 📋 940 - 1% open · ⏱️ 06.04.2024):
git clone https://github.com/jmcnamara/XlsxWriter
- [PyPi](https://pypi.org/project/xlsxwriter) (📥 22M / month · 📦 1.6K · ⏱️ 18.02.2024):
pip install xlsxwriter
- [Conda](https://anaconda.org/conda-forge/xlsxwriter) (📥 3.3M · ⏱️ 05.11.2023):
conda install -c conda-forge xlsxwriter
Show 1 hidden projects... - jmespath (🥉32 · ⭐ 2.1K · 💀) - JMESPath is a query language for JSON. MIT


Code Inspection

Back to top

deepdiff (🥇36 · ⭐ 1.9K) - DeepDiff: Deep Difference and search of any Python object/data... MIT - [GitHub](https://github.com/seperman/deepdiff) (👨‍💻 81 · 🔀 210 · 📦 11K · 📋 290 - 20% open · ⏱️ 08.04.2024):
git clone https://github.com/seperman/deepdiff
- [PyPi](https://pypi.org/project/deepdiff) (📥 12M / month · 📦 830 · ⏱️ 08.04.2024):
pip install deepdiff
- [Conda](https://anaconda.org/conda-forge/deepdiff) (📥 440K · ⏱️ 09.04.2024):
conda install -c conda-forge deepdiff
Show 3 hidden projects... - importlib-resources (🥈31 · ⭐ 58) - Backport of the importlib.resources module. Apache-2 - typing_inspect (🥉25 · ⭐ 330 · 💀) - Runtime inspection utilities for Python typing module. MIT - entrypoints (🥉23 · ⭐ 74 · 💀) - Discover and load entry points from installed packages. MIT


General Utilities

Back to top

attrs (🥇42 · ⭐ 5.1K · 📉) - Python Classes Without Boilerplate. MIT - [GitHub](https://github.com/python-attrs/attrs) (👨‍💻 160 · 🔀 360 · 📦 1M · 📋 710 - 18% open · ⏱️ 03.06.2024):
git clone https://github.com/python-attrs/attrs
- [PyPi](https://pypi.org/project/attrs) (📥 210M / month · 📦 7.9K · ⏱️ 31.12.2023):
pip install attrs
- [Conda](https://anaconda.org/conda-forge/attrs) (📥 37M · ⏱️ 31.12.2023):
conda install -c conda-forge attrs
more-itertools (🥇39 · ⭐ 3.5K) - More routines for operating on iterables, beyond itertools. MIT - [GitHub](https://github.com/more-itertools/more-itertools) (👨‍💻 120 · 🔀 270 · 📥 3K · 📦 220K · 📋 310 - 7% open · ⏱️ 02.06.2024):
git clone https://github.com/more-itertools/more-itertools
- [PyPi](https://pypi.org/project/more-itertools) (📥 82M / month · 📦 3.4K · ⏱️ 08.01.2024):
pip install more-itertools
- [Conda](https://anaconda.org/conda-forge/more-itertools) (📥 15M · ⏱️ 08.01.2024):
conda install -c conda-forge more-itertools
toolz (🥈37 · ⭐ 4.5K) - A functional standard library for Python. BSD-3 - [GitHub](https://github.com/pytoolz/toolz) (👨‍💻 77 · 🔀 260 · 📦 160K · 📋 270 - 46% open · ⏱️ 24.01.2024):
git clone https://github.com/pytoolz/toolz
- [PyPi](https://pypi.org/project/toolz) (📥 34M / month · 📦 1.4K · ⏱️ 24.01.2024):
pip install toolz
- [Conda](https://anaconda.org/conda-forge/toolz) (📥 21M · ⏱️ 24.01.2024):
conda install -c conda-forge toolz
boltons (🥈35 · ⭐ 6.4K) - Like builtins, but boltons. 250+ constructs, recipes, and snippets.. BSD-3 - [GitHub](https://github.com/mahmoud/boltons) (👨‍💻 90 · 🔀 350 · 📥 30 · 📦 7.3K · 📋 180 - 39% open · ⏱️ 28.04.2024):
git clone https://github.com/mahmoud/boltons
- [PyPi](https://pypi.org/project/boltons) (📥 4.4M / month · 📦 350 · ⏱️ 31.03.2024):
pip install boltons
- [Conda](https://anaconda.org/conda-forge/boltons) (📥 5M · ⏱️ 01.04.2024):
conda install -c conda-forge boltons
tenacity (🥈33 · ⭐ 6.1K) - Retrying library for Python. Apache-2 - [GitHub](https://github.com/jd/tenacity) (👨‍💻 92 · 🔀 260 · 📋 260 - 39% open · ⏱️ 14.03.2024):
git clone https://github.com/jd/tenacity
- [PyPi](https://pypi.org/project/tenacity) (📥 67M / month · 📦 2.4K · ⏱️ 07.05.2024):
pip install tenacity
- [Conda](https://anaconda.org/conda-forge/tenacity) (📥 6.8M · ⏱️ 09.05.2024):
conda install -c conda-forge tenacity
returns (🥉31 · ⭐ 3.3K) - Make your functions return something meaningful, typed, and safe!. BSD-2 - [GitHub](https://github.com/dry-python/returns) (👨‍💻 49 · 🔀 110 · 📦 560 · 📋 420 - 15% open · ⏱️ 04.06.2024):
git clone https://github.com/dry-python/returns
- [PyPi](https://pypi.org/project/returns) (📥 180K / month · 📦 59 · ⏱️ 26.08.2023):
pip install returns
- [Conda](https://anaconda.org/conda-forge/returns) (📥 9.6K · ⏱️ 28.08.2023):
conda install -c conda-forge returns
funcy (🥉30 · ⭐ 3.3K) - A fancy and practical functional tools. BSD-3 - [GitHub](https://github.com/Suor/funcy) (👨‍💻 33 · 🔀 140 · 📦 11K · 📋 81 - 11% open · ⏱️ 01.05.2024):
git clone https://github.com/Suor/funcy
- [PyPi](https://pypi.org/project/funcy) (📥 1.5M / month · 📦 370 · ⏱️ 28.03.2023):
pip install funcy
- [Conda](https://anaconda.org/conda-forge/funcy) (📥 430K · ⏱️ 16.06.2023):
conda install -c conda-forge funcy
natsort (🥉29 · ⭐ 860) - Simple yet flexible natural sorting in Python. MIT - [GitHub](https://github.com/SethMMorton/natsort) (👨‍💻 22 · 🔀 50 · 📦 29K · 📋 94 - 2% open · ⏱️ 04.03.2024):
git clone https://github.com/SethMMorton/natsort
- [PyPi](https://pypi.org/project/natsort) (📥 4.9M / month · 📦 1.3K · ⏱️ 20.06.2023):
pip install natsort
- [Conda](https://anaconda.org/conda-forge/natsort) (📥 1.6M · ⏱️ 20.06.2023):
conda install -c conda-forge natsort
ubelt (🥉24 · ⭐ 710) - A Python utility library with a stdlib like feel and extra batteries... Apache-2 - [GitHub](https://github.com/Erotemic/ubelt) (👨‍💻 4 · 🔀 42 · 📥 13 · 📋 15 - 13% open · ⏱️ 26.04.2024):
git clone https://github.com/Erotemic/ubelt
- [PyPi](https://pypi.org/project/ubelt) (📥 22K / month · 📦 100 · ⏱️ 20.03.2024):
pip install ubelt
- [Conda](https://anaconda.org/conda-forge/ubelt) (📥 91K · ⏱️ 20.03.2024):
conda install -c conda-forge ubelt
Show 6 hidden projects... - python-dependency-injector (🥈32 · ⭐ 3.6K · 💀) - Dependency injection framework for Python. BSD-3 - retrying (🥉27 · ⭐ 1.9K · 💀) - Retrying is an Apache 2.0 licensed general-purpose retrying.. Apache-2 - ratelimit (🥉25 · ⭐ 720 · 💀) - API Rate Limit Decorator. MIT - pinject (🥉24 · ⭐ 1.3K · 💀) - A pythonic dependency injection library. Apache-2 - CommonRegex (🥉23 · ⭐ 1.6K · 💀) - A collection of common regular expressions bundled with an easy.. MIT - pampy (🥉22 · ⭐ 3.5K · 💀) - Pampy: The Pattern Matching for Python you always dreamed of. MIT


Python Implementations

Back to top

cpython (🥇52 · ⭐ 60K) - The Python programming language. MIT - [GitHub](https://github.com/python/cpython) (👨‍💻 2.9K · 🔀 29K · 📦 610K · 📋 69K - 12% open · ⏱️ 06.06.2024):
git clone https://github.com/python/cpython
- [PyPi](https://pypi.org/project/cpython) (📥 54 / month · 📦 20 · ⏱️ 22.07.2020):
pip install cpython
- [Conda](https://anaconda.org/conda-forge/typing) (📥 3M · ⏱️ 17.05.2024):
conda install -c conda-forge typing
- [npm](https://www.npmjs.com/package/@buckpkg/python) (📦 6 · ⏱️ 03.08.2017):
npm install @buckpkg/python
micropython (🥈33 · ⭐ 19K) - MicroPython - a lean and efficient Python implementation for.. Python-2.0 - [GitHub](https://github.com/micropython/micropython) (👨‍💻 630 · 🔀 7.4K · 📥 79K · 📋 5.6K - 32% open · ⏱️ 06.06.2024):
git clone https://github.com/micropython/micropython
- [PyPi](https://pypi.org/project/micropython-_markupbase) (⏱️ 10.10.2016):
pip install micropython-_markupbase
Show 4 hidden projects... - grumpy (🥈23 · ⭐ 11K · 💀) - Grumpy is a Python to Go source code transcompiler and runtime. Apache-2 - pyston (🥉22 · ⭐ 2.5K · 💀) - A faster and highly-compatible implementation of the Python.. Apache-2 - stackless (🥉17 · ⭐ 1K · 💀) - The Stackless Python programming language. ❗Unlicensed - cl-python (🥉11 · ⭐ 360 · 💤) - An implementation of Python in Common Lisp. ❗Unlicensed


Others

Back to top

Pygments (🥇43 · ⭐ 1.7K) - Pygments is a generic syntax highlighter written in Python. BSD-2 - [GitHub](https://github.com/pygments/pygments) (👨‍💻 840 · 🔀 620 · 📦 740K · 📋 1.8K - 23% open · ⏱️ 20.05.2024):
git clone https://github.com/pygments/pygments
- [PyPi](https://pypi.org/project/pygments) (📥 110M / month · 📦 6.9K · ⏱️ 04.05.2024):
pip install pygments
- [Conda](https://anaconda.org/conda-forge/pygments) (📥 30M · ⏱️ 04.05.2024):
conda install -c conda-forge pygments
cookiecutter (🥇41 · ⭐ 22K) - A cross-platform command-line utility that creates projects from.. BSD-3 - [GitHub](https://github.com/cookiecutter/cookiecutter) (👨‍💻 320 · 🔀 2K · 📦 28K · 📋 880 - 26% open · ⏱️ 06.06.2024):
git clone https://github.com/cookiecutter/cookiecutter
- [PyPi](https://pypi.org/project/cookiecutter) (📥 4.1M / month · 📦 830 · ⏱️ 21.02.2024):
pip install cookiecutter
- [Conda](https://anaconda.org/conda-forge/cookiecutter) (📥 1M · ⏱️ 22.02.2024):
conda install -c conda-forge cookiecutter
pyparsing (🥇40 · ⭐ 2.1K) - Python library for creating PEG parsers. MIT - [GitHub](https://github.com/pyparsing/pyparsing) (👨‍💻 66 · 🔀 280 · 📥 11K · 📦 1M · 📋 350 - 13% open · ⏱️ 03.06.2024):
git clone https://github.com/pyparsing/pyparsing
- [PyPi](https://pypi.org/project/pyparsing) (📥 120M / month · 📦 4.8K · ⏱️ 06.03.2024):
pip install pyparsing
- [Conda](https://anaconda.org/conda-forge/pyparsing) (📥 44M · ⏱️ 06.03.2024):
conda install -c conda-forge pyparsing
pycparser (🥈38 · ⭐ 3.2K) - Complete C99 parser in pure Python. BSD-3 - [GitHub](https://github.com/eliben/pycparser) (👨‍💻 84 · 🔀 600 · 📦 820K · 📋 360 - 9% open · ⏱️ 15.04.2024):
git clone https://github.com/eliben/pycparser
- [PyPi](https://pypi.org/project/pycparser) (📥 240M / month · 📦 2.1K · ⏱️ 30.03.2024):
pip install pycparser
- [Conda](https://anaconda.org/conda-forge/pycparser) (📥 39M · ⏱️ 30.03.2024):
conda install -c conda-forge pycparser
py4j (🥈35 · ⭐ 1.2K) - Py4J enables Python programs to dynamically access arbitrary Java objects. BSD-3 - [GitHub](https://github.com/py4j/py4j) (👨‍💻 41 · 🔀 210 · 📦 40K · 📋 420 - 35% open · ⏱️ 16.04.2024):
git clone https://github.com/bartdag/py4j
- [PyPi](https://pypi.org/project/py4j) (📥 51M / month · 📦 290 · ⏱️ 12.08.2022):
pip install py4j
- [Conda](https://anaconda.org/conda-forge/py4j) (📥 5.8M · ⏱️ 16.06.2023):
conda install -c conda-forge py4j
fastcore (🥈34 · ⭐ 900) - Python supercharged for the fastai library. Apache-2 - [GitHub](https://github.com/fastai/fastcore) (👨‍💻 61 · 🔀 260 · 📦 6.6K · 📋 360 - 8% open · ⏱️ 05.06.2024):
git clone https://github.com/fastai/fastcore
- [PyPi](https://pypi.org/project/fastcore) (📥 1.5M / month · 📦 640 · ⏱️ 05.06.2024):
pip install fastcore
- [Conda](https://anaconda.org/conda-forge/fastcore) (📥 78K · ⏱️ 05.06.2024):
conda install -c conda-forge fastcore
diagrams (🥈33 · ⭐ 35K) - Diagram as Code for prototyping cloud system architectures. MIT - [GitHub](https://github.com/mingrammer/diagrams) (👨‍💻 140 · 🔀 2.2K · 📦 1.5K · 📋 560 - 66% open · ⏱️ 13.04.2024):
git clone https://github.com/mingrammer/diagrams
- [PyPi](https://pypi.org/project/diagrams) (📥 1.2M / month · 📦 67 · ⏱️ 30.10.2023):
pip install diagrams
- [Conda](https://anaconda.org/conda-forge/diagrams) (📥 190K · ⏱️ 30.10.2023):
conda install -c conda-forge diagrams
Copier (🥈33 · ⭐ 1.7K) - Library and command-line utility for rendering projects templates. MIT - [GitHub](https://github.com/copier-org/copier) (👨‍💻 76 · 🔀 170 · 📦 990 · 📋 470 - 15% open · ⏱️ 06.06.2024):
git clone https://github.com/copier-org/copier
- [PyPi](https://pypi.org/project/copier) (📥 370K / month · 📦 110 · ⏱️ 04.04.2024):
pip install copier
pluggy (🥈33 · ⭐ 1.2K) - A minimalist production ready plugin system. MIT - [GitHub](https://github.com/pytest-dev/pluggy) (👨‍💻 54 · 🔀 120 · 📋 190 - 27% open · ⏱️ 04.06.2024):
git clone https://github.com/pytest-dev/pluggy
- [PyPi](https://pypi.org/project/pluggy) (📥 140M / month · 📦 2K · ⏱️ 20.04.2024):
pip install pluggy
- [Conda](https://anaconda.org/conda-forge/pluggy) (📥 27M · ⏱️ 21.04.2024):
conda install -c conda-forge pluggy
decorator (🥈33 · ⭐ 820 · 💤) - Decorators for Humans. BSD-2 - [GitHub](https://github.com/micheles/decorator) (👨‍💻 27 · 🔀 110 · 📦 580K · 📋 110 - 14% open · ⏱️ 23.08.2023):
git clone https://github.com/micheles/decorator
- [PyPi](https://pypi.org/project/decorator) (📥 110M / month · 📦 2.1K · ⏱️ 07.01.2022):
pip install decorator
- [Conda](https://anaconda.org/conda-forge/decorator) (📥 28M · ⏱️ 16.06.2023):
conda install -c conda-forge decorator
wrapt (🥉32 · ⭐ 2K · 💤) - A Python module for decorators, wrappers and monkey patching. BSD-2 - [GitHub](https://github.com/GrahamDumpleton/wrapt) (👨‍💻 27 · 🔀 220 · 📋 190 - 26% open · ⏱️ 10.11.2023):
git clone https://github.com/GrahamDumpleton/wrapt
- [PyPi](https://pypi.org/project/wrapt) (📥 150M / month · 📦 2.1K · ⏱️ 09.11.2023):
pip install wrapt
- [Conda](https://anaconda.org/conda-forge/wrapt) (📥 15M · ⏱️ 09.11.2023):
conda install -c conda-forge wrapt
pyscaffold (🥉29 · ⭐ 2K · 💤) - Python project template generator with batteries included. MIT - [GitHub](https://github.com/pyscaffold/pyscaffold) (👨‍💻 58 · 🔀 180 · 📋 300 - 12% open · ⏱️ 20.06.2023):
git clone https://github.com/pyscaffold/pyscaffold
- [PyPi](https://pypi.org/project/pyscaffold) (📥 880K / month · 📦 43 · ⏱️ 20.06.2023):
pip install pyscaffold
- [Conda](https://anaconda.org/conda-forge/pyscaffold) (📥 190K · ⏱️ 26.06.2023):
conda install -c conda-forge pyscaffold
Send2Trash (🥉27 · ⭐ 260) - Python library to natively send files to Trash (or Recycle bin) on.. BSD-3 - [GitHub](https://github.com/arsenetar/send2trash) (👨‍💻 17 · 🔀 41 · 📋 60 - 48% open · ⏱️ 06.04.2024):
git clone https://github.com/arsenetar/send2trash
- [PyPi](https://pypi.org/project/send2trash) (📥 21M / month · 📦 490 · ⏱️ 07.04.2024):
pip install send2trash
- [Conda](https://anaconda.org/conda-forge/send2trash) (📥 14M · ⏱️ 08.04.2024):
conda install -c conda-forge send2trash
catalogue (🥉26 · ⭐ 170) - Super lightweight function registries for your library. MIT - [GitHub](https://github.com/explosion/catalogue) (👨‍💻 12 · 🔀 20 · 📦 41K · 📋 13 - 46% open · ⏱️ 31.05.2024):
git clone https://github.com/explosion/catalogue
- [PyPi](https://pypi.org/project/catalogue) (📥 11M / month · 📦 130 · ⏱️ 25.09.2023):
pip install catalogue
- [Conda](https://anaconda.org/conda-forge/catalogue) (📥 1.3M · ⏱️ 25.09.2023):
conda install -c conda-forge catalogue
python-mss (🥉25 · ⭐ 970) - An ultra fast cross-platform multiple screenshots module in pure.. MIT - [GitHub](https://github.com/BoboTiG/python-mss) (👨‍💻 23 · 🔀 83 · 📋 140 - 26% open · ⏱️ 27.02.2024):
git clone https://github.com/BoboTiG/python-mss
- [PyPi](https://pypi.org/project/mss) (📥 850K / month · 📦 220 · ⏱️ 20.04.2023):
pip install mss
- [Conda](https://anaconda.org/conda-forge/python-mss) (📥 50K · ⏱️ 16.06.2023):
conda install -c conda-forge python-mss
Show 6 hidden projects... - keyboard (🥉32 · ⭐ 3.7K · 💀) - Hook and simulate global keyboard events on Windows and Linux. MIT - pyscreenshot (🥉26 · ⭐ 500 · 💀) - Python screenshot library, replacement for the Pillow.. BSD-2 - openpyxl (🥉26 · ⭐ 78) - A Python library to read/write Excel 2010 xlsx/xlsm files. MIT - powerline-shell (🥉25 · ⭐ 6.2K · 💀) - A beautiful and useful prompt for your shell. MIT - pluginbase (🥉24 · ⭐ 1.1K · 💀) - A simple but flexible plugin system for Python. BSD-3 - macropy (🥉22 · ⭐ 3.3K · 💀) - Macros in Python: quasiquotes, case classes, LINQ and more!. MIT

  • Best-of lists: Discover other best-of lists with awesome open-source projects on all kinds of topics.
  • best-of-ml-python: A ranked list of awesome machine learning Python libraries.
  • best-of-web-python: A ranked list of awesome Python libraries for web development.
  • best-of-python-dev: A ranked list of awesome Python developer tools and libraries.
  • awesome-python: A curated list of awesome Python frameworks, libraries, software and resources.

Contribution

Contributions are encouraged and always welcome! If you like to add or update projects, choose one of the following ways:

  • Open an issue by selecting one of the provided categories from the issue page and fill in the requested information.
  • Modify the projects.yaml with your additions or changes, and submit a pull request. This can also be done directly via the Github UI.

If you like to contribute to or share suggestions regarding the project metadata collection or markdown generation, please refer to the best-of-generator repository. If you like to create your own best-of list, we recommend to follow this guide.

For more information on how to add or update projects, please read the contribution guidelines. By participating in this project, you agree to abide by its Code of Conduct.

License

CC0

Best of Python Developer Tools

Best-of Python Developer Tools

🏆  A ranked list of awesome python developer tools and libraries. Updated weekly.

This curated list contains 270 awesome open-source projects with a total of 960K stars grouped into 17 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome!


🧙‍♂️  Discover other best-of lists or create your own.
📫  Subscribe to our newsletter for updates and trending projects.


Contents

Explanation

  • 🥇🥈🥉  Combined project-quality score
  • ⭐️  Star count from GitHub
  • 🐣  New project (less than 6 months old)
  • 💤  Inactive project (6 months no activity)
  • 💀  Dead project (12 months no activity)
  • 📈📉  Project is trending up or down
  • ➕  Project was recently added
  • ❗️  Warning (e.g. missing/risky license)
  • 👨‍💻  Contributors count from GitHub
  • 🔀  Fork count from GitHub
  • 📋  Issue count from GitHub
  • ⏱️  Last update timestamp on package manager
  • 📥  Download count from package manager
  • 📦  Number of dependent projects
  •   Flake8 related project
  •   Pytest related project
  •   Pylint related project
  •   Sphinx related project
  •   MkDocs related project


Linters & Style Checkers

Back to top

pylint (🥇43 · ⭐ 5.2K) - Its not just a linter that annoys you!. ❗️GPL-2.0 - [GitHub](https://github.com/pylint-dev/pylint) (👨‍💻 570 · 🔀 1.1K · 📦 420K · 📋 5.5K - 16% open · ⏱️ 27.05.2024):
git clone https://github.com/PyCQA/pylint
- [PyPi](https://pypi.org/project/pylint) (📥 24M / month · 📦 8.1K · ⏱️ 20.05.2024):
pip install pylint
- [Conda](https://anaconda.org/conda-forge/pylint) (📥 5M · ⏱️ 20.05.2024):
conda install -c conda-forge pylint
ruff (🥇42 · ⭐ 28K) - An extremely fast Python linter and code formatter, written in Rust. MIT - [GitHub](https://github.com/astral-sh/ruff) (👨‍💻 430 · 🔀 880 · 📥 490K · 📦 48K · 📋 4.4K - 18% open · ⏱️ 30.05.2024):
git clone https://github.com/charliermarsh/ruff
- [PyPi](https://pypi.org/project/ruff) (📥 17M / month · 📦 5.2K · ⏱️ 28.05.2024):
pip install ruff
- [Conda](https://anaconda.org/conda-forge/ruff) (📥 800K · ⏱️ 29.05.2024):
conda install -c conda-forge ruff
flake8 (🥇41 · ⭐ 3.3K) - Flake8 is a wrapper around these tools: PyFlakes; pycodestyle; Ned.. MIT - [GitHub](https://github.com/PyCQA/flake8) (👨‍💻 180 · 🔀 300 · 📦 550K · 📋 1.6K - 1% open · ⏱️ 15.04.2024):
git clone https://github.com/PyCQA/flake8
- [PyPi](https://pypi.org/project/flake8) (📥 28M / month · 📦 20K · ⏱️ 05.01.2024):
pip install flake8
- [Conda](https://anaconda.org/conda-forge/flake8) (📥 7.3M · ⏱️ 05.01.2024):
conda install -c conda-forge flake8
wemake-python-styleguide (🥇36 · ⭐ 2.4K) - The strictest and most opinionated python linter ever!. MIT - [GitHub](https://github.com/wemake-services/wemake-python-styleguide) (👨‍💻 180 · 🔀 380 · 📦 16K · 📋 1.1K - 10% open · ⏱️ 30.05.2024):
git clone https://github.com/wemake-services/wemake-python-styleguide
- [PyPi](https://pypi.org/project/wemake-python-styleguide) (📥 160K / month · 📦 53 · ⏱️ 26.03.2024):
pip install wemake-python-styleguide
pyflakes (🥇36 · ⭐ 1.3K) - A simple program which checks Python source files for errors. MIT - [GitHub](https://github.com/PyCQA/pyflakes) (👨‍💻 86 · 🔀 180 · 📦 280K · 📋 530 - 10% open · ⏱️ 07.03.2024):
git clone https://github.com/PyCQA/pyflakes
- [PyPi](https://pypi.org/project/pyflakes) (📥 31M / month · 📦 1.1K · ⏱️ 05.01.2024):
pip install pyflakes
- [Conda](https://anaconda.org/conda-forge/pyflakes) (📥 7.3M · ⏱️ 05.01.2024):
conda install -c conda-forge pyflakes
parso (🥇36 · ⭐ 580) - A Python Parser. MIT - [GitHub](https://github.com/davidhalter/parso) (👨‍💻 46 · 🔀 99 · 📦 430K · 📋 120 - 10% open · ⏱️ 21.04.2024):
git clone https://github.com/davidhalter/parso
- [PyPi](https://pypi.org/project/parso) (📥 38M / month · 📦 710 · ⏱️ 05.04.2024):
pip install parso
- [Conda](https://anaconda.org/conda-forge/parso) (📥 19M · ⏱️ 05.04.2024):
conda install -c conda-forge parso
pycodestyle (🥈34 · ⭐ 5K) - Simple Python style checker in one Python file. MIT - [GitHub](https://github.com/PyCQA/pycodestyle) (👨‍💻 140 · 🔀 750 · 📦 20 · 📋 750 - 14% open · ⏱️ 10.04.2024):
git clone https://github.com/PyCQA/pycodestyle
- [PyPi](https://pypi.org/project/pycodestyle) (📥 39M / month · 📦 1.9K · ⏱️ 12.10.2023):
pip install pycodestyle
- [Conda](https://anaconda.org/conda-forge/pycodestyle) (📥 7.6M · ⏱️ 13.10.2023):
conda install -c conda-forge pycodestyle
beartype (🥈32 · ⭐ 2.5K) - Unbearably fast near-real-time hybrid runtime-static type-checking in.. MIT - [GitHub](https://github.com/beartype/beartype) (👨‍💻 22 · 🔀 49 · 📋 310 - 21% open · ⏱️ 30.05.2024):
git clone https://github.com/beartype/beartype
- [PyPi](https://pypi.org/project/beartype) (📥 2.3M / month · 📦 420 · ⏱️ 21.04.2024):
pip install beartype
- [Conda](https://anaconda.org/conda-forge/beartype) (📥 120K · ⏱️ 21.04.2024):
conda install -c conda-forge beartype
pydocstyle (🥈32 · ⭐ 1.1K) - docstring style checker. MIT - [GitHub](https://github.com/PyCQA/pydocstyle) (👨‍💻 92 · 🔀 190 · 📥 75 · 📦 65K · 📋 350 - 35% open · ⏱️ 03.11.2023):
git clone https://github.com/PyCQA/pydocstyle
- [PyPi](https://pypi.org/project/pydocstyle) (📥 5.1M / month · 📦 1.7K · ⏱️ 17.01.2023):
pip install pydocstyle
- [Conda](https://anaconda.org/conda-forge/pydocstyle) (📥 1.9M · ⏱️ 16.06.2023):
conda install -c conda-forge pydocstyle
flake8-bugbear (🥈31 · ⭐ 1K) - A plugin for Flake8 finding likely bugs and design problems.. MIT - [GitHub](https://github.com/PyCQA/flake8-bugbear) (👨‍💻 84 · 🔀 100 · 📦 37K · 📋 220 - 27% open · ⏱️ 29.04.2024):
git clone https://github.com/PyCQA/flake8-bugbear
- [PyPi](https://pypi.org/project/flake8-bugbear) (📥 2.9M / month · 📦 1K · ⏱️ 26.04.2024):
pip install flake8-bugbear
- [Conda](https://anaconda.org/conda-forge/flake8-bugbear) (📥 780K · ⏱️ 26.04.2024):
conda install -c conda-forge flake8-bugbear
pylint-django (🥈29 · ⭐ 590) - Pylint plugin for improving code analysis for when.. ❗️GPL-2.0 - [GitHub](https://github.com/pylint-dev/pylint-django) (👨‍💻 71 · 🔀 120 · 📥 280 · 📦 29K · 📋 230 - 26% open · ⏱️ 26.02.2024):
git clone https://github.com/PyCQA/pylint-django
- [PyPi](https://pypi.org/project/pylint-django) (📥 1.3M / month · 📦 110 · ⏱️ 23.10.2023):
pip install pylint-django
- [Conda](https://anaconda.org/conda-forge/pylint-django) (📥 190K · ⏱️ 09.01.2024):
conda install -c conda-forge pylint-django
flake8-comprehensions (🥈29 · ⭐ 460) - A flake8 plugin to help you write better.. MIT - [GitHub](https://github.com/adamchainz/flake8-comprehensions) (👨‍💻 15 · 🔀 23 · 📦 27K · 📋 62 - 16% open · ⏱️ 28.05.2024):
git clone https://github.com/adamchainz/flake8-comprehensions
- [PyPi](https://pypi.org/project/flake8-comprehensions) (📥 1.1M / month · 📦 650 · ⏱️ 10.07.2023):
pip install flake8-comprehensions
- [Conda](https://anaconda.org/conda-forge/flake8-comprehensions) (📥 780K · ⏱️ 17.07.2023):
conda install -c conda-forge flake8-comprehensions
flake8-quotes (🥈29 · ⭐ 180) - Flake8 extension for checking quotes in python. MIT - [GitHub](https://github.com/zheller/flake8-quotes) (👨‍💻 33 · 🔀 37 · 📦 22K · 📋 54 - 16% open · ⏱️ 10.02.2024):
git clone https://github.com/zheller/flake8-quotes
- [PyPi](https://pypi.org/project/flake8-quotes) (📥 650K / month · 📦 420 · ⏱️ 10.02.2024):
pip install flake8-quotes
- [Conda](https://anaconda.org/conda-forge/flake8-quotes) (📥 690K · ⏱️ 10.02.2024):
conda install -c conda-forge flake8-quotes
mypy-protobuf (🥈28 · ⭐ 630) - open source tools to generate mypy stubs from protobufs. Apache-2 - [GitHub](https://github.com/nipunn1313/mypy-protobuf) (👨‍💻 38 · 🔀 76 · 📋 130 - 11% open · ⏱️ 25.04.2024):
git clone https://github.com/dropbox/mypy-protobuf
- [PyPi](https://pypi.org/project/mypy-protobuf) (📥 3.3M / month · 📦 180 · ⏱️ 01.04.2024):
pip install mypy-protobuf
- [Conda](https://anaconda.org/conda-forge/mypy-protobuf) (📥 130K · ⏱️ 20.08.2023):
conda install -c conda-forge mypy-protobuf
flake8-eradicate (🥈28 · ⭐ 310) - Flake8 plugin to find commented out or dead code. MIT - [GitHub](https://github.com/wemake-services/flake8-eradicate) (👨‍💻 17 · 🔀 13 · 📦 19K · 📋 40 - 22% open · ⏱️ 21.05.2024):
git clone https://github.com/wemake-services/flake8-eradicate
- [PyPi](https://pypi.org/project/flake8-eradicate) (📥 630K / month · 📦 160 · ⏱️ 31.05.2023):
pip install flake8-eradicate
- [Conda](https://anaconda.org/conda-forge/flake8-eradicate) (📥 15K · ⏱️ 01.06.2023):
conda install -c conda-forge flake8-eradicate
hacking (🥈28 · ⭐ 240) - OpenStack Hacking Style Checks. Mirror of code maintained at.. Apache-2 - [GitHub](https://github.com/openstack/hacking) (👨‍💻 190 · 🔀 70 · 📦 7.3K · ⏱️ 31.01.2024):
git clone https://github.com/openstack/hacking
- [PyPi](https://pypi.org/project/hacking) (📥 98K / month · 📦 87 · ⏱️ 08.12.2023):
pip install hacking
flake8-commas (🥈28 · ⭐ 130) - Flake8 extension for enforcing trailing commas in python. MIT - [GitHub](https://github.com/PyCQA/flake8-commas) (👨‍💻 13 · 🔀 32 · 📦 18K · 📋 31 - 9% open · ⏱️ 16.05.2024):
git clone https://github.com/PyCQA/flake8-commas
- [PyPi](https://pypi.org/project/flake8-commas) (📥 380K / month · 📦 210 · ⏱️ 16.05.2024):
pip install flake8-commas
flake8-isort (🥉27 · ⭐ 170) - flake8 plugin that integrates isort. ❗️GPL-2.0 - [GitHub](https://github.com/gforcada/flake8-isort) (👨‍💻 38 · 🔀 130 · 📦 26K · 📋 57 - 1% open · ⏱️ 03.11.2023):
git clone https://github.com/gforcada/flake8-isort
- [PyPi](https://pypi.org/project/flake8-isort) (📥 1.1M / month · 📦 520 · ⏱️ 03.11.2023):
pip install flake8-isort
- [Conda](https://anaconda.org/conda-forge/flake8-isort) (📥 61K · ⏱️ 03.11.2023):
conda install -c conda-forge flake8-isort
flake8-builtins (🥉27 · ⭐ 110) - Check for python builtins being used as variables or.. ❗️GPL-2.0 - [GitHub](https://github.com/gforcada/flake8-builtins) (👨‍💻 20 · 🔀 23 · 📦 10K · 📋 50 - 4% open · ⏱️ 09.04.2024):
git clone https://github.com/gforcada/flake8-builtins
- [PyPi](https://pypi.org/project/flake8-builtins) (📥 860K / month · 📦 480 · ⏱️ 09.04.2024):
pip install flake8-builtins
- [Conda](https://anaconda.org/conda-forge/flake8-builtins) (📥 250K · ⏱️ 09.04.2024):
conda install -c conda-forge flake8-builtins
nitpick (🥉26 · ⭐ 380) - Enforce the same settings on multiple projects. MIT - [GitHub](https://github.com/andreoliwa/nitpick) (👨‍💻 16 · 🔀 23 · 📥 5 · 📦 1.3K · 📋 130 - 38% open · ⏱️ 28.05.2024):
git clone https://github.com/andreoliwa/nitpick
- [PyPi](https://pypi.org/project/nitpick) (📥 15K / month · 📦 26 · ⏱️ 31.12.2023):
pip install nitpick
check-manifest (🥉26 · ⭐ 280) - Tool to check the completeness of MANIFEST.in for Python packages. MIT - [GitHub](https://github.com/mgedmin/check-manifest) (👨‍💻 22 · 🔀 37 · 📦 11K · 📋 98 - 21% open · ⏱️ 03.05.2024):
git clone https://github.com/mgedmin/check-manifest
- [PyPi](https://pypi.org/project/check-manifest) (📥 360K / month · 📦 4.3K · ⏱️ 05.12.2022):
pip install check-manifest
- [Conda](https://anaconda.org/conda-forge/check-manifest) (📥 120K · ⏱️ 16.06.2023):
conda install -c conda-forge check-manifest
flake8-black (🥉26 · ⭐ 160) - flake8 plugin to run black for checking Python coding style. MIT - [GitHub](https://github.com/peterjc/flake8-black) (👨‍💻 10 · 🔀 10 · 📦 7.8K · 📋 29 - 10% open · ⏱️ 14.05.2024):
git clone https://github.com/peterjc/flake8-black
- [PyPi](https://pypi.org/project/flake8-black) (📥 860K / month · 📦 480 · ⏱️ 20.12.2022):
pip install flake8-black
- [Conda](https://anaconda.org/conda-forge/flake8-black) (📥 460K · ⏱️ 16.06.2023):
conda install -c conda-forge flake8-black
flake8-import-order (🥉24 · ⭐ 280 · 💤) - Flake8 plugin that checks import order against.. ❗️LGPL-3.0 - [GitHub](https://github.com/PyCQA/flake8-import-order) (👨‍💻 46 · 🔀 72 · 📋 100 - 12% open · ⏱️ 13.09.2023):
git clone https://github.com/PyCQA/flake8-import-order
- [PyPi](https://pypi.org/project/flake8-import-order) (📥 610K / month · 📦 550 · ⏱️ 26.11.2022):
pip install flake8-import-order
- [Conda](https://anaconda.org/conda-forge/flake8-import-order) (📥 250K · ⏱️ 16.06.2023):
conda install -c conda-forge flake8-import-order
pandas-vet (🥉21 · ⭐ 160 · 💤) - A plugin for Flake8 that checks pandas code. MIT - [GitHub](https://github.com/deppen8/pandas-vet) (👨‍💻 14 · 🔀 18 · 📥 73 · 📦 450 · 📋 53 - 22% open · ⏱️ 11.08.2023):
git clone https://github.com/deppen8/pandas-vet
- [PyPi](https://pypi.org/project/pandas-vet) (📥 44K / month · 📦 37 · ⏱️ 11.08.2023):
pip install pandas-vet
- [Conda](https://anaconda.org/conda-forge/pandas-vet) (📥 18K · ⏱️ 11.08.2023):
conda install -c conda-forge pandas-vet
flake8-simplify (🥉20 · ⭐ 180) - A flake8 plugin that helps you to simplify code. MIT - [GitHub](https://github.com/MartinThoma/flake8-simplify) (👨‍💻 14 · 🔀 19 · 📋 120 - 41% open · ⏱️ 25.12.2023):
git clone https://github.com/MartinThoma/flake8-simplify
- [PyPi](https://pypi.org/project/flake8-simplify) (📥 350K / month · 📦 86 · ⏱️ 23.09.2023):
pip install flake8-simplify
- [Conda](https://anaconda.org/conda-forge/flake8-simplify) (📥 39K · ⏱️ 26.09.2023):
conda install -c conda-forge flake8-simplify
bellybutton (🥉17 · ⭐ 270 · 💤) - Custom Python linting through AST expressions. MIT - [GitHub](https://github.com/hchasestevens/bellybutton) (👨‍💻 7 · 🔀 15 · 📦 46 · 📋 17 - 64% open · ⏱️ 27.07.2023):
git clone https://github.com/hchasestevens/bellybutton
- [PyPi](https://pypi.org/project/bellybutton) (📥 2K / month · 📦 1 · ⏱️ 27.07.2023):
pip install bellybutton
imhotep (🥉17 · ⭐ 220 · 💤) - A static-analysis bot for Github. MIT - [GitHub](https://github.com/justinabrahms/imhotep) (👨‍💻 17 · 🔀 36 · 📦 12 · 📋 46 - 43% open · ⏱️ 17.06.2023):
git clone https://github.com/justinabrahms/imhotep
- [PyPi](https://pypi.org/project/imhotep) (📥 59 / month · 📦 4 · ⏱️ 20.02.2022):
pip install imhotep
Show 13 hidden projects... - pep8-naming (🥈30 · ⭐ 490) - Naming Convention checker for Python. ❗️Saxpath - darglint (🥈28 · ⭐ 480 · 💀) - A python documentation linter which checks that the docstring.. MIT - coala (🥉27 · ⭐ 3.5K · 💀) - coala provides a unified command-line interface for linting and.. ❗️AGPL-3.0 - pylama (🥉26 · ⭐ 1K · 💀) - Code audit tool for python. MIT - data-science-types (🥉24 · ⭐ 200 · 💀) - Mypy stubs, i.e., type information, for numpy, pandas.. Apache-2 - Fixit (🥉23 · ⭐ 650) - Advanced Python linting framework with auto-fixes and hierarchical.. ❗Unlicensed - flake8-bandit (🥉21 · ⭐ 110 · 💀) - Automated security testing using bandit and flake8. MIT - flakehell (🥉19 · ⭐ 230 · 💀) - Flake8 wrapper to make it nice, legacy-friendly, configurable. MIT - flake8-mypy (🥉19 · ⭐ 100 · 💀) - A plugin for flake8 integrating Mypy. MIT - pylint-flask (🥉19 · ⭐ 64 · 💀) - A Pylint plugin to analyze Flask applications. ❗️GPL-2.0 - pycycle (🥉16 · ⭐ 330 · 💀) - Tool for pinpointing circular imports in Python. Find cyclic imports.. MIT - yala (🥉15 · ⭐ 14 · 💀) - Yet Another Linter Aggregator. MIT - linty_fresh (🥉12 · ⭐ 180 · 💀) - Surface lint errors during code review. Apache-2 mypy


Type checkers

Back to top

mypy (🥇46 · ⭐ 18K) - Optional static typing for Python. MIT - [GitHub](https://github.com/python/mypy) (👨‍💻 720 · 🔀 2.7K · 📦 240K · 📋 10K - 27% open · ⏱️ 28.05.2024):
git clone https://github.com/python/mypy
- [PyPi](https://pypi.org/project/mypy) (📥 26M / month · 📦 14K · ⏱️ 24.04.2024):
pip install mypy
- [Conda](https://anaconda.org/conda-forge/mypy) (📥 4M · ⏱️ 25.04.2024):
conda install -c conda-forge mypy
pyright (🥈39 · ⭐ 12K) - Static Type Checker for Python. MIT - [GitHub](https://github.com/microsoft/pyright) (👨‍💻 110 · 🔀 1.3K · 📥 2.5K · 📦 860 · 📋 5.6K - 0% open · ⏱️ 29.05.2024):
git clone https://github.com/Microsoft/pyright
- [npm](https://www.npmjs.com/package/pyright) (📥 1.5M / month · 📦 15 · ⏱️ 29.05.2024):
npm install pyright
pytype (🥉36 · ⭐ 4.6K) - A static type analyzer for Python code. Apache-2 - [GitHub](https://github.com/google/pytype) (👨‍💻 100 · 🔀 270 · 📦 3.6K · 📋 700 - 22% open · ⏱️ 29.05.2024):
git clone https://github.com/google/pytype
- [PyPi](https://pypi.org/project/pytype) (📥 560K / month · 📦 220 · ⏱️ 12.04.2024):
pip install pytype
- [Conda](https://anaconda.org/conda-forge/pytype) (📥 210K · ⏱️ 10.02.2024):
conda install -c conda-forge pytype
pyre-check (🥉35 · ⭐ 6.7K) - Performant type-checking for python. MIT - [GitHub](https://github.com/facebook/pyre-check) (👨‍💻 260 · 🔀 430 · 📦 21 · 📋 420 - 36% open · ⏱️ 29.05.2024):
git clone https://github.com/facebook/pyre-check
- [PyPi](https://pypi.org/project/pyre-check) (📥 78K / month · 📦 55 · ⏱️ 10.05.2024):
pip install pyre-check
typeguard (🥉35 · ⭐ 1.5K) - Run-time type checker for Python. MIT - [GitHub](https://github.com/agronholm/typeguard) (👨‍💻 35 · 🔀 100 · 📦 24K · 📋 320 - 6% open · ⏱️ 27.05.2024):
git clone https://github.com/agronholm/typeguard
- [PyPi](https://pypi.org/project/typeguard) (📥 22M / month · 📦 2.5K · ⏱️ 27.05.2024):
pip install typeguard
- [Conda](https://anaconda.org/conda-forge/typeguard) (📥 570K · ⏱️ 24.03.2024):
conda install -c conda-forge typeguard


Code Formatters

Back to top

black (🥇46 · ⭐ 38K) - The uncompromising Python code formatter. MIT - [GitHub](https://github.com/psf/black) (👨‍💻 450 · 🔀 2.4K · 📥 89K · 📦 500K · 📋 2.6K - 14% open · ⏱️ 16.05.2024):
git clone https://github.com/psf/black
- [PyPi](https://pypi.org/project/black) (📥 39M / month · 📦 21K · ⏱️ 26.04.2024):
pip install black
- [Conda](https://anaconda.org/conda-forge/black) (📥 10M · ⏱️ 26.04.2024):
conda install -c conda-forge black
isort (🥈40 · ⭐ 6.3K) - A Python utility / library to sort imports. MIT - [GitHub](https://github.com/PyCQA/isort) (👨‍💻 290 · 🔀 560 · 📦 470K · 📋 1.3K - 17% open · ⏱️ 15.01.2024):
git clone https://github.com/PyCQA/isort
- [PyPi](https://pypi.org/project/isort) (📥 39M / month · 📦 12K · ⏱️ 13.12.2023):
pip install isort
- [Conda](https://anaconda.org/conda-forge/isort) (📥 5.9M · ⏱️ 14.12.2023):
conda install -c conda-forge isort
yapf (🥈39 · ⭐ 14K) - A formatter for Python files. Apache-2 - [GitHub](https://github.com/google/yapf) (👨‍💻 150 · 🔀 890 · 📦 94K · 📋 860 - 45% open · ⏱️ 01.04.2024):
git clone https://github.com/google/yapf
- [PyPi](https://pypi.org/project/yapf) (📥 5.9M / month · 📦 1.2K · ⏱️ 22.09.2023):
pip install yapf
- [Conda](https://anaconda.org/conda-forge/yapf) (📥 1.8M · ⏱️ 26.07.2023):
conda install -c conda-forge yapf
autopep8 (🥈39 · ⭐ 4.5K) - A tool that automatically formats Python code to conform to the PEP 8.. MIT - [GitHub](https://github.com/hhatto/autopep8) (👨‍💻 63 · 🔀 290 · 📦 210K · 📋 500 - 23% open · ⏱️ 30.05.2024):
git clone https://github.com/hhatto/autopep8
- [PyPi](https://pypi.org/project/autopep8) (📥 5M / month · 📦 1.5K · ⏱️ 30.05.2024):
pip install autopep8
- [Conda](https://anaconda.org/conda-forge/autopep8) (📥 1.5M · ⏱️ 29.05.2024):
conda install -c conda-forge autopep8
docformatter (🥉27 · ⭐ 520 · 💤) - Formats docstrings to follow PEP 257. MIT - [GitHub](https://github.com/PyCQA/docformatter) (👨‍💻 30 · 🔀 59 · 📥 17 · 📦 3.5K · 📋 150 - 16% open · ⏱️ 15.10.2023):
git clone https://github.com/myint/docformatter
- [PyPi](https://pypi.org/project/docformatter) (📥 570K / month · 📦 220 · ⏱️ 12.07.2023):
pip install docformatter
- [Conda](https://anaconda.org/conda-forge/docformatter) (📥 130K · ⏱️ 18.07.2023):
conda install -c conda-forge docformatter
autoimport (🥉18 · ⭐ 88) - Autoimport automatically fixes wrong import statements. ❗️GPL-3.0 - [GitHub](https://github.com/lyz-code/autoimport) (👨‍💻 16 · 🔀 20 · 📦 130 · 📋 47 - 29% open · ⏱️ 10.05.2024):
git clone https://github.com/lyz-code/autoimport
- [PyPi](https://pypi.org/project/autoimport) (📥 4K / month · 📦 12 · ⏱️ 10.05.2024):
pip install autoimport
Show 1 hidden projects... - pyformat (🥉19 · ⭐ 95) - Formats Python code to follow a consistent style. ❗️Saxpath


Code Refactoring

Back to top

jedi (🥇41 · ⭐ 5.7K) - Awesome autocompletion, static analysis and refactoring library for python. MIT - [GitHub](https://github.com/davidhalter/jedi) (👨‍💻 170 · 🔀 500 · 📦 430K · 📋 1.4K - 4% open · ⏱️ 24.05.2024):
git clone https://github.com/davidhalter/jedi
- [PyPi](https://pypi.org/project/jedi) (📥 39M / month · 📦 980 · ⏱️ 02.10.2023):
pip install jedi
- [Conda](https://anaconda.org/conda-forge/jedi) (📥 22M · ⏱️ 03.10.2023):
conda install -c conda-forge jedi
rope (🥇36 · ⭐ 1.9K) - a python refactoring library. ❗️LGPL-3.0 - [GitHub](https://github.com/python-rope/rope) (👨‍💻 81 · 🔀 160 · 📥 28 · 📦 74K · 📋 360 - 28% open · ⏱️ 04.04.2024):
git clone https://github.com/python-rope/rope
- [PyPi](https://pypi.org/project/rope) (📥 910K / month · 📦 280 · ⏱️ 24.03.2024):
pip install rope
- [Conda](https://anaconda.org/conda-forge/rope) (📥 1.5M · ⏱️ 24.03.2024):
conda install -c conda-forge rope
pyupgrade (🥈33 · ⭐ 3.4K) - A tool (and pre-commit hook) to automatically upgrade syntax for newer.. MIT - [GitHub](https://github.com/asottile/pyupgrade) (👨‍💻 35 · 🔀 170 · 📋 420 - 3% open · ⏱️ 28.05.2024):
git clone https://github.com/asottile/pyupgrade
- [PyPi](https://pypi.org/project/pyupgrade) (📥 590K / month · 📦 360 · ⏱️ 24.03.2024):
pip install pyupgrade
- [Conda](https://anaconda.org/conda-forge/pyupgrade) (📥 640K · ⏱️ 24.03.2024):
conda install -c conda-forge pyupgrade
vulture (🥈30 · ⭐ 3.1K) - Find dead Python code. MIT - [GitHub](https://github.com/jendrikseipp/vulture) (👨‍💻 42 · 🔀 140 · 📦 4.5K · 📋 210 - 14% open · ⏱️ 05.05.2024):
git clone https://github.com/jendrikseipp/vulture
- [PyPi](https://pypi.org/project/vulture) (📥 650K / month · 📦 180 · ⏱️ 19.01.2024):
pip install vulture
- [Conda](https://anaconda.org/conda-forge/vulture) (📥 81K · ⏱️ 16.06.2023):
conda install -c conda-forge vulture
autoflake (🥈29 · ⭐ 870) - Removes unused imports and unused variables as reported by pyflakes. MIT - [GitHub](https://github.com/PyCQA/autoflake) (👨‍💻 38 · 🔀 80 · 📋 120 - 32% open · ⏱️ 17.05.2024):
git clone https://github.com/myint/autoflake
- [PyPi](https://pypi.org/project/autoflake) (📥 1.9M / month · 📦 930 · ⏱️ 13.03.2024):
pip install autoflake
- [Conda](https://anaconda.org/conda-forge/autoflake) (📥 540K · ⏱️ 16.06.2023):
conda install -c conda-forge autoflake
MonkeyType (🥈26 · ⭐ 4.6K) - A Python library that generates static type annotations by.. BSD-3 - [GitHub](https://github.com/Instagram/MonkeyType) (👨‍💻 50 · 🔀 170 · 📋 190 - 26% open · ⏱️ 07.05.2024):
git clone https://github.com/Instagram/MonkeyType
- [PyPi](https://pypi.org/project/monkeytype) (📥 240K / month · 📦 20 · ⏱️ 20.03.2023):
pip install monkeytype
- [Conda](https://anaconda.org/conda-forge/monkeytype) (📥 60K · ⏱️ 16.06.2023):
conda install -c conda-forge monkeytype
add-trailing-comma (🥉22 · ⭐ 330) - A tool (and pre-commit hook) to automatically add trailing.. MIT - [GitHub](https://github.com/asottile/add-trailing-comma) (👨‍💻 11 · 🔀 22 · ⏱️ 28.05.2024):
git clone https://github.com/asottile/add-trailing-comma
- [PyPi](https://pypi.org/project/add-trailing-comma) (📥 59K / month · 📦 22 · ⏱️ 30.08.2023):
pip install add-trailing-comma
unimport (🥉21 · ⭐ 240) - The ultimate linter and formatter for removing unused import statements.. MIT - [GitHub](https://github.com/hakancelikdev/unimport) (👨‍💻 16 · 🔀 22 · 📋 120 - 9% open · ⏱️ 07.01.2024):
git clone https://github.com/hakancelik96/unimport
- [PyPi](https://pypi.org/project/unimport) (📥 20K / month · 📦 16 · ⏱️ 24.12.2023):
pip install unimport
com2ann (🥉18 · ⭐ 140) - Tool for translation type comments to type annotations in Python. MIT - [GitHub](https://github.com/ilevkivskyi/com2ann) (👨‍💻 8 · 🔀 12 · 📦 72 · 📋 29 - 24% open · ⏱️ 14.03.2024):
git clone https://github.com/ilevkivskyi/com2ann
- [PyPi](https://pypi.org/project/com2ann) (📥 15K / month · 📦 2 · ⏱️ 21.08.2021):
pip install com2ann
massedit (🥉17 · ⭐ 110 · 💤) - Programmatically edit text files with Python. Useful for source to.. MIT - [GitHub](https://github.com/elmotec/massedit) (👨‍💻 9 · 🔀 16 · 📥 23 · 📦 43 · 📋 11 - 36% open · ⏱️ 12.09.2023):
git clone https://github.com/elmotec/massedit
- [PyPi](https://pypi.org/project/massedit) (📥 2.8K / month · 📦 3 · ⏱️ 11.09.2023):
pip install massedit
Show 8 hidden projects... - Bowler (🥈25 · ⭐ 1.5K · 💀) - Safe code refactoring for modern Python. MIT - redbaron (🥉24 · ⭐ 690 · 💀) - Bottom-up approach to refactoring in python. ❗️LGPL-3.0 - eradicate (🥉24 · ⭐ 200) - Removes commented-out code from Python files. ❗️Saxpath - baron (🥉23 · ⭐ 290 · 💀) - IDE allow you to refactor code, Baron allows you to write.. ❗️LGPL-3.0 - pyannotate (🥉21 · ⭐ 1.4K · 💀) - Auto-generate PEP-484 annotations. Apache-2 - unify (🥉20 · ⭐ 92 · 💀) - Modifies strings to all use the same quote where possible. MIT - pep8ify (🥉16 · ⭐ 120 · 💀) - A library that modifies python source code to conform to pep8. Apache-2 - retype (🥉13 · ⭐ 140 · 💀) - Re-apply type annotations from .pyi stubs to your codebase. MIT


Code Security

Back to top

bandit (🥇38 · ⭐ 6.1K) - Bandit is a tool designed to find common security issues in Python.. Apache-2 - [GitHub](https://github.com/PyCQA/bandit) (👨‍💻 180 · 🔀 580 · 📥 780 · 📦 49K · 📋 670 - 28% open · ⏱️ 10.05.2024):
git clone https://github.com/PyCQA/bandit
- [PyPi](https://pypi.org/project/bandit) (📥 4.8M / month · 📦 1.3K · ⏱️ 08.03.2024):
pip install bandit
- [Conda](https://anaconda.org/conda-forge/bandit) (📥 310K · ⏱️ 21.04.2024):
conda install -c conda-forge bandit
sqlmap (🥈33 · ⭐ 31K) - Automatic SQL injection and database takeover tool. ❗️GPL-3.0 - [GitHub](https://github.com/sqlmapproject/sqlmap) (👨‍💻 140 · 🔀 5.5K · 📦 21 · 📋 5.2K - 1% open · ⏱️ 09.05.2024):
git clone https://github.com/sqlmapproject/sqlmap
- [PyPi](https://pypi.org/project/sqlmap) (📥 14K / month · 📦 12 · ⏱️ 09.05.2024):
pip install sqlmap
detect-secrets (🥈33 · ⭐ 3.5K) - An enterprise friendly way of detecting and preventing.. Apache-2 - [GitHub](https://github.com/Yelp/detect-secrets) (👨‍💻 81 · 🔀 430 · 📋 370 - 34% open · ⏱️ 16.05.2024):
git clone https://github.com/Yelp/detect-secrets
- [PyPi](https://pypi.org/project/detect-secrets) (📥 610K / month · 📦 81 · ⏱️ 06.05.2024):
pip install detect-secrets
safety (🥉31 · ⭐ 1.6K) - Safety checks Python dependencies for known security vulnerabilities and.. MIT - [GitHub](https://github.com/pyupio/safety) (👨‍💻 42 · 🔀 140 · 📥 550K · 📦 14K · 📋 220 - 42% open · ⏱️ 01.05.2024):
git clone https://github.com/pyupio/safety
- [PyPi](https://pypi.org/project/safety) (📥 1.5M / month · 📦 300 · ⏱️ 01.05.2024):
pip install safety
- [Conda](https://anaconda.org/conda-forge/safety) (📥 95K · ⏱️ 01.05.2024):
conda install -c conda-forge safety
Show 4 hidden projects... - pyarmor (🥈34 · ⭐ 3K) - A tool used to obfuscate python scripts, bind obfuscated scripts to.. ❗️SGI-B-2.0 - pyt (🥉23 · ⭐ 2.2K · 💀) - A Static Analysis Tool for Detecting Security Vulnerabilities in.. ❗️GPL-2.0 - dlint (🥉20 · ⭐ 160 · 💀) - Dlint is a tool for encouraging best coding practices and helping.. BSD-3 - dodgy (🥉20 · ⭐ 120 · 💀) - Looks at Python code to search for things which look dodgy such as.. MIT


Virtual Environments

Back to top

pipenv (🥇45 · ⭐ 25K · 📈) - Python Development Workflow for Humans. MIT - [GitHub](https://github.com/pypa/pipenv) (👨‍💻 510 · 🔀 1.8K · 📦 140K · 📋 4.2K - 6% open · ⏱️ 24.05.2024):
git clone https://github.com/pypa/pipenv
- [PyPi](https://pypi.org/project/pipenv) (📥 11M / month · 📦 210 · ⏱️ 05.02.2024):
pip install pipenv
- [Conda](https://anaconda.org/conda-forge/pipenv) (📥 160K · ⏱️ 05.02.2024):
conda install -c conda-forge pipenv
virtualenv (🥈42 · ⭐ 4.7K) - Virtual Python Environment builder. MIT - [GitHub](https://github.com/pypa/virtualenv) (👨‍💻 280 · 🔀 1K · 📦 390K · 📋 1.3K - 1% open · ⏱️ 24.05.2024):
git clone https://github.com/pypa/virtualenv
- [PyPi](https://pypi.org/project/virtualenv) (📥 130M / month · 📦 1.5K · ⏱️ 13.05.2024):
pip install virtualenv
- [Conda](https://anaconda.org/conda-forge/virtualenv) (📥 6.9M · ⏱️ 14.05.2024):
conda install -c conda-forge virtualenv
nodeenv (🥈35 · ⭐ 1.7K) - Virtual environment for Node.js & integrator with virtualenv. BSD-3 - [GitHub](https://github.com/ekalinin/nodeenv) (👨‍💻 98 · 🔀 200 · 📦 85K · 📋 190 - 24% open · ⏱️ 28.05.2024):
git clone https://github.com/ekalinin/nodeenv
- [PyPi](https://pypi.org/project/nodeenv) (📥 22M / month · 📦 210 · ⏱️ 28.05.2024):
pip install nodeenv
- [Conda](https://anaconda.org/conda-forge/nodeenv) (📥 3.9M · ⏱️ 16.06.2023):
conda install -c conda-forge nodeenv
pyenv (🥈34 · ⭐ 37K) - Simple Python version management. MIT - [GitHub](https://github.com/pyenv/pyenv) (👨‍💻 440 · 🔀 2.9K · 📦 21 · 📋 1.7K - 2% open · ⏱️ 27.05.2024):
git clone https://github.com/pyenv/pyenv
- [PyPi](https://pypi.org/project/pyenv) (📥 12K / month · ⏱️ 12.01.2019):
pip install pyenv
pyenv-virtualenv (🥉23 · ⭐ 6.1K) - a pyenv plugin to manage virtualenv (a.k.a. python-virtualenv). MIT - [GitHub](https://github.com/pyenv/pyenv-virtualenv) (👨‍💻 61 · 🔀 390 · 📦 21 · 📋 350 - 31% open · ⏱️ 09.04.2024):
git clone https://github.com/pyenv/pyenv-virtualenv
pyenv-installer (🥉16 · ⭐ 3.9K) - This tool is used to install `pyenv` and friends. MIT - [GitHub](https://github.com/pyenv/pyenv-installer) (👨‍💻 40 · 🔀 420 · 📋 81 - 3% open · ⏱️ 21.04.2024):
git clone https://github.com/pyenv/pyenv-installer
freshenv (🥉13 · ⭐ 170 · 💤) - Provision, share, manage local and cloud developer environments. MPL-2.0 - [GitHub](https://github.com/raiyanyahya/freshenv) (👨‍💻 3 · 🔀 3 · 📋 5 - 40% open · ⏱️ 13.10.2023):
git clone https://github.com/raiyanyahya/freshenv
- [PyPi](https://pypi.org/project/freshenv) (📥 240 / month · ⏱️ 06.11.2022):
pip install freshenv
- [Conda](https://anaconda.org/raiyanyahya/freshenv):
conda install -c raiyanyahya freshenv
Show 3 hidden projects... - vex (🥉20 · ⭐ 370 · 💀) - Run a command in the named virtualenv. MIT - dh-virtualenv (🥉17 · ⭐ 1.6K · 💀) - Python virtualenvs in Debian packages. ❗️GPL-2.0 - pipenv-pipes (🥉14 · ⭐ 130 · 💀) - A PipEnv Environment Switcher. MIT


Dependency & Package Managers

Back to top

pip (🥇48 · ⭐ 9.3K) - The Python package installer. MIT - [GitHub](https://github.com/pypa/pip) (👨‍💻 790 · 🔀 3K · 📦 190K · 📋 7.3K - 14% open · ⏱️ 28.05.2024):
git clone https://github.com/pypa/pip
- [PyPi](https://pypi.org/project/pip) (📥 380M / month · 📦 4.1K · ⏱️ 06.05.2024):
pip install pip
- [Conda](https://anaconda.org/conda-forge/pip) (📥 110M · ⏱️ 03.02.2024):
conda install -c conda-forge pip
conda (🥇43 · ⭐ 6.2K) - A system-level, binary package and environment manager running on all.. BSD-3 - [GitHub](https://github.com/conda/conda) (👨‍💻 460 · 🔀 1.5K · 📥 1.3K · 📦 47K · 📋 9.7K - 7% open · ⏱️ 30.05.2024):
git clone https://github.com/conda/conda
- [PyPi](https://pypi.org/project/conda) (📥 160K / month · 📦 76 · ⏱️ 22.04.2017):
pip install conda
- [Conda](https://anaconda.org/conda-forge/conda) (📥 51M · ⏱️ 13.05.2024):
conda install -c conda-forge conda
poetry (🥈41 · ⭐ 30K) - Python packaging and dependency management made easy. MIT - [GitHub](https://github.com/python-poetry/poetry) (👨‍💻 560 · 🔀 2.2K · 📥 15M · 📋 5.8K - 11% open · ⏱️ 28.05.2024):
git clone https://github.com/python-poetry/poetry
- [PyPi](https://pypi.org/project/poetry) (📥 35M / month · 📦 590 · ⏱️ 08.05.2024):
pip install poetry
- [Conda](https://anaconda.org/conda-forge/poetry) (📥 1.2M · ⏱️ 09.05.2024):
conda install -c conda-forge poetry
pip-tools (🥈39 · ⭐ 7.5K) - A set of tools to keep your pinned Python dependencies fresh. BSD-3 - [GitHub](https://github.com/jazzband/pip-tools) (👨‍💻 220 · 🔀 600 · 📦 28K · 📋 1.1K - 15% open · ⏱️ 13.05.2024):
git clone https://github.com/jazzband/pip-tools
- [PyPi](https://pypi.org/project/pip-tools) (📥 12M / month · 📦 2K · ⏱️ 06.03.2024):
pip install pip-tools
- [Conda](https://anaconda.org/conda-forge/pip-tools) (📥 150K · ⏱️ 06.03.2024):
conda install -c conda-forge pip-tools
pipx (🥈36 · ⭐ 9.2K) - Install and Run Python Applications in Isolated Environments. MIT - [GitHub](https://github.com/pypa/pipx) (👨‍💻 150 · 🔀 380 · 📥 83K · 📦 2.2K · 📋 730 - 10% open · ⏱️ 29.05.2024):
git clone https://github.com/pypa/pipx
- [PyPi](https://pypi.org/project/pipx) (📥 6.4M / month · 📦 39 · ⏱️ 29.03.2024):
pip install pipx
- [Conda](https://anaconda.org/conda-forge/pipx) (📥 53K · ⏱️ 29.03.2024):
conda install -c conda-forge pipx
PDM (🥈36 · ⭐ 6.7K) - A modern Python package and dependency manager supporting the latest PEP.. MIT - [GitHub](https://github.com/pdm-project/pdm) (👨‍💻 180 · 🔀 340 · 📥 5 · 📦 300 · 📋 1.6K - 3% open · ⏱️ 30.05.2024):
git clone https://github.com/pdm-project/pdm
- [PyPi](https://pypi.org/project/pdm) (📥 820K / month · 📦 140 · ⏱️ 30.05.2024):
pip install pdm
- [Conda](https://anaconda.org/conda-forge/pdm) (📥 320K · ⏱️ 30.05.2024):
conda install -c conda-forge pdm
pipreqs (🥉33 · ⭐ 5.9K) - pipreqs - Generate pip requirements.txt file based on imports of any.. Apache-2 - [GitHub](https://github.com/bndr/pipreqs) (👨‍💻 66 · 🔀 380 · 📦 30K · 📋 300 - 63% open · ⏱️ 18.02.2024):
git clone https://github.com/bndr/pipreqs
- [PyPi](https://pypi.org/project/pipreqs) (📥 780K / month · 📦 230 · ⏱️ 18.02.2024):
pip install pipreqs
- [Conda](https://anaconda.org/conda-forge/pipreqs) (📥 49K · ⏱️ 16.06.2023):
conda install -c conda-forge pipreqs
mamba (🥉29 · ⭐ 6.4K) - The Fast Cross-Platform Package Manager. BSD-3 - [GitHub](https://github.com/mamba-org/mamba) (👨‍💻 150 · 🔀 340 · 📋 1.7K - 30% open · ⏱️ 28.05.2024):
git clone https://github.com/mamba-org/mamba
- [Conda](https://anaconda.org/conda-forge/mamba) (📥 12M · ⏱️ 06.05.2024):
conda install -c conda-forge mamba
pip-run (🥉23 · ⭐ 130) - pip-run - dynamic dependency loader for Python. MIT - [GitHub](https://github.com/jaraco/pip-run) (👨‍💻 24 · 🔀 19 · 📦 64 · 📋 72 - 6% open · ⏱️ 24.04.2024):
git clone https://github.com/jaraco/pip-run
- [PyPi](https://pypi.org/project/pip-run) (📥 17K / month · 📦 9 · ⏱️ 10.02.2024):
pip install pip-run
Show 2 hidden projects... - dephell (🥉25 · ⭐ 1.8K · 💀) - Python project management. Manage packages: convert between formats,.. MIT - pyflow (🥉22 · ⭐ 1.3K · 💀) - An installation and dependency system for Python. MIT


Code Metrics & Complexity

Back to top

prospector (🥇32 · ⭐ 1.9K) - Inspects Python source files and provides information about.. ❗️GPL-2.0 - [GitHub](https://github.com/landscapeio/prospector) (👨‍💻 90 · 🔀 170 · 📦 4.9K · 📋 380 - 16% open · ⏱️ 16.04.2024):
git clone https://github.com/PyCQA/prospector
- [PyPi](https://pypi.org/project/prospector) (📥 1.1M / month · 📦 250 · ⏱️ 18.10.2023):
pip install prospector
- [Conda](https://anaconda.org/conda-forge/prospector) (📥 110K · ⏱️ 19.10.2023):
conda install -c conda-forge prospector
mccabe (🥈31 · ⭐ 630) - McCabe complexity checker for Python. ❗️Saxpath - [GitHub](https://github.com/PyCQA/mccabe) (👨‍💻 24 · 🔀 60 · 📦 450K · 📋 52 - 13% open · ⏱️ 03.12.2023):
git clone https://github.com/PyCQA/mccabe
- [PyPi](https://pypi.org/project/mccabe) (📥 46M / month · 📦 860 · ⏱️ 24.01.2022):
pip install mccabe
- [Conda](https://anaconda.org/conda-forge/mccabe) (📥 8.2M · ⏱️ 16.06.2023):
conda install -c conda-forge mccabe
radon (🥈30 · ⭐ 1.6K · 💤) - Various code metrics for Python code. MIT - [GitHub](https://github.com/rubik/radon) (👨‍💻 60 · 🔀 110 · 📦 5K · 📋 180 - 18% open · ⏱️ 06.10.2023):
git clone https://github.com/rubik/radon
- [PyPi](https://pypi.org/project/radon) (📥 560K / month · 📦 190 · ⏱️ 26.03.2023):
pip install radon
- [Conda](https://anaconda.org/conda-forge/radon) (📥 72K · ⏱️ 16.06.2023):
conda install -c conda-forge radon
wily (🥉26 · ⭐ 1.2K · 💤) - A Python application for tracking, reporting on timing and.. Apache-2 - [GitHub](https://github.com/tonybaloney/wily) (👨‍💻 24 · 🔀 56 · 📦 220 · 📋 110 - 32% open · ⏱️ 11.10.2023):
git clone https://github.com/tonybaloney/wily
- [PyPi](https://pypi.org/project/wily) (📥 45K / month · 📦 2 · ⏱️ 11.10.2023):
pip install wily
xenon (🥉24 · ⭐ 240 · 💤) - Monitoring tool based on radon. MIT - [GitHub](https://github.com/rubik/xenon) (👨‍💻 10 · 🔀 22 · 📦 1.2K · 📋 36 - 22% open · ⏱️ 12.08.2023):
git clone https://github.com/rubik/xenon
- [PyPi](https://pypi.org/project/xenon) (📥 160K / month · 📦 44 · ⏱️ 12.08.2023):
pip install xenon
- [Conda](https://anaconda.org/conda-forge/xenon) (📥 23K · ⏱️ 16.06.2023):
conda install -c conda-forge xenon
Show 1 hidden projects... - cohesion (🥉15 · ⭐ 230 · 💀) - A tool for measuring Python class cohesion. ❗️GPL-3.0


Logging

Back to top

rich (🥇43 · ⭐ 48K) - Rich is a Python library for rich text and beautiful formatting in the terminal. MIT - [GitHub](https://github.com/Textualize/rich) (👨‍💻 240 · 🔀 1.7K · 📦 210K · 📋 1.4K - 20% open · ⏱️ 01.05.2024):
git clone https://github.com/Textualize/rich
- [PyPi](https://pypi.org/project/rich) (📥 65M / month · 📦 11K · ⏱️ 28.02.2024):
pip install rich
- [Conda](https://anaconda.org/conda-forge/rich) (📥 7M · ⏱️ 28.02.2024):
conda install -c conda-forge rich
tqdm (🥇42 · ⭐ 28K) - A Fast, Extensible Progress Bar for Python and CLI. MPL-2.0 - [GitHub](https://github.com/tqdm/tqdm) (👨‍💻 120 · 🔀 1.3K · 📥 11K · 📦 740K · 📋 1.1K - 46% open · ⏱️ 02.05.2024):
git clone https://github.com/tqdm/tqdm
- [PyPi](https://pypi.org/project/tqdm) (📥 99M / month · 📦 29K · ⏱️ 02.05.2024):
pip install tqdm
- [Conda](https://anaconda.org/conda-forge/tqdm) (📥 27M · ⏱️ 04.05.2024):
conda install -c conda-forge tqdm
- [Docker Hub](https://hub.docker.com/r/tqdm/tqdm) (📥 4.5K · ⭐ 2 · ⏱️ 25.05.2024):
docker pull tqdm/tqdm
loguru (🥇38 · ⭐ 18K) - Python logging made (stupidly) simple. MIT - [GitHub](https://github.com/Delgan/loguru) (👨‍💻 53 · 🔀 670 · 📦 85K · 📋 960 - 16% open · ⏱️ 17.05.2024):
git clone https://github.com/Delgan/loguru
- [PyPi](https://pypi.org/project/loguru) (📥 25M / month · 📦 5.7K · ⏱️ 11.09.2023):
pip install loguru
- [Conda](https://anaconda.org/conda-forge/loguru) (📥 2.2M · ⏱️ 24.09.2023):
conda install -c conda-forge loguru
sentry-sdk (🥇38 · ⭐ 1.8K) - The official Python SDK for Sentry.io. MIT - [GitHub](https://github.com/getsentry/sentry-python) (👨‍💻 220 · 🔀 460 · 📥 2.1K · 📋 1.3K - 15% open · ⏱️ 29.05.2024):
git clone https://github.com/getsentry/sentry-python
- [PyPi](https://pypi.org/project/sentry-sdk) (📥 33M / month · 📦 810 · ⏱️ 23.05.2024):
pip install sentry-sdk
- [Conda](https://anaconda.org/conda-forge/sentry-sdk) (📥 800K · ⏱️ 23.05.2024):
conda install -c conda-forge sentry-sdk
structlog (🥈37 · ⭐ 3.2K) - Simple, powerful, and fast logging for Python. Apache-2 - [GitHub](https://github.com/hynek/structlog) (👨‍💻 120 · 🔀 210 · 📦 12K · 📋 320 - 7% open · ⏱️ 27.05.2024):
git clone https://github.com/hynek/structlog
- [PyPi](https://pypi.org/project/structlog) (📥 27M / month · 📦 950 · ⏱️ 27.05.2024):
pip install structlog
- [Conda](https://anaconda.org/conda-forge/structlog) (📥 400K · ⏱️ 30.05.2024):
conda install -c conda-forge structlog
progressbar2 (🥈33 · ⭐ 850 · 📉) - Progressbar 2 - A progress bar for Python 2 and Python 3 -.. BSD-3 - [GitHub](https://github.com/wolph/python-progressbar) (👨‍💻 45 · 🔀 140 · 📥 2.3K · 📋 220 - 2% open · ⏱️ 29.04.2024):
git clone https://github.com/WoLpH/python-progressbar
- [PyPi](https://pypi.org/project/progressbar2) (📥 27M / month · 📦 910 · ⏱️ 05.03.2024):
pip install progressbar2
- [Conda](https://anaconda.org/conda-forge/progressbar2) (📥 1.3M · ⏱️ 07.03.2024):
conda install -c conda-forge progressbar2
logbook (🥉32 · ⭐ 1.5K) - A cool logging replacement for Python. BSD-3 - [GitHub](https://github.com/getlogbook/logbook) (👨‍💻 79 · 🔀 160 · 📥 340 · 📦 6K · 📋 190 - 28% open · ⏱️ 10.02.2024):
git clone https://github.com/getlogbook/logbook
- [PyPi](https://pypi.org/project/logbook) (📥 4.3M / month · 📦 260 · ⏱️ 10.11.2023):
pip install logbook
- [Conda](https://anaconda.org/conda-forge/logbook) (📥 180K · ⏱️ 11.11.2023):
conda install -c conda-forge logbook
alive-progress (🥉30 · ⭐ 5.2K) - A new kind of Progress Bar, with real-time throughput, ETA, and.. MIT - [GitHub](https://github.com/rsalmei/alive-progress) (👨‍💻 7 · 🔀 200 · 📦 3.2K · 📋 220 - 9% open · ⏱️ 02.12.2023):
git clone https://github.com/rsalmei/alive-progress
- [PyPi](https://pypi.org/project/alive-progress) (📥 770K / month · 📦 420 · ⏱️ 08.11.2023):
pip install alive-progress
- [Conda](https://anaconda.org/conda-forge/alive-progress) (📥 58K · ⏱️ 09.11.2023):
conda install -c conda-forge alive-progress
colorlog (🥉30 · ⭐ 860) - A colored formatter for the python logging module. MIT - [GitHub](https://github.com/borntyping/python-colorlog) (👨‍💻 33 · 🔀 86 · 📦 38K · ⏱️ 26.01.2024):
git clone https://github.com/borntyping/python-colorlog
- [PyPi](https://pypi.org/project/colorlog) (📥 14M / month · 📦 1.7K · ⏱️ 26.01.2024):
pip install colorlog
- [Conda](https://anaconda.org/conda-forge/colorlog) (📥 2.4M · ⏱️ 26.01.2024):
conda install -c conda-forge colorlog
notifiers (🥉28 · ⭐ 2.6K) - The easy way to send notifications. MIT - [GitHub](https://github.com/liiight/notifiers) (👨‍💻 21 · 🔀 110 · 📦 1.2K · 📋 120 - 42% open · ⏱️ 01.05.2024):
git clone https://github.com/liiight/notifiers
- [PyPi](https://pypi.org/project/notifiers) (📥 1.4M / month · 📦 36 · ⏱️ 10.02.2022):
pip install notifiers
- [Conda](https://anaconda.org/conda-forge/notifiers) (📥 38K · ⏱️ 16.06.2023):
conda install -c conda-forge notifiers
wasabi (🥉28 · ⭐ 440) - A lightweight console printing and formatting toolkit. MIT - [GitHub](https://github.com/explosion/wasabi) (👨‍💻 14 · 🔀 22 · 📦 46K · 📋 9 - 44% open · ⏱️ 03.11.2023):
git clone https://github.com/ines/wasabi
- [PyPi](https://pypi.org/project/wasabi) (📥 11M / month · 📦 210 · ⏱️ 07.06.2023):
pip install wasabi
- [Conda](https://anaconda.org/conda-forge/wasabi) (📥 1.3M · ⏱️ 11.05.2024):
conda install -c conda-forge wasabi
stackprinter (🥉26 · ⭐ 1.3K) - Debugging-friendly exceptions for Python. MIT - [GitHub](https://github.com/cknd/stackprinter) (👨‍💻 7 · 🔀 38 · 📦 350 · 📋 36 - 30% open · ⏱️ 13.03.2024):
git clone https://github.com/cknd/stackprinter
- [PyPi](https://pypi.org/project/stackprinter) (📥 310K / month · 📦 48 · ⏱️ 13.03.2024):
pip install stackprinter
- [Conda](https://anaconda.org/conda-forge/stackprinter) (📥 10K · ⏱️ 16.06.2023):
conda install -c conda-forge stackprinter
python-devtools (🥉23 · ⭐ 960) - Dev tools for python. MIT - [GitHub](https://github.com/samuelcolvin/python-devtools) (👨‍💻 13 · 🔀 49 · 📦 5.6K · 📋 63 - 38% open · ⏱️ 26.01.2024):
git clone https://github.com/samuelcolvin/python-devtools
- [PyPi](https://pypi.org/project/python-devtools) (📥 1.3K / month · ⏱️ 21.08.2017):
pip install python-devtools
- [Conda](https://anaconda.org/conda-forge/python-devtools) (📥 23K · ⏱️ 06.09.2023):
conda install -c conda-forge python-devtools
Show 8 hidden projects... - python-json-logger (🥈35 · ⭐ 1.7K · 💀) - Json Formatter for the standard python logger. BSD-2 - tabulate (🥈33 · ⭐ 2K · 💀) - Pretty-print tabular data in Python, a library and a command-line.. MIT - prettytable (🥈33 · ⭐ 1.3K) - Display tabular data in a visually appealing ASCII table.. ❗️BSD-1-Clause - python-coloredlogs (🥉28 · ⭐ 540 · 💀) - Colored terminal output for Pythons logging module. MIT - rebound (🥉25 · ⭐ 4.1K · 💀) - Command-line tool that instantly fetches Stack Overflow results.. ❗️GPL-2.0 - PrettyErrors (🥉25 · ⭐ 2.8K · 💀) - Prettify Python exception output to make it legible. MIT - better-exceptions (🥉24 · ⭐ 4.6K · 💀) - Pretty and useful exceptions in Python, automatically. MIT - tbvaccine (🥉16 · ⭐ 380 · 💀) - A small utility to pretty-print Python tracebacks. MIT


Shell

Back to top

xxh (🥉25 · ⭐ 5K) - Bring your favorite shell wherever you go through the ssh. Xonsh shell, fish,.. BSD-2 - [GitHub](https://github.com/xxh/xxh) (👨‍💻 27 · 🔀 100 · 📥 2.5K · 📦 87 · 📋 87 - 27% open · ⏱️ 06.04.2024):
git clone https://github.com/xxh/xxh
- [PyPi](https://pypi.org/project/xxh-xxh) (📥 800 / month · ⏱️ 06.04.2024):
pip install xxh-xxh
Show 1 hidden projects... - xonsh (🥇34 · ⭐ 8.1K) - Python-powered, cross-platform, Unix-gazing shell. ❗️BSD-1-Clause


Documentation

Back to top

🔗 best-of-mkdocs ( ⭐ 860) - Collection of MkDocs projects and plugins.

sphinx (🥇46 · ⭐ 6.1K) - The Sphinx documentation generator. BSD-3 - [GitHub](https://github.com/sphinx-doc/sphinx) (👨‍💻 830 · 🔀 2K · 📦 380K · 📋 7K - 17% open · ⏱️ 29.05.2024):
git clone https://github.com/sphinx-doc/sphinx
- [PyPi](https://pypi.org/project/sphinx) (📥 15M / month · 📦 22K · ⏱️ 19.04.2024):
pip install sphinx
- [Conda](https://anaconda.org/conda-forge/sphinx) (📥 9.2M · ⏱️ 19.04.2024):
conda install -c conda-forge sphinx
mkdocs-material (🥇42 · ⭐ 19K) - Documentation that simply works. MIT - [GitHub](https://github.com/squidfunk/mkdocs-material) (👨‍💻 270 · 🔀 3.3K · 📦 48K · 📋 2.3K - 0% open · ⏱️ 29.05.2024):
git clone https://github.com/squidfunk/mkdocs-material
- [PyPi](https://pypi.org/project/mkdocs-material) (📥 4.5M / month · 📦 2.5K · ⏱️ 27.05.2024):
pip install mkdocs-material
- [Conda](https://anaconda.org/conda-forge/mkdocs-material) (📥 390K · ⏱️ 20.05.2024):
conda install -c conda-forge mkdocs-material
mkdocs (🥇42 · ⭐ 18K) - Project documentation with Markdown. BSD-2 - [GitHub](https://github.com/mkdocs/mkdocs) (👨‍💻 250 · 🔀 2.4K · 📦 62K · 📋 2K - 3% open · ⏱️ 10.05.2024):
git clone https://github.com/mkdocs/mkdocs
- [PyPi](https://pypi.org/project/mkdocs) (📥 3.7M / month · 📦 3.5K · ⏱️ 20.04.2024):
pip install mkdocs
- [Conda](https://anaconda.org/conda-forge/mkdocs) (📥 340K · ⏱️ 27.04.2024):
conda install -c conda-forge mkdocs
sphinx_rtd_theme (🥈36 · ⭐ 4.7K) - Sphinx theme for readthedocs.org. MIT - [GitHub](https://github.com/readthedocs/sphinx_rtd_theme) (👨‍💻 120 · 🔀 1.7K · 📦 16 · 📋 870 - 28% open · ⏱️ 25.01.2024):
git clone https://github.com/readthedocs/sphinx_rtd_theme
- [PyPi](https://pypi.org/project/sphinx_rtd_theme) (📥 5M / month · 📦 12K · ⏱️ 28.11.2023):
pip install sphinx_rtd_theme
- [Conda](https://anaconda.org/conda-forge/sphinx_rtd_theme) (📥 3.8M · ⏱️ 28.11.2023):
conda install -c conda-forge sphinx_rtd_theme
alabaster (🥈33 · ⭐ 720) - Lightweight, configurable Sphinx theme. BSD-3 - [GitHub](https://github.com/sphinx-doc/alabaster) (👨‍💻 37 · 🔀 180 · 📦 130K · 📋 120 - 49% open · ⏱️ 10.01.2024):
git clone https://github.com/bitprophet/alabaster
- [PyPi](https://pypi.org/project/alabaster) (📥 11M / month · 📦 580 · ⏱️ 10.01.2024):
pip install alabaster
- [Conda](https://anaconda.org/conda-forge/alabaster) (📥 7.5M · ⏱️ 10.01.2024):
conda install -c conda-forge alabaster
mkdocstrings (🥈32 · ⭐ 1.6K) - Automatic documentation from sources, for MkDocs. ISC - [GitHub](https://github.com/mkdocstrings/mkdocstrings) (👨‍💻 42 · 🔀 100 · 📦 13K · 📋 390 - 12% open · ⏱️ 05.05.2024):
git clone https://github.com/mkdocstrings/mkdocstrings
- [PyPi](https://pypi.org/project/mkdocstrings) (📥 1.3M / month · 📦 970 · ⏱️ 05.05.2024):
pip install mkdocstrings
- [Conda](https://anaconda.org/conda-forge/mkdocstrings) (📥 120K · ⏱️ 05.05.2024):
conda install -c conda-forge mkdocstrings
breathe (🥈32 · ⭐ 730 · 💤) - ReStructuredText and Sphinx bridge to Doxygen. BSD-3 - [GitHub](https://github.com/breathe-doc/breathe) (👨‍💻 110 · 🔀 190 · 📥 620 · 📦 14K · 📋 580 - 31% open · ⏱️ 24.10.2023):
git clone https://github.com/michaeljones/breathe
- [PyPi](https://pypi.org/project/breathe) (📥 760K / month · 📦 86 · ⏱️ 28.02.2023):
pip install breathe
- [Conda](https://anaconda.org/conda-forge/breathe) (📥 560K · ⏱️ 04.07.2023):
conda install -c conda-forge breathe
sphinx-autodoc-typehints (🥈32 · ⭐ 530) - Type hints support for the Sphinx autodoc extension. MIT - [GitHub](https://github.com/tox-dev/sphinx-autodoc-typehints) (👨‍💻 55 · 🔀 100 · 📦 50K · 📋 200 - 19% open · ⏱️ 24.05.2024):
git clone https://github.com/tox-dev/sphinx-autodoc-typehints
- [PyPi](https://pypi.org/project/sphinx-autodoc-typehints) (📥 1.8M / month · 📦 2.7K · ⏱️ 17.04.2024):
pip install sphinx-autodoc-typehints
- [Conda](https://anaconda.org/conda-forge/sphinx-autodoc-typehints) (📥 700K · ⏱️ 18.04.2024):
conda install -c conda-forge sphinx-autodoc-typehints
Griffe (🥈32 · ⭐ 260) - Signatures for entire Python programs. Extract the structure, the frame,.. ISC - [GitHub](https://github.com/mkdocstrings/griffe) (👨‍💻 28 · 🔀 37 · 📦 5.5K · 📋 200 - 14% open · ⏱️ 23.05.2024):
git clone https://github.com/mkdocstrings/griffe
- [PyPi](https://pypi.org/project/griffe) (📥 1.4M / month · 📦 100 · ⏱️ 23.05.2024):
pip install griffe
- [Conda](https://anaconda.org/conda-forge/griffe) (📥 250K · ⏱️ 24.05.2024):
conda install -c conda-forge griffe
pdoc (🥈31 · ⭐ 1.8K · 📉) - API Documentation for Python Projects. Unlicense - [GitHub](https://github.com/mitmproxy/pdoc) (👨‍💻 66 · 🔀 190 · 📦 2.8K · 📋 370 - 7% open · ⏱️ 18.05.2024):
git clone https://github.com/mitmproxy/pdoc
- [PyPi](https://pypi.org/project/pdoc) (📥 260K / month · 📦 400 · ⏱️ 18.05.2024):
pip install pdoc
sphinx-autobuild (🥈31 · ⭐ 520) - Watch a Sphinx directory and rebuild the documentation.. MIT - [GitHub](https://github.com/sphinx-doc/sphinx-autobuild) (👨‍💻 30 · 🔀 75 · 📦 23K · 📋 90 - 25% open · ⏱️ 06.05.2024):
git clone https://github.com/executablebooks/sphinx-autobuild
- [PyPi](https://pypi.org/project/sphinx-autobuild) (📥 920K / month · 📦 1.4K · ⏱️ 16.04.2024):
pip install sphinx-autobuild
- [Conda](https://anaconda.org/conda-forge/sphinx-autobuild) (📥 250K · ⏱️ 17.04.2024):
conda install -c conda-forge sphinx-autobuild
pdoc3 (🥉29 · ⭐ 1.1K) - Auto-generate API documentation for Python projects. ❗️AGPL-3.0 - [GitHub](https://github.com/pdoc3/pdoc) (👨‍💻 61 · 🔀 140 · 📦 4.1K · 📋 330 - 37% open · ⏱️ 11.03.2024):
git clone https://github.com/pdoc3/pdoc
- [PyPi](https://pypi.org/project/pdoc3) (📥 240K / month · 📦 390 · ⏱️ 03.08.2021):
pip install pdoc3
- [Conda](https://anaconda.org/anaconda/pdoc3) (📥 1.9K · ⏱️ 16.06.2023):
conda install -c anaconda pdoc3
interrogate (🥉29 · ⭐ 550) - Explain yourself! Interrogate a codebase for docstring coverage. MIT - [GitHub](https://github.com/econchick/interrogate) (👨‍💻 17 · 🔀 45 · 📦 6.5K · 📋 68 - 45% open · ⏱️ 20.05.2024):
git clone https://github.com/econchick/interrogate
- [PyPi](https://pypi.org/project/interrogate) (📥 140K / month · 📦 360 · ⏱️ 07.04.2024):
pip install interrogate
blacken-docs (🥉27 · ⭐ 620) - Run `black` on python code blocks in documentation files. MIT - [GitHub](https://github.com/adamchainz/blacken-docs) (👨‍💻 22 · 🔀 41 · 📦 930 · 📋 75 - 12% open · ⏱️ 28.05.2024):
git clone https://github.com/asottile/blacken-docs
- [PyPi](https://pypi.org/project/blacken-docs) (📥 120K / month · 📦 83 · ⏱️ 16.08.2023):
pip install blacken-docs
- [Conda](https://anaconda.org/conda-forge/blacken-docs) (📥 35K · ⏱️ 16.08.2023):
conda install -c conda-forge blacken-docs
mkdocs-awesome-pages-plugin (🥉24 · ⭐ 440) - An MkDocs plugin that simplifies configuring page.. MIT - [GitHub](https://github.com/lukasgeiter/mkdocs-awesome-pages-plugin) (👨‍💻 8 · 🔀 34 · 📦 4.2K · 📋 83 - 24% open · ⏱️ 09.03.2024):
git clone https://github.com/lukasgeiter/mkdocs-awesome-pages-plugin
- [PyPi](https://pypi.org/project/mkdocs-awesome-pages-plugin) (📥 290K / month · 📦 150 · ⏱️ 19.08.2023):
pip install mkdocs-awesome-pages-plugin
sphinx-markdown-builder (🥉24 · ⭐ 160 · 💤) - DISCONTINUED: sphinx builder that outputs markdown.. MIT - [GitHub](https://github.com/clayrisser/sphinx-markdown-builder) (👨‍💻 19 · 🔀 60 · 📦 840 · ⏱️ 24.06.2023):
git clone https://github.com/clayrisser/sphinx-markdown-builder
- [PyPi](https://pypi.org/project/sphinx-markdown-builder) (📥 72K / month · 📦 120 · ⏱️ 16.01.2024):
pip install sphinx-markdown-builder
lazydocs (🥉23 · ⭐ 180) - Generate markdown API documentation from Google-style Python docstring... MIT - [GitHub](https://github.com/ml-tooling/lazydocs) (👨‍💻 11 · 🔀 37 · 📦 220 · 📋 34 - 17% open · ⏱️ 16.01.2024):
git clone https://github.com/ml-tooling/lazydocs
- [PyPi](https://pypi.org/project/lazydocs) (📥 8.2K / month · 📦 22 · ⏱️ 27.07.2021):
pip install lazydocs
releases (🥉23 · ⭐ 170) - A powerful Sphinx changelog-generating extension. BSD-2 - [GitHub](https://github.com/bitprophet/releases) (👨‍💻 10 · 🔀 41 · 📦 630 · 📋 77 - 40% open · ⏱️ 01.12.2023):
git clone https://github.com/bitprophet/releases
- [PyPi](https://pypi.org/project/releases) (📥 16K / month · 📦 39 · ⏱️ 28.04.2023):
pip install releases
- [Conda](https://anaconda.org/conda-forge/sphinx-releases) (📥 51K · ⏱️ 16.06.2023):
conda install -c conda-forge sphinx-releases
mkdocs-print-site-plugin (🥉23 · ⭐ 120) - MkDocs Plugin that adds an additional page that.. MIT - [GitHub](https://github.com/timvink/mkdocs-print-site-plugin) (👨‍💻 8 · 🔀 19 · 📦 310 · 📋 91 - 15% open · ⏱️ 23.05.2024):
git clone https://github.com/timvink/mkdocs-print-site-plugin
- [PyPi](https://pypi.org/project/mkdocs-print-site-plugin) (📥 21K / month · 📦 10 · ⏱️ 08.05.2024):
pip install mkdocs-print-site-plugin
Show 9 hidden projects... - numpydoc (🥈31 · ⭐ 280) - Numpys Sphinx extensions. ❗Unlicensed - sphinx-bootstrap-theme (🥉26 · ⭐ 590 · 💀) - Sphinx Bootstrap Theme. MIT - pytkdocs (🥉24 · ⭐ 49 · 💀) - Load Python objects documentation. ISC - mkdocs-with-pdf (🥉23 · ⭐ 310 · 💀) - Generate a single PDF file from MkDocs repository. MIT - portray (🥉22 · ⭐ 860 · 💀) - Your Project with Great Documentation. MIT - pycco (🥉22 · ⭐ 840 · 💀) - Literate-style documentation generator. MIT - mkdocs-pdf-export-plugin (🥉22 · ⭐ 310 · 💀) - An MkDocs plugin to export content pages as PDF files. MIT - mkdocs-git-revision-date-plugin (🥉20 · ⭐ 56 · 💀) - MkDocs plugin for setting revision date from git per.. MIT - mkdocs-versioning (🥉17 · ⭐ 40 · 💀) - A tool that allows for versioning sites built with.. MIT


Debugging Tools

Back to top

pyelftools (🥇33 · ⭐ 1.9K) - Parsing ELF and DWARF in Python. Unlicense - [GitHub](https://github.com/eliben/pyelftools) (👨‍💻 100 · 🔀 500 · 📦 7.6K · 📋 260 - 28% open · ⏱️ 15.05.2024):
git clone https://github.com/eliben/pyelftools
- [PyPi](https://pypi.org/project/pyelftools) (📥 3.9M / month · 📦 230 · ⏱️ 14.03.2024):
pip install pyelftools
- [Conda](https://anaconda.org/conda-forge/pyelftools) (📥 160K · ⏱️ 14.03.2024):
conda install -c conda-forge pyelftools
pudb (🥇32 · ⭐ 2.9K) - Full-screen console debugger for Python. MIT - [GitHub](https://github.com/inducer/pudb) (👨‍💻 95 · 🔀 220 · 📦 6.4K · 📋 340 - 46% open · ⏱️ 29.04.2024):
git clone https://github.com/inducer/pudb
- [PyPi](https://pypi.org/project/pudb) (📥 220K / month · 📦 94 · ⏱️ 16.01.2024):
pip install pudb
- [Conda](https://anaconda.org/conda-forge/pudb) (📥 260K · ⏱️ 16.06.2023):
conda install -c conda-forge pudb
PySnooper (🥈31 · ⭐ 16K) - Never use print for debugging again. MIT - [GitHub](https://github.com/cool-RR/PySnooper) (👨‍💻 27 · 🔀 950 · 📦 1.8K · 📋 130 - 20% open · ⏱️ 13.01.2024):
git clone https://github.com/cool-RR/PySnooper
- [PyPi](https://pypi.org/project/pysnooper) (📥 280K / month · 📦 49 · ⏱️ 15.07.2023):
pip install pysnooper
- [Conda](https://anaconda.org/conda-forge/pysnooper) (📥 76K · ⏱️ 27.07.2023):
conda install -c conda-forge pysnooper
ipdb (🥈31 · ⭐ 1.8K · 💤) - Integration of IPython pdb. BSD-3 - [GitHub](https://github.com/gotcha/ipdb) (👨‍💻 58 · 🔀 150 · 📦 56K · 📋 200 - 33% open · ⏱️ 03.08.2023):
git clone https://github.com/gotcha/ipdb
- [PyPi](https://pypi.org/project/ipdb) (📥 3.6M / month · 📦 1K · ⏱️ 09.03.2023):
pip install ipdb
- [Conda](https://anaconda.org/conda-forge/ipdb) (📥 460K · ⏱️ 16.06.2023):
conda install -c conda-forge ipdb
icecream (🥈29 · ⭐ 8.6K) - Never use print() to debug again. MIT - [GitHub](https://github.com/gruns/icecream) (👨‍💻 21 · 🔀 180 · 📦 21 · 📋 150 - 52% open · ⏱️ 01.02.2024):
git clone https://github.com/gruns/icecream
- [PyPi](https://pypi.org/project/icecream) (📥 430K / month · 📦 320 · ⏱️ 21.07.2022):
pip install icecream
- [Conda](https://anaconda.org/conda-forge/icecream) (📥 40K · ⏱️ 16.06.2023):
conda install -c conda-forge icecream
gdbgui (🥉28 · ⭐ 9.7K · 💤) - Browser-based frontend to gdb (gnu debugger). Add breakpoints,.. ❗️GPL-3.0 - [GitHub](https://github.com/cs01/gdbgui) (👨‍💻 45 · 🔀 550 · 📥 17K · 📦 400 · 📋 320 - 46% open · ⏱️ 18.10.2023):
git clone https://github.com/cs01/gdbgui
- [PyPi](https://pypi.org/project/gdbgui) (📥 9.6K / month · 📦 2 · ⏱️ 18.10.2023):
pip install gdbgui
python-hunter (🥉26 · ⭐ 780) - Hunter is a flexible code tracing toolkit. BSD-2 - [GitHub](https://github.com/ionelmc/python-hunter) (👨‍💻 9 · 🔀 45 · 📦 180 · 📋 98 - 44% open · ⏱️ 02.05.2024):
git clone https://github.com/ionelmc/python-hunter
- [PyPi](https://pypi.org/project/hunter) (📥 13K / month · 📦 17 · ⏱️ 02.05.2024):
pip install hunter
- [Conda](https://anaconda.org/conda-forge/hunter) (📥 68K · ⏱️ 02.05.2024):
conda install -c conda-forge hunter
python-manhole (🥉22 · ⭐ 370) - Debugging manhole for python applications. BSD-2 - [GitHub](https://github.com/ionelmc/python-manhole) (👨‍💻 11 · 🔀 24 · 📦 280 · 📋 22 - 31% open · ⏱️ 18.12.2023):
git clone https://github.com/ionelmc/python-manhole
- [PyPi](https://pypi.org/project/manhole) (📥 52K / month · 📦 6 · ⏱️ 08.04.2021):
pip install manhole
- [Conda](https://anaconda.org/conda-forge/manhole) (📥 22K · ⏱️ 16.06.2023):
conda install -c conda-forge manhole
pyrasite (🥉21 · ⭐ 2.8K · 💤) - Inject code into running Python processes. ❗️GPL-3.0 - [GitHub](https://github.com/lmacken/pyrasite) (👨‍💻 24 · 🔀 200 · 📦 57 · 📋 57 - 71% open · ⏱️ 08.10.2023):
git clone https://github.com/lmacken/pyrasite
- [PyPi](https://pypi.org/project/pyrasite) (📥 6.6K / month · ⏱️ 09.05.2012):
pip install pyrasite
reloadium (🥉20 · ⭐ 2.7K) - Hot Reloading and Profiling for Python. Apache-2 - [GitHub](https://github.com/reloadware/reloadium) (👨‍💻 3 · 🔀 55 · 📋 140 - 13% open · ⏱️ 24.05.2024):
git clone https://github.com/reloadware/reloadium
- [PyPi](https://pypi.org/project/reloadium) (📥 4.5K / month · ⏱️ 22.05.2024):
pip install reloadium
Birdseye (🥉20 · ⭐ 1.6K · 💤) - Graphical Python debugger which lets you easily view the values of.. MIT - [GitHub](https://github.com/alexmojaki/birdseye) (👨‍💻 10 · 🔀 74 · 📋 57 - 36% open · ⏱️ 16.10.2023):
git clone https://github.com/alexmojaki/birdseye
- [PyPi](https://pypi.org/project/birdseye) (📥 1.2K / month · 📦 8 · ⏱️ 16.10.2023):
pip install birdseye
Show 2 hidden projects... - pdbpp (🥉28 · ⭐ 1.3K · 💀) - pdb++, a drop-in replacement for pdb (the Python debugger). BSD-3 - snoop (🥉24 · ⭐ 1.2K · 💀) - A powerful set of Python debugging tools, based on PySnooper. MIT


Testing Tools

Back to top

🔗 best-of-web-python - Testing ( ⭐ 2.2K) - Testing libraries & tools for python web frameworks.

🔗 unittest - Unittest is a test framework included in the Python standard library.

pytest (🥇48 · ⭐ 11K) - The pytest framework makes it easy to write small tests, yet scales to.. MIT - [GitHub](https://github.com/pytest-dev/pytest) (👨‍💻 970 · 🔀 2.5K · 📥 1K · 📦 1.2M · 📋 5.8K - 14% open · ⏱️ 29.05.2024):
git clone https://github.com/pytest-dev/pytest
- [PyPi](https://pypi.org/project/pytest) (📥 130M / month · 📦 44K · ⏱️ 19.05.2024):
pip install pytest
- [Conda](https://anaconda.org/conda-forge/pytest) (📥 26M · ⏱️ 20.05.2024):
conda install -c conda-forge pytest
hypothesis (🥇42 · ⭐ 7.3K) - Hypothesis is a powerful, flexible, and easy to use library for.. MPL-2.0 - [GitHub](https://github.com/HypothesisWorks/hypothesis) (👨‍💻 330 · 🔀 580 · 📦 27K · 📋 1.5K - 2% open · ⏱️ 29.05.2024):
git clone https://github.com/HypothesisWorks/hypothesis
- [PyPi](https://pypi.org/project/hypothesis) (📥 8.9M / month · 📦 2K · ⏱️ 29.05.2024):
pip install hypothesis
- [Conda](https://anaconda.org/conda-forge/hypothesis) (📥 8.8M · ⏱️ 29.05.2024):
conda install -c conda-forge hypothesis
robotframework (🥇40 · ⭐ 9.2K) - Generic automation framework for acceptance testing and RPA. Apache-2 - [GitHub](https://github.com/robotframework/robotframework) (👨‍💻 200 · 🔀 2.2K · 📥 550 · 📦 11K · 📋 4.4K - 7% open · ⏱️ 29.05.2024):
git clone https://github.com/robotframework/robotframework
- [PyPi](https://pypi.org/project/robotframework) (📥 2.6M / month · 📦 800 · ⏱️ 11.01.2024):
pip install robotframework
- [Conda](https://anaconda.org/conda-forge/robotframework) (📥 180K · ⏱️ 11.01.2024):
conda install -c conda-forge robotframework
pytest-xdist (🥇40 · ⭐ 1.4K) - pytest plugin for distributed testing and loop-on-failures.. MIT - [GitHub](https://github.com/pytest-dev/pytest-xdist) (👨‍💻 100 · 🔀 220 · 📥 37 · 📦 99K · 📋 630 - 40% open · ⏱️ 16.05.2024):
git clone https://github.com/pytest-dev/pytest-xdist
- [PyPi](https://pypi.org/project/pytest-xdist) (📥 25M / month · 📦 3.8K · ⏱️ 28.04.2024):
pip install pytest-xdist
- [Conda](https://anaconda.org/conda-forge/pytest-xdist) (📥 6M · ⏱️ 21.11.2023):
conda install -c conda-forge pytest-xdist
playwright-python (🥇39 · ⭐ 11K · 📈) - Python version of the Playwright testing and.. Apache-2 - [GitHub](https://github.com/microsoft/playwright-python) (👨‍💻 39 · 🔀 820 · 📦 16K · 📋 1.3K - 2% open · ⏱️ 24.05.2024):
git clone https://github.com/microsoft/playwright-python
- [PyPi](https://pypi.org/project/playwright) (📥 3.4M / month · 📦 930 · ⏱️ 17.05.2024):
pip install playwright
tox (🥇39 · ⭐ 3.6K) - Command line driven CI frontend and development task automation tool. MIT - [GitHub](https://github.com/tox-dev/tox) (👨‍💻 310 · 🔀 500 · 📦 120K · 📋 1.7K - 5% open · ⏱️ 24.05.2024):
git clone https://github.com/tox-dev/tox
- [PyPi](https://pypi.org/project/tox) (📥 15M / month · 📦 8.5K · ⏱️ 26.04.2024):
pip install tox
- [Conda](https://anaconda.org/conda-forge/tox) (📥 940K · ⏱️ 27.04.2024):
conda install -c conda-forge tox
pytest-cov (🥈38 · ⭐ 1.7K) - Coverage plugin for pytest. MIT - [GitHub](https://github.com/pytest-dev/pytest-cov) (👨‍💻 89 · 🔀 210 · 📦 320K · 📋 400 - 37% open · ⏱️ 24.03.2024):
git clone https://github.com/pytest-dev/pytest-cov
- [PyPi](https://pypi.org/project/pytest-cov) (📥 52M / month · 📦 27K · ⏱️ 24.03.2024):
pip install pytest-cov
- [Conda](https://anaconda.org/conda-forge/pytest-cov) (📥 11M · ⏱️ 26.03.2024):
conda install -c conda-forge pytest-cov
pyautogui (🥈36 · ⭐ 9.7K · 💤) - A cross-platform GUI automation Python module for human beings... BSD-3 - [GitHub](https://github.com/asweigart/pyautogui) (👨‍💻 52 · 🔀 1.2K · 📦 35K · 📋 730 - 68% open · ⏱️ 07.06.2023):
git clone https://github.com/asweigart/pyautogui
- [PyPi](https://pypi.org/project/pyautogui) (📥 780K / month · 📦 910 · ⏱️ 24.05.2023):
pip install pyautogui
- [Conda](https://anaconda.org/conda-forge/pyautogui) (📥 230K · ⏱️ 16.10.2023):
conda install -c conda-forge pyautogui
pytest-asyncio (🥈36 · ⭐ 1.3K · 📉) - Asyncio support for pytest. Apache-2 - [GitHub](https://github.com/pytest-dev/pytest-asyncio) (👨‍💻 47 · 🔀 140 · 📥 1.2K · 📦 97K · 📋 320 - 16% open · ⏱️ 21.05.2024):
git clone https://github.com/pytest-dev/pytest-asyncio
- [PyPi](https://pypi.org/project/pytest-asyncio) (📥 15M / month · 📦 3.6K · ⏱️ 19.05.2024):
pip install pytest-asyncio
- [Conda](https://anaconda.org/conda-forge/pytest-asyncio) (📥 1.9M · ⏱️ 29.04.2024):
conda install -c conda-forge pytest-asyncio
pytest-mock (🥈35 · ⭐ 1.8K) - Thin-wrapper around the mock package for easier use with pytest. MIT - [GitHub](https://github.com/pytest-dev/pytest-mock) (👨‍💻 72 · 🔀 140 · 📥 33 · 📦 80K · 📋 160 - 7% open · ⏱️ 28.05.2024):
git clone https://github.com/pytest-dev/pytest-mock
- [PyPi](https://pypi.org/project/pytest-mock) (📥 23M / month · 📦 4.7K · ⏱️ 21.03.2024):
pip install pytest-mock
- [Conda](https://anaconda.org/conda-forge/pytest-mock) (📥 2.6M · ⏱️ 22.03.2024):
conda install -c conda-forge pytest-mock
mimesis (🥈34 · ⭐ 4.3K) - Mimesis is a robust data generator for Python that can produce a wide.. MIT - [GitHub](https://github.com/lk-geimfari/mimesis) (👨‍💻 120 · 🔀 330 · 📥 580 · 📦 1.8K · 📋 360 - 4% open · ⏱️ 25.05.2024):
git clone https://github.com/lk-geimfari/mimesis
- [PyPi](https://pypi.org/project/mimesis) (📥 650K / month · 📦 57 · ⏱️ 04.04.2024):
pip install mimesis
- [Conda](https://anaconda.org/conda-forge/mimesis) (📥 200K · ⏱️ 24.01.2024):
conda install -c conda-forge mimesis
freezegun (🥈34 · ⭐ 4K) - Let your Python tests travel through time. Apache-2 - [GitHub](https://github.com/spulec/freezegun) (👨‍💻 120 · 🔀 260 · 📥 19 · 📋 340 - 40% open · ⏱️ 11.05.2024):
git clone https://github.com/spulec/freezegun
- [PyPi](https://pypi.org/project/freezegun) (📥 11M / month · 📦 870 · ⏱️ 11.05.2024):
pip install freezegun
- [Conda](https://anaconda.org/conda-forge/freezegun) (📥 1.6M · ⏱️ 24.04.2024):
conda install -c conda-forge freezegun
pytest-bdd (🥈34 · ⭐ 1.3K) - BDD library for the py.test runner. MIT - [GitHub](https://github.com/pytest-dev/pytest-bdd) (👨‍💻 61 · 🔀 210 · 📦 3.5K · 📋 370 - 39% open · ⏱️ 17.03.2024):
git clone https://github.com/pytest-dev/pytest-bdd
- [PyPi](https://pypi.org/project/pytest-bdd) (📥 1.3M / month · 📦 99 · ⏱️ 17.03.2024):
pip install pytest-bdd
- [Conda](https://anaconda.org/conda-forge/pytest-bdd) (📥 58K · ⏱️ 17.03.2024):
conda install -c conda-forge pytest-bdd
nose2 (🥈34 · ⭐ 780) - The successor to nose, based on unittest2. BSD-2 - [GitHub](https://github.com/nose-devs/nose2) (👨‍💻 80 · 🔀 130 · 📦 25K · 📋 270 - 18% open · ⏱️ 29.05.2024):
git clone https://github.com/nose-devs/nose2
- [PyPi](https://pypi.org/project/nose2) (📥 810K / month · 📦 300 · ⏱️ 07.05.2024):
pip install nose2
- [Conda](https://anaconda.org/conda-forge/nose2) (📥 140K · ⏱️ 16.06.2023):
conda install -c conda-forge nose2
coveralls-python (🥈34 · ⭐ 550) - Show coverage stats online via coveralls.io. MIT - [GitHub](https://github.com/TheKevJames/coveralls-python) (👨‍💻 66 · 🔀 180 · 📦 34K · 📋 170 - 2% open · ⏱️ 28.05.2024):
git clone https://github.com/TheKevJames/coveralls-python
- [PyPi](https://pypi.org/project/coveralls) (📥 740K / month · 📦 2K · ⏱️ 15.05.2024):
pip install coveralls
- [Conda](https://anaconda.org/conda-forge/coveralls) (📥 1.1M · ⏱️ 15.05.2024):
conda install -c conda-forge coveralls
nox (🥈32 · ⭐ 1.2K) - Flexible test automation for Python. Apache-2 - [GitHub](https://github.com/wntrblm/nox) (👨‍💻 95 · 🔀 150 · 📦 5.4K · 📋 360 - 15% open · ⏱️ 23.05.2024):
git clone https://github.com/theacodes/nox
- [PyPi](https://pypi.org/project/nox) (📥 2M / month · 📦 870 · ⏱️ 15.04.2024):
pip install nox
- [Conda](https://anaconda.org/conda-forge/nox) (📥 300K · ⏱️ 17.04.2024):
conda install -c conda-forge nox
pytest-html (🥈32 · ⭐ 660) - Plugin for generating HTML reports for pytest results. MIT - [GitHub](https://github.com/pytest-dev/pytest-html) (👨‍💻 56 · 🔀 230 · 📦 47K · 📋 410 - 38% open · ⏱️ 24.04.2024):
git clone https://github.com/pytest-dev/pytest-html
- [PyPi](https://pypi.org/project/pytest-html) (📥 9.4M / month · 📦 570 · ⏱️ 07.11.2023):
pip install pytest-html
- [Conda](https://anaconda.org/conda-forge/pytest-html) (📥 530K · ⏱️ 23.11.2023):
conda install -c conda-forge pytest-html
factory_boy (🥉31 · ⭐ 3.4K) - A test fixtures replacement for Python. MIT - [GitHub](https://github.com/FactoryBoy/factory_boy) (👨‍💻 130 · 🔀 380 · 📋 600 - 30% open · ⏱️ 25.04.2024):
git clone https://github.com/FactoryBoy/factory_boy
- [PyPi](https://pypi.org/project/factory_boy) (📥 4.1M / month · 📦 560 · ⏱️ 19.07.2023):
pip install factory_boy
- [Conda](https://anaconda.org/conda-forge/factory_boy) (📥 150K · ⏱️ 19.07.2023):
conda install -c conda-forge factory_boy
asv (🥉31 · ⭐ 840) - Airspeed Velocity: A simple Python benchmarking tool with web-based reporting. BSD-3 - [GitHub](https://github.com/airspeed-velocity/asv) (👨‍💻 81 · 🔀 170 · 📥 310 · 📦 1.1K · 📋 600 - 23% open · ⏱️ 25.02.2024):
git clone https://github.com/airspeed-velocity/asv
- [PyPi](https://pypi.org/project/asv) (📥 82K / month · 📦 89 · ⏱️ 25.02.2024):
pip install asv
- [Conda](https://anaconda.org/conda-forge/asv) (📥 790K · ⏱️ 25.02.2024):
conda install -c conda-forge asv
pytest-sugar (🥉30 · ⭐ 1.3K) - a plugin for py.test that changes the default look and feel.. BSD-3 - [GitHub](https://github.com/Teemu/pytest-sugar) (👨‍💻 53 · 🔀 74 · 📥 19 · 📦 25K · 📋 120 - 18% open · ⏱️ 12.02.2024):
git clone https://github.com/Teemu/pytest-sugar
- [PyPi](https://pypi.org/project/pytest-sugar) (📥 1.8M / month · 📦 1.1K · ⏱️ 01.02.2024):
pip install pytest-sugar
- [Conda](https://anaconda.org/conda-forge/pytest-sugar) (📥 240K · ⏱️ 05.02.2024):
conda install -c conda-forge pytest-sugar
green (🥉30 · ⭐ 780) - Green is a clean, colorful, fast python test runner. MIT - [GitHub](https://github.com/CleanCut/green) (👨‍💻 40 · 🔀 75 · 📦 1.2K · 📋 190 - 3% open · ⏱️ 25.04.2024):
git clone https://github.com/CleanCut/green
- [PyPi](https://pypi.org/project/green) (📥 13K / month · 📦 120 · ⏱️ 18.04.2024):
pip install green
- [Conda](https://anaconda.org/conda-forge/green) (📥 140K · ⏱️ 28.09.2023):
conda install -c conda-forge green
pytest-testinfra (🥉29 · ⭐ 2.3K) - Testinfra test your infrastructures. Apache-2 - [GitHub](https://github.com/pytest-dev/pytest-testinfra) (👨‍💻 140 · 🔀 350 · 📋 360 - 38% open · ⏱️ 27.05.2024):
git clone https://github.com/pytest-dev/pytest-testinfra
- [PyPi](https://pypi.org/project/pytest-testinfra) (📥 460K / month · 📦 19 · ⏱️ 26.05.2024):
pip install pytest-testinfra
- [Conda](https://anaconda.org/conda-forge/pytest-testinfra) (📥 17K · ⏱️ 19.11.2023):
conda install -c conda-forge pytest-testinfra
pytest-benchmark (🥉29 · ⭐ 1.2K) - py.test fixture for benchmarking code. BSD-2 - [GitHub](https://github.com/ionelmc/pytest-benchmark) (👨‍💻 41 · 🔀 110 · 📦 8.8K · 📋 190 - 53% open · ⏱️ 15.12.2023):
git clone https://github.com/ionelmc/pytest-benchmark
- [PyPi](https://pypi.org/project/pytest-benchmark) (📥 2M / month · 📦 810 · ⏱️ 25.10.2022):
pip install pytest-benchmark
- [Conda](https://anaconda.org/conda-forge/pytest-benchmark) (📥 2M · ⏱️ 16.06.2023):
conda install -c conda-forge pytest-benchmark
pytest-randomly (🥉29 · ⭐ 590) - Pytest plugin to randomly order tests and control random.seed. MIT - [GitHub](https://github.com/pytest-dev/pytest-randomly) (👨‍💻 20 · 🔀 30 · 📦 8.5K · 📋 65 - 15% open · ⏱️ 28.05.2024):
git clone https://github.com/pytest-dev/pytest-randomly
- [PyPi](https://pypi.org/project/pytest-randomly) (📥 3.4M / month · 📦 400 · ⏱️ 15.08.2023):
pip install pytest-randomly
- [Conda](https://anaconda.org/conda-forge/pytest-randomly) (📥 190K · ⏱️ 15.08.2023):
conda install -c conda-forge pytest-randomly
ddt (🥉29 · ⭐ 440) - Data-Driven Tests for Python Unittest. MIT - [GitHub](https://github.com/datadriventests/ddt) (👨‍💻 38 · 🔀 110 · 📦 5.7K · 📋 57 - 19% open · ⏱️ 26.02.2024):
git clone https://github.com/datadriventests/ddt
- [PyPi](https://pypi.org/project/ddt) (📥 540K / month · 📦 200 · ⏱️ 26.02.2024):
pip install ddt
- [Conda](https://anaconda.org/conda-forge/ddt) (📥 95K · ⏱️ 26.02.2024):
conda install -c conda-forge ddt
pytest-testmon (🥉26 · ⭐ 800 · 📉) - Selects tests affected by changed files. Executes the.. MIT - [GitHub](https://github.com/tarpas/pytest-testmon) (👨‍💻 25 · 🔀 54 · 📦 1.2K · 📋 160 - 18% open · ⏱️ 30.04.2024):
git clone https://github.com/tarpas/pytest-testmon
- [PyPi](https://pypi.org/project/pytest-testmon) (📥 220K / month · 📦 25 · ⏱️ 27.02.2024):
pip install pytest-testmon
- [Conda](https://anaconda.org/conda-forge/pytest-testmon) (📥 42K · ⏱️ 16.06.2023):
conda install -c conda-forge pytest-testmon
pytest-mypy (🥉26 · ⭐ 240) - Mypy static type checker plugin for Pytest. MIT - [GitHub](https://github.com/realpython/pytest-mypy) (👨‍💻 16 · 🔀 32 · 📦 4K · 📋 64 - 15% open · ⏱️ 12.03.2024):
git clone https://github.com/dbader/pytest-mypy
- [PyPi](https://pypi.org/project/pytest-mypy) (📥 380K / month · 📦 710 · ⏱️ 18.12.2022):
pip install pytest-mypy
- [Conda](https://anaconda.org/conda-forge/pytest-mypy) (📥 98K · ⏱️ 10.04.2024):
conda install -c conda-forge pytest-mypy
Mamba Test Runner (🥉25 · ⭐ 520) - The definitive testing tool for Python. Born under the banner.. MIT - [GitHub](https://github.com/nestorsalceda/mamba) (👨‍💻 23 · 🔀 65 · 📦 980 · 📋 100 - 50% open · ⏱️ 09.11.2023):
git clone https://github.com/nestorsalceda/mamba
- [PyPi](https://pypi.org/project/mamba) (📥 9.6K / month · 📦 29 · ⏱️ 09.11.2023):
pip install mamba
pytest-docker (🥉25 · ⭐ 400) - Docker-based integration tests. MIT - [GitHub](https://github.com/avast/pytest-docker) (👨‍💻 23 · 🔀 67 · 📥 140 · 📦 940 · 📋 54 - 31% open · ⏱️ 02.02.2024):
git clone https://github.com/avast/pytest-docker
- [PyPi](https://pypi.org/project/pytest-docker) (📥 300K / month · 📦 86 · ⏱️ 02.02.2024):
pip install pytest-docker
pytest-datadir (🥉23 · ⭐ 240) - pytest plugin for manipulating test data directories and.. MIT - [GitHub](https://github.com/gabrielcnr/pytest-datadir) (👨‍💻 11 · 🔀 22 · 📥 4 · 📦 1.7K · 📋 19 - 26% open · ⏱️ 29.04.2024):
git clone https://github.com/gabrielcnr/pytest-datadir
- [PyPi](https://pypi.org/project/pytest-datadir) (📥 300K / month · 📦 190 · ⏱️ 03.10.2023):
pip install pytest-datadir
- [Conda](https://anaconda.org/conda-forge/pytest-datadir) (📥 250K · ⏱️ 03.10.2023):
conda install -c conda-forge pytest-datadir
xdoctest (🥉23 · ⭐ 200) - A rewrite of Pythons builtin doctest module (with pytest plugin.. Apache-2 - [GitHub](https://github.com/Erotemic/xdoctest) (👨‍💻 9 · 🔀 10 · 📋 49 - 42% open · ⏱️ 30.01.2024):
git clone https://github.com/Erotemic/xdoctest
- [PyPi](https://pypi.org/project/xdoctest) (📥 320K / month · 📦 180 · ⏱️ 30.01.2024):
pip install xdoctest
- [Conda](https://anaconda.org/conda-forge/xdoctest) (📥 220K · ⏱️ 30.01.2024):
conda install -c conda-forge xdoctest
Show 10 hidden projects... - nose (🥈33 · ⭐ 1.4K · 💀) - nose is nicer testing for python. ❗️LGPL-2.1+ - uiautomator (🥉26 · ⭐ 2K · 💀) - Python wrapper of Android uiautomator test tool. MIT - PyHamcrest (🥉26 · ⭐ 750) - Hamcrest matchers for Python. ❗Unlicensed - pytest-watch (🥉25 · ⭐ 730 · 💀) - Local continuous test runner with pytest and watchdog. MIT - pytest-plugins (🥉24 · ⭐ 550 · 💀) - A grab-bag of nifty pytest plugins. MIT - pytest-lazy-fixture (🥉24 · ⭐ 370 · 💀) - It helps to use fixtures in pytest.mark.parametrize. MIT - sixpack (🥉21 · ⭐ 1.8K · 💀) - Sixpack is a language-agnostic a/b-testing framework. BSD-2 - assertpy (🥉20 · ⭐ 470 · 💀) - Simple assertion library for unit testing in python with a fluent.. BSD-3 - fake2db (🥉17 · ⭐ 2.3K · 💀) - create custom test databases that are populated with fake data. ❗️GPL-2.0 - pytest-play (🥉16 · ⭐ 68 · 💀) - pytest plugin that let you automate actions and.. Apache-2


Code Packaging

Back to top

🔗 Python.org Packaging - An Overview of Packaging for Python.

pyinstaller (🥇42 · ⭐ 11K) - Freeze (package) Python programs into stand-alone executables. ❗️GPL-2.0 - [GitHub](https://github.com/pyinstaller/pyinstaller) (👨‍💻 470 · 🔀 1.9K · 📥 750K · 📦 59K · 📋 5.3K - 5% open · ⏱️ 29.05.2024):
git clone https://github.com/pyinstaller/pyinstaller
- [PyPi](https://pypi.org/project/pyinstaller) (📥 2.5M / month · 📦 770 · ⏱️ 21.05.2024):
pip install pyinstaller
- [Conda](https://anaconda.org/conda-forge/pyinstaller) (📥 580K · ⏱️ 22.05.2024):
conda install -c conda-forge pyinstaller
Nuitka (🥇39 · ⭐ 11K) - Nuitka is a Python compiler written in Python. Its fully compatible.. Apache-2 - [GitHub](https://github.com/Nuitka/Nuitka) (👨‍💻 170 · 🔀 590 · 📦 2K · 📋 2.2K - 4% open · ⏱️ 23.05.2024):
git clone https://github.com/Nuitka/Nuitka
- [PyPi](https://pypi.org/project/nuitka) (📥 100K / month · 📦 71 · ⏱️ 16.05.2024):
pip install nuitka
- [Conda](https://anaconda.org/conda-forge/nuitka) (📥 700K · ⏱️ 17.05.2024):
conda install -c conda-forge nuitka
packaging (🥈38 · ⭐ 590) - Core utilities for Python packages. Apache-2 - [GitHub](https://github.com/pypa/packaging) (👨‍💻 110 · 🔀 230 · 📥 810 · 📦 1.2M · 📋 380 - 23% open · ⏱️ 20.05.2024):
git clone https://github.com/pypa/packaging
- [PyPi](https://pypi.org/project/packaging) (📥 350M / month · 📦 10K · ⏱️ 10.03.2024):
pip install packaging
- [Conda](https://anaconda.org/conda-forge/packaging) (📥 46M · ⏱️ 10.03.2024):
conda install -c conda-forge packaging
briefcase (🥈34 · ⭐ 2.4K) - Tools to support converting a Python project into a standalone.. BSD-3 - [GitHub](https://github.com/beeware/briefcase) (👨‍💻 150 · 🔀 340 · 📥 280 · 📦 560 · 📋 750 - 17% open · ⏱️ 30.05.2024):
git clone https://github.com/beeware/briefcase
- [PyPi](https://pypi.org/project/briefcase) (📥 13K / month · 📦 12 · ⏱️ 06.05.2024):
pip install briefcase
pex (🥈33 · ⭐ 2.5K) - A tool for generating .pex (Python EXecutable) files, lock files and venvs. Apache-2 - [GitHub](https://github.com/pex-tool/pex) (👨‍💻 120 · 🔀 250 · 📥 4.6M · 📦 600 · 📋 1.1K - 14% open · ⏱️ 13.05.2024):
git clone https://github.com/pantsbuild/pex
- [PyPi](https://pypi.org/project/pex) (📥 1.7M / month · 📦 46 · ⏱️ 12.04.2024):
pip install pex
cx_Freeze (🥈32 · ⭐ 1.3K) - cx_Freeze creates standalone executables from Python scripts,.. Python-2.0 - [GitHub](https://github.com/marcelotduarte/cx_Freeze) (👨‍💻 110 · 🔀 210 · 📋 940 - 4% open · ⏱️ 29.05.2024):
git clone https://github.com/marcelotduarte/cx_Freeze
- [PyPi](https://pypi.org/project/cx_freeze) (📥 150K / month · 📦 86 · ⏱️ 26.05.2024):
pip install cx_freeze
- [Conda](https://anaconda.org/conda-forge/cx_freeze) (📥 330K · ⏱️ 26.05.2024):
conda install -c conda-forge cx_freeze
shiv (🥉25 · ⭐ 1.7K) - shiv is a command line utility for building fully self contained Python.. BSD-2 - [GitHub](https://github.com/linkedin/shiv) (👨‍💻 42 · 🔀 92 · 📥 770 · 📋 130 - 39% open · ⏱️ 09.05.2024):
git clone https://github.com/linkedin/shiv
- [PyPi](https://pypi.org/project/shiv) (📥 29K / month · 📦 14 · ⏱️ 09.05.2024):
pip install shiv
constructor (🥉25 · ⭐ 440) - tool for creating installers from conda packages. BSD-3 - [GitHub](https://github.com/conda/constructor) (👨‍💻 71 · 🔀 170 · 📥 280 · 📦 19 · 📋 360 - 7% open · ⏱️ 28.05.2024):
git clone https://github.com/conda/constructor
- [Conda](https://anaconda.org/anaconda/constructor) (📥 9.9K · ⏱️ 16.05.2024):
conda install -c anaconda constructor
pynsist (🥉24 · ⭐ 880) - Build Windows installers for Python applications. MIT - [GitHub](https://github.com/takluyver/pynsist) (👨‍💻 31 · 🔀 120 · 📦 220 · 📋 180 - 17% open · ⏱️ 09.04.2024):
git clone https://github.com/takluyver/pynsist
- [PyPi](https://pypi.org/project/pynsist) (📥 3.1K / month · 📦 13 · ⏱️ 21.03.2022):
pip install pynsist
py2exe (🥉23 · ⭐ 770 · 💤) - Create standalone Windows programs from Python code. MIT - [GitHub](https://github.com/py2exe/py2exe) (👨‍💻 20 · 🔀 90 · 📥 17K · 📦 2K · 📋 160 - 13% open · ⏱️ 08.10.2023):
git clone https://github.com/py2exe/py2exe
- [PyPi](https://pypi.org/project/py2exe) (📥 16K / month · 📦 10 · ⏱️ 07.10.2023):
pip install py2exe
xar (🥉20 · ⭐ 1.6K) - executable archive format. BSD-3 - [GitHub](https://github.com/facebookincubator/xar) (👨‍💻 44 · 🔀 55 · 📦 30 · 📋 33 - 24% open · ⏱️ 28.12.2023):
git clone https://github.com/facebookincubator/xar
- [PyPi](https://pypi.org/project/xar) (📥 330 / month · ⏱️ 02.12.2020):
pip install xar
Show 4 hidden projects... - PyOxidizer (🥉28 · ⭐ 5.3K · 💀) - A modern Python application packaging and distribution tool. MPL-2.0 - py2app (🥉28 · ⭐ 320 · 💀) - py2app is a Python setuptools command which will allow you to make.. MIT - subpar (🥉13 · ⭐ 570 · 💀) - Subpar is a utility for creating self-contained python.. Apache-2 - pyship (🥉11 · ⭐ 38 · 💤) - pyship - ship Python desktop apps to end users. MIT


Build Tools

Back to top

setuptools (🥇47 · ⭐ 2.3K) - Official project repository for the Setuptools build system. MIT - [GitHub](https://github.com/pypa/setuptools) (👨‍💻 600 · 🔀 1.1K · 📦 520K · 📋 2.5K - 24% open · ⏱️ 24.05.2024):
git clone https://github.com/pypa/setuptools
- [PyPi](https://pypi.org/project/setuptools) (📥 380M / month · 📦 20K · ⏱️ 21.05.2024):
pip install setuptools
- [Conda](https://anaconda.org/conda-forge/setuptools) (📥 110M · ⏱️ 22.05.2024):
conda install -c conda-forge setuptools
twine (🥇39 · ⭐ 1.5K) - Utilities for interacting with PyPI. Apache-2 - [GitHub](https://github.com/pypa/twine) (👨‍💻 120 · 🔀 300 · 📥 13 · 📦 110K · 📋 510 - 10% open · ⏱️ 21.05.2024):
git clone https://github.com/pypa/twine
- [PyPi](https://pypi.org/project/twine) (📥 7.1M / month · 📦 14K · ⏱️ 16.05.2024):
pip install twine
- [Conda](https://anaconda.org/conda-forge/twine) (📥 980K · ⏱️ 17.05.2024):
conda install -c conda-forge twine
scons (🥈38 · ⭐ 2K · 📈) - SCons - a software construction tool. MIT - [GitHub](https://github.com/SCons/scons) (👨‍💻 160 · 🔀 310 · 📥 1.5K · 📦 3.1K · 📋 3.4K - 19% open · ⏱️ 28.05.2024):
git clone https://github.com/SCons/scons
- [PyPi](https://pypi.org/project/scons) (📥 750K / month · 📦 39 · ⏱️ 18.03.2024):
pip install scons
- [Conda](https://anaconda.org/conda-forge/scons) (📥 580K · ⏱️ 18.03.2024):
conda install -c conda-forge scons
wheel (🥈37 · ⭐ 480) - The official binary distribution format for Python. MIT - [GitHub](https://github.com/pypa/wheel) (👨‍💻 82 · 🔀 140 · 📦 270K · 📋 400 - 12% open · ⏱️ 09.05.2024):
git clone https://github.com/pypa/wheel
- [PyPi](https://pypi.org/project/wheel) (📥 470M / month · 📦 11K · ⏱️ 11.03.2024):
pip install wheel
- [Conda](https://anaconda.org/conda-forge/wheel) (📥 92M · ⏱️ 27.03.2024):
conda install -c conda-forge wheel
buildbot (🥈36 · ⭐ 5.2K) - Python-based continuous integration testing framework; your pull.. ❗️GPL-2.0 - [GitHub](https://github.com/buildbot/buildbot) (👨‍💻 860 · 🔀 1.6K · 📥 38K · 📦 350 · 📋 1.6K - 44% open · ⏱️ 23.05.2024):
git clone https://github.com/buildbot/buildbot
- [PyPi](https://pypi.org/project/buildbot) (📥 16K / month · 📦 18 · ⏱️ 20.05.2024):
pip install buildbot
- [Conda](https://anaconda.org/conda-forge/buildbot) (📥 98K · ⏱️ 20.05.2024):
conda install -c conda-forge buildbot
invoke (🥈35 · ⭐ 4.3K) - Pythonic task management & command execution. BSD-2 - [GitHub](https://github.com/pyinvoke/invoke) (👨‍💻 60 · 🔀 360 · 📦 25K · 📋 810 - 49% open · ⏱️ 01.12.2023):
git clone https://github.com/pyinvoke/invoke
- [PyPi](https://pypi.org/project/invoke) (📥 8.8M / month · 📦 950 · ⏱️ 12.07.2023):
pip install invoke
- [Conda](https://anaconda.org/conda-forge/invoke) (📥 980K · ⏱️ 13.07.2023):
conda install -c conda-forge invoke
setuptools_scm (🥈35 · ⭐ 820) - the blessed package to manage your versions by scm tags. MIT - [GitHub](https://github.com/pypa/setuptools_scm) (👨‍💻 140 · 🔀 210 · 📋 580 - 15% open · ⏱️ 15.05.2024):
git clone https://github.com/pypa/setuptools_scm
- [PyPi](https://pypi.org/project/setuptools_scm) (📥 29M / month · 📦 1.4K · ⏱️ 06.05.2024):
pip install setuptools_scm
- [Conda](https://anaconda.org/conda-forge/setuptools_scm) (📥 2.4M · ⏱️ 07.05.2024):
conda install -c conda-forge setuptools_scm
flit (🥉31 · ⭐ 2.1K) - Simplified packaging of Python modules. BSD-3 - [GitHub](https://github.com/pypa/flit) (👨‍💻 73 · 🔀 130 · 📦 1.9K · 📋 420 - 31% open · ⏱️ 29.05.2024):
git clone https://github.com/pypa/flit
- [PyPi](https://pypi.org/project/flit) (📥 380K / month · 📦 720 · ⏱️ 14.05.2023):
pip install flit
- [Conda](https://anaconda.org/conda-forge/flit) (📥 180K · ⏱️ 25.03.2024):
conda install -c conda-forge flit
pybuilder (🥉26 · ⭐ 1.7K) - Software build automation tool for Python. Apache-2 - [GitHub](https://github.com/pybuilder/pybuilder) (👨‍💻 39 · 🔀 250 · 📋 520 - 18% open · ⏱️ 28.05.2024):
git clone https://github.com/pybuilder/pybuilder
- [PyPi](https://pypi.org/project/pybuilder) (📥 26K / month · 📦 6 · ⏱️ 28.05.2024):
pip install pybuilder
- [Conda](https://anaconda.org/conda-forge/pybuilder) (📥 75K · ⏱️ 28.05.2024):
conda install -c conda-forge pybuilder
universal-build (🥉15 · ⭐ 21 · 💀) - Universal build utilities for containerized build pipelines. MIT - [GitHub](https://github.com/ml-tooling/universal-build) (👨‍💻 5 · 🔀 7 · 📥 19 · 📦 12 · 📋 4 - 25% open · ⏱️ 15.09.2022):
git clone https://github.com/ml-tooling/universal-build
- [PyPi](https://pypi.org/project/universal-build) (📥 510 / month · 📦 7 · ⏱️ 16.11.2021):
pip install universal-build
Show 4 hidden projects... - doit (🥉32 · ⭐ 1.8K · 💀) - task management & automation tool. MIT - buildout (🥉26 · ⭐ 570 · 💀) - Buildout is a deployment automation tool written in and.. ❗️ZPL-2.1 - paver (🥉23 · ⭐ 460 · 💀) - Python-based project scripting. BSD-3 - pynt (🥉18 · ⭐ 160 · 💀) - A pynt of Python build. MIT


System Monitoring & Profiling

Back to top

psutil (🥇45 · ⭐ 10K) - Cross-platform lib for process and system monitoring in Python. BSD-3 - [GitHub](https://github.com/giampaolo/psutil) (👨‍💻 210 · 🔀 1.4K · 📦 490K · 📋 1.8K - 17% open · ⏱️ 18.05.2024):
git clone https://github.com/giampaolo/psutil
- [PyPi](https://pypi.org/project/psutil) (📥 110M / month · 📦 10K · ⏱️ 19.01.2024):
pip install psutil
- [Conda](https://anaconda.org/conda-forge/psutil) (📥 31M · ⏱️ 08.02.2024):
conda install -c conda-forge psutil
Glances (🥇40 · ⭐ 25K) - Glances an Eye on your system. A top/htop alternative for.. ❗️LGPL-3.0 - [GitHub](https://github.com/nicolargo/glances) (👨‍💻 190 · 🔀 1.4K · 📥 1.6K · 📦 880 · 📋 1.8K - 12% open · ⏱️ 29.05.2024):
git clone https://github.com/nicolargo/glances
- [PyPi](https://pypi.org/project/glances) (📥 670K / month · 📦 4 · ⏱️ 25.05.2024):
pip install glances
- [Conda](https://anaconda.org/conda-forge/glances) (📥 220K · ⏱️ 24.03.2024):
conda install -c conda-forge glances
memray (🥈35 · ⭐ 13K · 📈) - Memray is a memory profiler for Python. Apache-2 - [GitHub](https://github.com/bloomberg/memray) (👨‍💻 50 · 🔀 370 · 📦 440 · 📋 170 - 12% open · ⏱️ 30.05.2024):
git clone https://github.com/bloomberg/memray
- [PyPi](https://pypi.org/project/memray) (📥 780K / month · 📦 43 · ⏱️ 10.04.2024):
pip install memray
- [Conda](https://anaconda.org/conda-forge/memray) (📥 120K · ⏱️ 11.04.2024):
conda install -c conda-forge memray
py-spy (🥈33 · ⭐ 12K) - Sampling profiler for Python programs. MIT - [GitHub](https://github.com/benfred/py-spy) (👨‍💻 38 · 🔀 390 · 📥 18K · 📦 4.1K · 📋 370 - 48% open · ⏱️ 27.02.2024):
git clone https://github.com/benfred/py-spy
- [PyPi](https://pypi.org/project/py-spy) (📥 2.1M / month · 📦 46 · ⏱️ 07.09.2022):
pip install py-spy
- [Conda](https://anaconda.org/conda-forge/py-spy) (📥 540K · ⏱️ 16.06.2023):
conda install -c conda-forge py-spy
- [Cargo](https://crates.io/crates/py-spy) (📥 1.8K / month · 📦 2 · ⏱️ 07.09.2022):
cargo install py-spy
Scalene (🥈32 · ⭐ 11K) - Scalene: a high-performance, high-precision CPU, GPU, and memory.. Apache-2 - [GitHub](https://github.com/plasma-umass/scalene) (👨‍💻 49 · 🔀 380 · 📦 630 · 📋 460 - 35% open · ⏱️ 17.05.2024):
git clone https://github.com/plasma-umass/scalene
- [PyPi](https://pypi.org/project/scalene) (📥 44K / month · 📦 12 · ⏱️ 03.05.2024):
pip install scalene
pyinstrument (🥈30 · ⭐ 6.2K) - Call stack profiler for Python. Shows you why your code is slow!. BSD-3 - [GitHub](https://github.com/joerick/pyinstrument) (👨‍💻 55 · 🔀 220 · 📦 2.3K · 📋 150 - 22% open · ⏱️ 12.03.2024):
git clone https://github.com/joerick/pyinstrument
- [PyPi](https://pypi.org/project/pyinstrument) (📥 1.3M / month · 📦 130 · ⏱️ 26.01.2024):
pip install pyinstrument
- [Conda](https://anaconda.org/conda-forge/pyinstrument) (📥 320K · ⏱️ 26.01.2024):
conda install -c conda-forge pyinstrument
Yappi (🥈29 · ⭐ 1.4K · 📉) - Yet Another Python Profiler, but this time multithreading, asyncio and.. MIT - [GitHub](https://github.com/sumerc/yappi) (👨‍💻 31 · 🔀 72 · 📦 1.2K · 📋 80 - 25% open · ⏱️ 18.12.2023):
git clone https://github.com/sumerc/yappi
- [PyPi](https://pypi.org/project/yappi) (📥 3.1M / month · 📦 53 · ⏱️ 07.12.2023):
pip install yappi
- [Conda](https://anaconda.org/conda-forge/yappi) (📥 180K · ⏱️ 07.12.2023):
conda install -c conda-forge yappi
memory-profiler (🥉28 · ⭐ 4.2K) - Monitor Memory usage of Python code. BSD-3 - [GitHub](https://github.com/pythonprofilers/memory_profiler) (👨‍💻 100 · 🔀 370 · 📋 250 - 53% open · ⏱️ 16.04.2024):
git clone https://github.com/pythonprofilers/memory_profiler
- [PyPi](https://pypi.org/project/memory_profiler) (📥 1.5M / month · 📦 410 · ⏱️ 15.11.2022):
pip install memory_profiler
- [Conda](https://anaconda.org/conda-forge/memory_profiler) (📥 790K · ⏱️ 16.06.2023):
conda install -c conda-forge memory_profiler
line_profiler (🥉28 · ⭐ 2.5K) - Line-by-line profiling for Python. BSD-3 - [GitHub](https://github.com/pyutils/line_profiler) (👨‍💻 44 · 🔀 120 · 📥 4 · 📋 100 - 45% open · ⏱️ 28.04.2024):
git clone https://github.com/pyutils/line_profiler
- [PyPi](https://pypi.org/project/line_profiler) (📥 540K / month · 📦 180 · ⏱️ 28.04.2024):
pip install line_profiler
- [Conda](https://anaconda.org/conda-forge/line_profiler) (📥 870K · ⏱️ 27.09.2023):
conda install -c conda-forge line_profiler
Diamond (🥉28 · ⭐ 1.7K) - Diamond is a python daemon that collects system metrics and publishes.. MIT - [GitHub](https://github.com/python-diamond/Diamond) (👨‍💻 390 · 🔀 600 · 📦 170 · 📋 300 - 44% open · ⏱️ 01.11.2023):
git clone https://github.com/python-diamond/Diamond
- [PyPi](https://pypi.org/project/diamond) (📥 9.8K / month · 📦 6 · ⏱️ 25.11.2016):
pip install diamond
Show 8 hidden projects... - Bpytop (🥈29 · ⭐ 9.9K · 💀) - Linux/OSX/FreeBSD resource monitor. Apache-2 - memory_profiler (🥉26 · ⭐ 4.2K · 💀) - Monitor Memory usage of Python code. BSD-3 - pympler (🥉26 · ⭐ 1.2K · 💀) - Development tool to measure, monitor and analyze the memory.. Apache-2 - vprof (🥉23 · ⭐ 4K · 💀) - Visual profiler for Python. BSD-2 - Profiling (🥉21 · ⭐ 3K · 💀) - Was an interactive continuous Python profiler. BSD-3 - heartrate (🥉19 · ⭐ 1.7K · 💀) - Simple real time visualisation of the execution of a Python program. MIT - pyheat (🥉18 · ⭐ 830 · 💀) - pprofile + matplotlib = Python program profiled as an awesome heatmap!. MIT - livepython (🥉13 · ⭐ 2.6K · 💀) - Visually trace Python code in real-time. MIT


AST Tools

Back to top

executing (🥇30 · ⭐ 310) - Get information about what a Python frame is currently doing,.. MIT - [GitHub](https://github.com/alexmojaki/executing) (👨‍💻 10 · 🔀 31 · 📦 190K · 📋 43 - 41% open · ⏱️ 06.11.2023):
git clone https://github.com/alexmojaki/executing
- [PyPi](https://pypi.org/project/executing) (📥 32M / month · 📦 390 · ⏱️ 29.10.2023):
pip install executing
- [Conda](https://anaconda.org/conda-forge/executing) (📥 12M · ⏱️ 29.10.2023):
conda install -c conda-forge executing
astor (🥈27 · ⭐ 780) - Python AST read/write. BSD-3 - [GitHub](https://github.com/berkerpeksag/astor) (👨‍💻 35 · 🔀 100 · 📋 120 - 33% open · ⏱️ 30.03.2024):
git clone https://github.com/berkerpeksag/astor
- [PyPi](https://pypi.org/project/astor) (📥 6.2M / month · 📦 570 · ⏱️ 10.12.2019):
pip install astor
- [Conda](https://anaconda.org/conda-forge/astor) (📥 2.3M · ⏱️ 16.06.2023):
conda install -c conda-forge astor
gast (🥈27 · ⭐ 140) - Python AST that abstracts the underlying Python version. BSD-3 - [GitHub](https://github.com/serge-sans-paille/gast) (👨‍💻 10 · 🔀 32 · 📦 160K · 📋 36 - 5% open · ⏱️ 26.05.2024):
git clone https://github.com/serge-sans-paille/gast
- [PyPi](https://pypi.org/project/gast) (📥 19M / month · 📦 410 · ⏱️ 29.04.2023):
pip install gast
- [Conda](https://anaconda.org/conda-forge/gast) (📥 2.7M · ⏱️ 03.07.2023):
conda install -c conda-forge gast
typed_ast (🥉26 · ⭐ 230 · 💤) - Modified fork of CPythons ast module that parses `# type:`.. Apache-2 - [GitHub](https://github.com/python/typed_ast) (👨‍💻 26 · 🔀 53 · 📋 87 - 1% open · ⏱️ 03.07.2023):
git clone https://github.com/python/typed_ast
- [PyPi](https://pypi.org/project/typed_ast) (📥 7.2M / month · 📦 620 · ⏱️ 04.07.2023):
pip install typed_ast
- [Conda](https://anaconda.org/conda-forge/typed-ast) (📥 6.3M · ⏱️ 22.09.2023):
conda install -c conda-forge typed-ast
asteval (🥉24 · ⭐ 170 · 📈) - minimalistic evaluator of python expression using ast module. MIT - [GitHub](https://github.com/newville/asteval) (👨‍💻 24 · 🔀 40 · ⏱️ 06.11.2023):
git clone https://github.com/newville/asteval
- [PyPi](https://pypi.org/project/asteval) (📥 380K / month · 📦 110 · ⏱️ 23.05.2024):
pip install asteval
- [Conda](https://anaconda.org/conda-forge/asteval) (📥 390K · ⏱️ 24.05.2024):
conda install -c conda-forge asteval
Show 1 hidden projects... - astunparse (🥈28 · ⭐ 220 · 💀) - An AST unparser for Python. BSD-3


Others

Back to top

pre-commit (🥇41 · ⭐ 12K) - A framework for managing and maintaining multi-language pre-commit.. MIT - [GitHub](https://github.com/pre-commit/pre-commit) (👨‍💻 160 · 🔀 770 · 📥 1.4M · 📦 190K · 📋 2K - 1% open · ⏱️ 27.05.2024):
git clone https://github.com/pre-commit/pre-commit
- [PyPi](https://pypi.org/project/pre-commit) (📥 22M / month · 📦 11K · ⏱️ 11.05.2024):
pip install pre-commit
- [Conda](https://anaconda.org/conda-forge/pre-commit) (📥 4.6M · ⏱️ 11.05.2024):
conda install -c conda-forge pre-commit

  • Best-of lists: Discover other best-of lists with awesome open-source projects on all kinds of topics.

Contribution

Contributions are encouraged and always welcome! If you like to add or update projects, choose one of the following ways:

  • Open an issue by selecting one of the provided categories from the issue page and fill in the requested information.
  • Modify the projects.yaml with your additions or changes, and submit a pull request. This can also be done directly via the Github UI.

If you like to contribute to or share suggestions regarding the project metadata collection or markdown generation, please refer to the best-of-generator repository. If you like to create your own best-of list, we recommend to follow this guide.

For more information on how to add or update projects, please read the contribution guidelines. By participating in this project, you agree to abide by its Code of Conduct.

License

CC0

Best of Atomistic Machine Learning

Best of Atomistic Machine Learning ⚛️🧬💎

🏆  A ranked list of awesome atomistic machine learning (AML) projects. Updated regularly.

DOI

This curated list contains 430 awesome open-source projects with a total of 200K stars grouped into 22 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml.

The current focus of this list is more on simulation data rather than experimental data, and more on materials rather than drug design. Nevertheless, contributions from other fields are warmly welcome!

How to cite. See the button "Cite this repository" on the right side-bar.

🧙‍♂️ Discover other best-of lists or create your own.

Contents

Explanation

  • 🥇🥈🥉  Combined project-quality score
  • ⭐️  Star count from GitHub
  • 🐣  New project (less than 6 months old)
  • 💤  Inactive project (6 months no activity)
  • 💀  Dead project (12 months no activity)
  • 📈📉  Project is trending up or down
  • ➕  Project was recently added
  • 👨‍💻  Contributors count from GitHub
  • 🔀  Fork count from GitHub
  • 📋  Issue count from GitHub
  • ⏱️  Last update timestamp on package manager
  • 📥  Download count from package manager
  • 📦  Number of dependent projects


Active learning

Back to top

Projects that focus on enabling active learning, iterative learning schemes for atomistic ML.

FLARE (🥇21 · ⭐ 300) - An open-source Python package for creating fast and accurate interatomic potentials. MIT C++ ML-IAP - [GitHub](https://github.com/mir-group/flare) (👨‍💻 43 · 🔀 71 · 📥 8 · 📦 12 · 📋 220 - 16% open · ⏱️ 01.11.2024):
git clone https://github.com/mir-group/flare
IPSuite (🥈17 · ⭐ 19) - A Python toolkit for FAIR development and deployment of machine-learned interatomic potentials. EPL-2.0 ML-IAP MD workflows HTC FAIR - [GitHub](https://github.com/zincware/IPSuite) (👨‍💻 8 · 🔀 11 · 📦 7 · 📋 140 - 50% open · ⏱️ 17.12.2024):
git clone https://github.com/zincware/IPSuite
- [PyPi](https://pypi.org/project/ipsuite) (📥 500 / month · 📦 2 · ⏱️ 04.12.2024):
pip install ipsuite
Finetuna (🥉10 · ⭐ 46 · 💤) - Active Learning for Machine Learning Potentials. MIT - [GitHub](https://github.com/ulissigroup/finetuna) (👨‍💻 11 · 🔀 11 · 📦 1 · 📋 20 - 25% open · ⏱️ 15.05.2024):
git clone https://github.com/ulissigroup/finetuna
Show 3 hidden projects... - flare++ (🥈13 · ⭐ 35 · 💀) - A many-body extension of the FLARE code. MIT C++ ML-IAP - ACEHAL (🥉5 · ⭐ 11 · 💀) - Hyperactive Learning (HAL) Python interface for building Atomic Cluster Expansion potentials. Unlicensed Julia - ALEBREW (🥉2 · ⭐ 14) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic.. Custom ML-IAP MD


Community resources

Back to top

Projects that collect atomistic ML resources or foster communication within community.

🔗 AI for Science Map - Interactive mindmap of the AI4Science research field, including atomistic machine learning, including papers,..

🔗 Atomic Cluster Expansion - Atomic Cluster Expansion (ACE) community homepage.

🔗 CrystaLLM - Generate a crystal structure from a composition. language-models generative pretrained transformer

🔗 GAP-ML.org community homepage ML-IAP

🔗 matsci.org - A community forum for the discussion of anything materials science, with a focus on computational materials science..

🔗 Matter Modeling Stack Exchange - Machine Learning - Forum StackExchange, site Matter Modeling, ML-tagged questions.

🔗 ACE / GRACE support - Support forum for the Atomic Cluster Expansion (ACE) and extensions.

Best-of Machine Learning with Python (🥇23 · ⭐ 18K) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0 general-ml Python - [GitHub](https://github.com/ml-tooling/best-of-ml-python) (👨‍💻 50 · 🔀 2.5K · 📋 61 - 44% open · ⏱️ 27.12.2024):
git clone https://github.com/ml-tooling/best-of-ml-python
OpenML (🥇19 · ⭐ 680) - Open Machine Learning. BSD-3 datasets - [GitHub](https://github.com/openml/OpenML) (👨‍💻 35 · 🔀 90 · 📋 930 - 39% open · ⏱️ 07.12.2024):
git clone https://github.com/openml/OpenML
MatBench Discovery (🥇19 · ⭐ 120) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT datasets benchmarking model-repository - [GitHub](https://github.com/janosh/matbench-discovery) (👨‍💻 11 · 🔀 22 · 📦 4 · 📋 49 - 8% open · ⏱️ 27.12.2024):
git clone https://github.com/janosh/matbench-discovery
- [PyPi](https://pypi.org/project/matbench-discovery) (📥 900 / month · ⏱️ 11.09.2024):
pip install matbench-discovery
Graph-based Deep Learning Literature (🥈18 · ⭐ 4.9K) - links to conference publications in graph-based deep learning. MIT general-ml rep-learn - [GitHub](https://github.com/naganandy/graph-based-deep-learning-literature) (👨‍💻 12 · 🔀 770 · ⏱️ 12.12.2024):
git clone https://github.com/naganandy/graph-based-deep-learning-literature
MatBench (🥈17 · ⭐ 140 · 💤) - Matbench: Benchmarks for materials science property prediction. MIT datasets benchmarking model-repository - [GitHub](https://github.com/materialsproject/matbench) (👨‍💻 25 · 🔀 45 · 📦 20 · 📋 65 - 60% open · ⏱️ 20.01.2024):
git clone https://github.com/materialsproject/matbench
- [PyPi](https://pypi.org/project/matbench) (📥 330 / month · 📦 2 · ⏱️ 27.07.2022):
pip install matbench
GT4SD - Generative Toolkit for Scientific Discovery (🥈15 · ⭐ 340) - Gradio apps of generative models in GT4SD. MIT generative pretrained drug-discovery model-repository - [GitHub](https://github.com/GT4SD/gt4sd-core) (👨‍💻 20 · 🔀 72 · 📋 120 - 12% open · ⏱️ 12.09.2024):
git clone https://github.com/GT4SD/gt4sd-core
AI for Science Resources (🥈13 · ⭐ 550) - List of resources for AI4Science research, including learning resources. GPL-3.0 license - [GitHub](https://github.com/divelab/AIRS) (👨‍💻 30 · 🔀 63 · 📋 20 - 15% open · ⏱️ 15.11.2024):
git clone https://github.com/divelab/AIRS
GNoME Explorer (🥈10 · ⭐ 920) - Graph Networks for Materials Exploration Database. Apache-2 datasets materials-discovery - [GitHub](https://github.com/google-deepmind/materials_discovery) (👨‍💻 2 · 🔀 150 · 📋 25 - 84% open · ⏱️ 09.12.2024):
git clone https://github.com/google-deepmind/materials_discovery
Neural-Network-Models-for-Chemistry (🥈10 · ⭐ 100) - A collection of Nerual Network Models for chemistry. Unlicensed rep-learn - [GitHub](https://github.com/Eipgen/Neural-Network-Models-for-Chemistry) (👨‍💻 3 · 🔀 16 · 📋 2 - 50% open · ⏱️ 31.12.2024):
git clone https://github.com/Eipgen/Neural-Network-Models-for-Chemistry
Awesome Materials Informatics (🥈9 · ⭐ 400) - Curated list of known efforts in materials informatics, i.e. in modern materials science. Custom - [GitHub](https://github.com/tilde-lab/awesome-materials-informatics) (👨‍💻 19 · 🔀 85 · ⏱️ 18.09.2024):
git clone https://github.com/tilde-lab/awesome-materials-informatics
Awesome Neural Geometry (🥉8 · ⭐ 940) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,.. Unlicensed educational rep-learn - [GitHub](https://github.com/neurreps/awesome-neural-geometry) (👨‍💻 12 · 🔀 59 · ⏱️ 25.09.2024):
git clone https://github.com/neurreps/awesome-neural-geometry
Awesome-Crystal-GNNs (🥉8 · ⭐ 76) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials. MIT - [GitHub](https://github.com/kdmsit/Awesome-Crystal-GNNs) (👨‍💻 2 · 🔀 9 · ⏱️ 22.12.2024):
git clone https://github.com/kdmsit/Awesome-Crystal-GNNs
optimade.science (🥉8 · ⭐ 8 · 💤) - A sky-scanner Optimade browser-only GUI. MIT datasets - [GitHub](https://github.com/tilde-lab/optimade.science) (👨‍💻 8 · 🔀 2 · 📋 26 - 26% open · ⏱️ 10.06.2024):
git clone https://github.com/tilde-lab/optimade.science
Awesome Neural SBI (🥉7 · ⭐ 100) - Community-sourced list of papers and resources on neural simulation-based inference. MIT active-learning - [GitHub](https://github.com/smsharma/awesome-neural-sbi) (👨‍💻 3 · 🔀 7 · 📋 2 - 50% open · ⏱️ 23.11.2024):
git clone https://github.com/smsharma/awesome-neural-sbi
AI for Science paper collection (🥉7 · ⭐ 84) - List the AI for Science papers accepted by top conferences. Apache-2 - [GitHub](https://github.com/sherrylixuecheng/AI_for_Science_paper_collection) (👨‍💻 5 · 🔀 9 · ⏱️ 14.09.2024):
git clone https://github.com/sherrylixuecheng/AI_for_Science_paper_collection
Awesome-Graph-Generation (🥉6 · ⭐ 310) - A curated list of up-to-date graph generation papers and resources. Unlicensed rep-learn - [GitHub](https://github.com/yuanqidu/awesome-graph-generation) (👨‍💻 4 · 🔀 19 · ⏱️ 14.10.2024):
git clone https://github.com/yuanqidu/awesome-graph-generation
The Collection of Database and Dataset Resources in Materials Science (🥉6 · ⭐ 280) - A list of databases, datasets and books/handbooks where you can find materials properties for machine learning.. Unlicensed datasets - [GitHub](https://github.com/sedaoturak/data-resources-for-materials-science) (👨‍💻 2 · 🔀 48 · 📋 2 - 50% open · ⏱️ 18.12.2024):
git clone https://github.com/sedaoturak/data-resources-for-materials-science
Show 7 hidden projects... - MoLFormers UI (🥈9 · ⭐ 280 · 💀) - A family of foundation models trained on chemicals. Apache-2 transformer language-models pretrained drug-discovery - A Highly Opinionated List of Open-Source Materials Informatics Resources (🥉7 · ⭐ 120 · 💀) - A Highly Opinionated List of Open Source Materials Informatics Resources. MIT - MADICES Awesome Interoperability (🥉7 · ⭐ 1) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences.. MIT datasets - Geometric-GNNs (🥉4 · ⭐ 96 · 💤) - List of Geometric GNNs for 3D atomic systems. Unlicensed datasets educational rep-learn - Does this material exist? (🥉4 · ⭐ 15 · 💤) - Vote on whether you think predicted crystal structures could be synthesised. MIT for-fun materials-discovery - GitHub topic materials-informatics (🥉1) - GitHub topic materials-informatics. Unlicensed - MateriApps (🥉1) - A Portal Site of Materials Science Simulation. Unlicensed


Datasets

Back to top

Datasets, databases and trained models for atomistic ML.

🔗 Alexandria Materials Database - A database of millions of theoretical crystal structures (3D, 2D and 1D) discovered by machine learning accelerated..

🔗 Catalysis Hub - A web-platform for sharing data and software for computational catalysis research!.

🔗 Citrination Datasets - AI-Powered Materials Data Platform. Open Citrination has been decommissioned.

🔗 crystals.ai - Curated datasets for reproducible AI in materials science.

🔗 DeepChem Models - DeepChem models on HuggingFace. model-repository pretrained language-models

🔗 Graphs of Materials Project 20190401 - The dataset used to train the MEGNet interatomic potential. ML-IAP

🔗 HME21 Dataset - High-temperature multi-element 2021 dataset for the PreFerred Potential (PFP).. UIP

🔗 JARVIS-Leaderboard ( ⭐ 62) - A large scale benchmark of materials design methods: https://www.nature.com/articles/s41524-024-01259-w. model-repository benchmarking community-resource educational

🔗 Materials Project - Charge Densities - Materials Project has started offering charge density information available for download via their public API.

🔗 Materials Project Trajectory (MPtrj) Dataset - The dataset used to train the CHGNet universal potential. UIP

🔗 matterverse.ai - Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms.

🔗 MPF.2021.2.8 - The dataset used to train the M3GNet universal potential. UIP

🔗 NRELMatDB - Computational materials database with the specific focus on materials for renewable energy applications including, but..

🔗 Quantum-Machine.org Datasets - Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly.

🔗 sGDML Datasets - MD17, MD22, DFT datasets.

🔗 MoleculeNet - A Benchmark for Molecular Machine Learning. benchmarking

🔗 ZINC15 - A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable.. graph biomolecules

🔗 ZINC20 - A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable.. graph biomolecules

FAIR Chemistry datasets (🥇25 · ⭐ 940 · 📉) - Datasets OC20, OC22, etc. Formerly known as Open Catalyst Project. MIT catalysis - [GitHub](https://github.com/FAIR-Chem/fairchem) (👨‍💻 43 · 🔀 260 · 📋 250 - 11% open · ⏱️ 20.12.2024):
git clone https://github.com/FAIR-Chem/fairchem
- [PyPi](https://pypi.org/project/fairchem-core) (📥 4.8K / month · 📦 3 · ⏱️ 19.12.2024):
pip install fairchem-core
OPTIMADE Python tools (🥇25 · ⭐ 72) - Tools for implementing and consuming OPTIMADE APIs in Python. MIT - [GitHub](https://github.com/Materials-Consortia/optimade-python-tools) (👨‍💻 28 · 🔀 44 · 📦 61 · 📋 470 - 24% open · ⏱️ 27.12.2024):
git clone https://github.com/Materials-Consortia/optimade-python-tools
- [PyPi](https://pypi.org/project/optimade) (📦 4 · ⏱️ 27.12.2024):
pip install optimade
- [Conda](https://anaconda.org/conda-forge/optimade) (📥 100K · ⏱️ 28.12.2024):
conda install -c conda-forge optimade
MPContribs (🥇22 · ⭐ 37 · 📉) - Platform for materials scientists to contribute and disseminate their materials data through Materials Project. MIT - [GitHub](https://github.com/materialsproject/MPContribs) (👨‍💻 25 · 🔀 23 · 📦 41 · 📋 100 - 22% open · ⏱️ 30.12.2024):
git clone https://github.com/materialsproject/MPContribs
- [PyPi](https://pypi.org/project/mpcontribs-client) (📦 3 · ⏱️ 17.10.2024):
pip install mpcontribs-client
load-atoms (🥈18 · ⭐ 39) - download and manipulate atomistic datasets. MIT data-structures - [GitHub](https://github.com/jla-gardner/load-atoms) (👨‍💻 4 · 🔀 3 · 📦 5 · 📋 32 - 6% open · ⏱️ 16.12.2024):
git clone https://github.com/jla-gardner/load-atoms
- [PyPi](https://pypi.org/project/load-atoms) (📥 2.3K / month · 📦 2 · ⏱️ 13.12.2024):
pip install load-atoms
Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 83 · 💤) - Specification of a common REST API for access to materials databases. CC-BY-4.0 - [GitHub](https://github.com/Materials-Consortia/OPTIMADE) (👨‍💻 21 · 🔀 35 · 📋 240 - 28% open · ⏱️ 12.06.2024):
git clone https://github.com/Materials-Consortia/OPTIMADE
Meta Open Materials 2024 (OMat24) Dataset (🥈15 · ⭐ 930) - Contains over 100 million Density Functional Theory calculations focused on structural and compositional diversity. CC-BY-4.0 - [GitHub]() (🔀 260):
git clone https://github.com/https://github.com/FAIR-Chem/fairchem
- [PyPi](https://pypi.org/project/fairchem-core) (📥 4.8K / month · 📦 3 · ⏱️ 19.12.2024):
pip install fairchem-core
QH9 (🥈13 · ⭐ 550) - A Quantum Hamiltonian Prediction Benchmark. CC-BY-NC-SA-4.0 ML-DFT - [GitHub](https://github.com/divelab/AIRS) (👨‍💻 30 · 🔀 63 · 📋 20 - 15% open · ⏱️ 15.11.2024):
git clone https://github.com/divelab/AIRS
SPICE (🥈11 · ⭐ 160) - A collection of QM data for training potential functions. MIT ML-IAP MD - [GitHub](https://github.com/openmm/spice-dataset) (👨‍💻 1 · 🔀 9 · 📥 280 · 📋 69 - 24% open · ⏱️ 19.08.2024):
git clone https://github.com/openmm/spice-dataset
AIS Square (🥈9 · ⭐ 13) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the.. LGPL-3.0 community-resource model-repository - [GitHub](https://github.com/deepmodeling/AIS-Square) (👨‍💻 8 · 🔀 8 · 📋 6 - 83% open · ⏱️ 28.12.2024):
git clone https://github.com/deepmodeling/AIS-Square
Materials Data Facility (MDF) (🥈9 · ⭐ 10 · 💤) - A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,.. Apache-2 - [GitHub](https://github.com/materials-data-facility/connect_client) (👨‍💻 7 · 🔀 1 · 📋 7 - 14% open · ⏱️ 05.02.2024):
git clone https://github.com/materials-data-facility/connect_client
3DSC Database (🥉6 · ⭐ 16) - Repo for the paper publishing the superconductor database with 3D crystal structures. Custom superconductors materials-discovery - [GitHub](https://github.com/aimat-lab/3DSC) (🔀 5 · 📋 2 - 50% open · ⏱️ 21.11.2024):
git clone https://github.com/aimat-lab/3DSC
The Perovskite Database Project (🥉5 · ⭐ 60 · 💤) - Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form.. Unlicensed community-resource - [GitHub](https://github.com/Jesperkemist/perovskitedatabase) (👨‍💻 2 · 🔀 20 · ⏱️ 07.03.2024):
git clone https://github.com/Jesperkemist/perovskitedatabase
Show 16 hidden projects... - ATOM3D (🥈17 · ⭐ 300 · 💀) - ATOM3D: tasks on molecules in three dimensions. MIT biomolecules benchmarking - OpenKIM (🥈10 · ⭐ 32 · 💀) - The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-.. LGPL-2.1 model-repository knowledge-base pretrained - 2DMD dataset (🥈9 · ⭐ 6 · 💀) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of.. Apache-2 material-defect - ANI-1 Dataset (🥉8 · ⭐ 96 · 💀) - A data set of 20 million calculated off-equilibrium conformations for organic molecules. MIT - MoleculeNet Leaderboard (🥉8 · ⭐ 92 · 💀) - MIT benchmarking - GEOM (🥉7 · ⭐ 200 · 💀) - GEOM: Energy-annotated molecular conformations. Unlicensed drug-discovery - ANI-1x Datasets (🥉6 · ⭐ 62 · 💀) - The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules. MIT - COMP6 Benchmark dataset (🥉6 · ⭐ 39 · 💀) - COMP6 Benchmark dataset for ML potentials. MIT - SciGlass (🥉5 · ⭐ 12 · 💀) - The database contains a vast set of data on the properties of glass materials. MIT - GDB-9-Ex9 and ORNL_AISD-Ex (🥉5 · ⭐ 6 · 💀) - Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-.. Unlicensed - linear-regression-benchmarks (🥉5 · ⭐ 1 · 💀) - Data sets used for linear regression benchmarks. MIT benchmarking single-paper - paper-data-redundancy (🥉4 · ⭐ 9) - Repo for the paper Exploiting redundancy in large materials datasets for efficient machine learning with less data. BSD-3 small-data single-paper - Visual Graph Datasets (🥉4 · ⭐ 2) - Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations.. MIT XAI rep-learn - OPTIMADE providers dashboard (🥉4 · ⭐ 1) - A dashboard of known providers. Unlicensed - nep-data (🥉2 · ⭐ 14 · 💀) - Data related to the NEP machine-learned potential of GPUMD. Unlicensed ML-IAP MD transport-phenomena - tmQM_wB97MV Dataset (🥉2 · ⭐ 6 · 💤) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV.. Unlicensed catalysis rep-learn


Data Structures

Back to top

Projects that focus on providing data structures used in atomistic machine learning.

dpdata (🥇23 · ⭐ 200) - A Python package for manipulating atomistic data of software in computational science. LGPL-3.0 - [GitHub](https://github.com/deepmodeling/dpdata) (👨‍💻 61 · 🔀 130 · 📦 130 · 📋 120 - 27% open · ⏱️ 20.09.2024):
git clone https://github.com/deepmodeling/dpdata
- [PyPi](https://pypi.org/project/dpdata) (📥 21K / month · 📦 40 · ⏱️ 20.09.2024):
pip install dpdata
- [Conda](https://anaconda.org/deepmodeling/dpdata) (📥 250 · ⏱️ 27.09.2023):
conda install -c deepmodeling dpdata
Metatensor (🥈22 · ⭐ 57) - Self-describing sparse tensor data format for atomistic machine learning and beyond. BSD-3 Rust C-lang C++ Python - [GitHub](https://github.com/metatensor/metatensor) (👨‍💻 26 · 🔀 18 · 📥 37K · 📦 13 · 📋 220 - 29% open · ⏱️ 19.12.2024):
git clone https://github.com/lab-cosmo/metatensor
mp-pyrho (🥉17 · ⭐ 37) - Tools for re-griding volumetric quantum chemistry data for machine-learning purposes. Custom ML-DFT - [GitHub](https://github.com/materialsproject/pyrho) (👨‍💻 10 · 🔀 7 · 📦 26 · 📋 5 - 40% open · ⏱️ 22.10.2024):
git clone https://github.com/materialsproject/pyrho
- [PyPi](https://pypi.org/project/mp-pyrho) (📥 6.6K / month · 📦 5 · ⏱️ 22.10.2024):
pip install mp-pyrho
dlpack (🥉15 · ⭐ 920) - common in-memory tensor structure. Apache-2 C++ - [GitHub](https://github.com/dmlc/dlpack) (👨‍💻 24 · 🔀 130 · 📋 72 - 41% open · ⏱️ 28.09.2024):
git clone https://github.com/dmlc/dlpack


Density functional theory (ML-DFT)

Back to top

Projects and models that focus on quantities of DFT, such as density functional approximations (ML-DFA), the charge density, density of states, the Hamiltonian, etc.

🔗 IKS-PIML - Code and generated data for the paper Inverting the Kohn-Sham equations with physics-informed machine learning.. neural-operator pinn datasets single-paper

JAX-DFT (🥇25 · ⭐ 35K) - This library provides basic building blocks that can construct DFT calculations as a differentiable program. Apache-2 - [GitHub](https://github.com/google-research/google-research) (👨‍💻 820 · 🔀 7.9K · 📋 1.8K - 81% open · ⏱️ 13.12.2024):
git clone https://github.com/google-research/google-research
MALA (🥇20 · ⭐ 82) - Materials Learning Algorithms. A framework for machine learning materials properties from first-principles data. BSD-3 - [GitHub](https://github.com/mala-project/mala) (👨‍💻 44 · 🔀 26 · 📦 2 · 📋 290 - 10% open · ⏱️ 13.12.2024):
git clone https://github.com/mala-project/mala
QHNet (🥇13 · ⭐ 550) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 rep-learn - [GitHub](https://github.com/divelab/AIRS) (👨‍💻 30 · 🔀 63 · 📋 20 - 15% open · ⏱️ 15.11.2024):
git clone https://github.com/divelab/AIRS
SALTED (🥈12 · ⭐ 32) - Symmetry-Adapted Learning of Three-dimensional Electron Densities. GPL-3.0 - [GitHub](https://github.com/andreagrisafi/SALTED) (👨‍💻 17 · 🔀 4 · 📋 7 - 28% open · ⏱️ 27.09.2024):
git clone https://github.com/andreagrisafi/SALTED
DeepH-pack (🥈11 · ⭐ 250) - Deep neural networks for density functional theory Hamiltonian. LGPL-3.0 Julia - [GitHub](https://github.com/mzjb/DeepH-pack) (👨‍💻 8 · 🔀 44 · 📋 55 - 29% open · ⏱️ 07.10.2024):
git clone https://github.com/mzjb/DeepH-pack
Grad DFT (🥈10 · ⭐ 82 · 💤) - GradDFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation.. Apache-2 - [GitHub](https://github.com/XanaduAI/GradDFT) (👨‍💻 4 · 🔀 8 · 📋 54 - 20% open · ⏱️ 13.02.2024):
git clone https://github.com/XanaduAI/GradDFT
DeePKS-kit (🥈9 · ⭐ 100 · 💤) - a package for developing machine learning-based chemically accurate energy and density functional models. LGPL-3.0 - [GitHub](https://github.com/deepmodeling/deepks-kit) (👨‍💻 7 · 🔀 36 · 📋 24 - 41% open · ⏱️ 13.04.2024):
git clone https://github.com/deepmodeling/deepks-kit
Q-stack (🥈9 · ⭐ 15) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). MIT excited-states general-tool - [GitHub](https://github.com/lcmd-epfl/Q-stack) (👨‍💻 7 · 🔀 5 · 📋 29 - 27% open · ⏱️ 11.12.2024):
git clone https://github.com/lcmd-epfl/Q-stack
HamGNN (🥈8 · ⭐ 72) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix. GPL-3.0 rep-learn magnetism C-lang - [GitHub](https://github.com/QuantumLab-ZY/HamGNN) (👨‍💻 2 · 🔀 15 · 📋 35 - 82% open · ⏱️ 27.12.2024):
git clone https://github.com/QuantumLab-ZY/HamGNN
ChargE3Net (🥉5 · ⭐ 41) - Higher-order equivariant neural networks for charge density prediction in materials. MIT rep-learn - [GitHub](https://github.com/AIforGreatGood/charge3net) (👨‍💻 2 · 🔀 12 · 📋 7 - 42% open · ⏱️ 30.10.2024):
git clone https://github.com/AIforGreatGood/charge3net
Show 22 hidden projects... - DM21 (🥇20 · ⭐ 13K · 💀) - This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described.. Apache-2 - NeuralXC (🥈10 · ⭐ 34 · 💀) - Implementation of a machine learned density functional. BSD-3 - ACEhamiltonians (🥈10 · ⭐ 15 · 💀) - Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-.. MIT Julia - PROPhet (🥈9 · ⭐ 64 · 💀) - PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches. GPL-3.0 ML-IAP MD single-paper C++ - DeepH-E3 (🥉7 · ⭐ 83 · 💀) - General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian. MIT magnetism - Mat2Spec (🥉7 · ⭐ 28 · 💀) - Density of States Prediction for Materials Discovery via Contrastive Learning from Probabilistic Embeddings. MIT spectroscopy - Libnxc (🥉7 · ⭐ 17 · 💀) - A library for using machine-learned exchange-correlation functionals for density-functional theory. MPL-2.0 C++ Fortran - DeepDFT (🥉6 · ⭐ 66 · 💀) - Official implementation of DeepDFT model. MIT - charge-density-models (🥉6 · ⭐ 10 · 💀) - Tools to build charge density models using [fairchem](https://github.com/FAIR-Chem/fairchem). MIT rep-learn - KSR-DFT (🥉6 · ⭐ 4 · 💀) - Kohn-Sham regularizer for machine-learned DFT functionals. Apache-2 - xDeepH (🥉5 · ⭐ 34 · 💀) - Extended DeepH (xDeepH) method for magnetic materials. LGPL-3.0 magnetism Julia - ML-DFT (🥉5 · ⭐ 23 · 💀) - A package for density functional approximation using machine learning. MIT - InfGCN for Electron Density Estimation (🥉5 · ⭐ 12 · 💀) - Official implementation of the NeurIPS 23 spotlight paper of InfGCN. MIT rep-learn neural-operator - rho_learn (🥉5 · ⭐ 4 · 💀) - A proof-of-concept workflow for torch-based electron density learning. MIT - DeepCDP (🥉4 · ⭐ 6 · 💀) - DeepCDP: Deep learning Charge Density Prediction. Unlicensed - gprep (🥉4 · 💀) - Fitting DFTB repulsive potentials with GPR. MIT single-paper - APET (🥉3 · ⭐ 4 · 💀) - Atomic Positional Embedding-based Transformer. GPL-3.0 density-of-states transformer - CSNN (🥉3 · ⭐ 2 · 💀) - Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning. BSD-3 - MALADA (🥉3 · ⭐ 1) - MALA Data Acquisition: Helpful tools to build data for MALA. BSD-3 - A3MD (🥉2 · ⭐ 8 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed rep-learn single-paper - MLDensity (🥉1 · ⭐ 3 · 💀) - Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure.. Unlicensed - kdft (🥉1 · ⭐ 2 · 💀) - The Kernel Density Functional (KDF) code allows generating ML based DFT functionals. Unlicensed


Educational Resources

Back to top

Tutorials, guides, cookbooks, recipes, etc.

🔗 AI for Science 101 community-resource rep-learn

🔗 AL4MS 2023 workshop tutorials active-learning

🔗 Quantum Chemistry in the Age of Machine Learning - Book, 2022.

AI4Chemistry course (🥇11 · ⭐ 160 · 💤) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course. MIT chemistry - [GitHub](https://github.com/schwallergroup/ai4chem_course) (👨‍💻 6 · 🔀 37 · 📋 4 - 25% open · ⏱️ 02.05.2024):
git clone https://github.com/schwallergroup/ai4chem_course
jarvis-tools-notebooks (🥈9 · ⭐ 70) - A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/. NIST - [GitHub](https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks) (👨‍💻 5 · 🔀 26 · ⏱️ 14.08.2024):
git clone https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks
DSECOP (🥈9 · ⭐ 44 · 💤) - This repository contains data science educational materials developed by DSECOP Fellows. CCO-1.0 - [GitHub](https://github.com/GDS-Education-Community-of-Practice/DSECOP) (👨‍💻 14 · 🔀 26 · 📋 8 - 12% open · ⏱️ 26.06.2024):
git clone https://github.com/GDS-Education-Community-of-Practice/DSECOP
iam-notebooks (🥈8 · ⭐ 26) - Jupyter notebooks for the lectures of the Introduction to Atomistic Modeling. Apache-2 - [GitHub](https://github.com/ceriottm/iam-notebooks) (👨‍💻 6 · 🔀 5 · ⏱️ 09.10.2024):
git clone https://github.com/ceriottm/iam-notebooks
COSMO Software Cookbook (🥈8 · ⭐ 17) - A cookbook with recipes for atomic-scale modeling of materials and molecules. BSD-3 - [GitHub](https://github.com/lab-cosmo/atomistic-cookbook) (👨‍💻 11 · 🔀 1 · 📋 12 - 8% open · ⏱️ 20.12.2024):
git clone https://github.com/lab-cosmo/software-cookbook
MACE-tutorials (🥉6 · ⭐ 43) - Another set of tutorials for the MACE interatomic potential by one of the authors. MIT ML-IAP rep-learn MD - [GitHub](https://github.com/ilyes319/mace-tutorials) (👨‍💻 2 · 🔀 11 · ⏱️ 16.07.2024):
git clone https://github.com/ilyes319/mace-tutorials
Show 19 hidden projects... - Geometric GNN Dojo (🥇12 · ⭐ 480 · 💀) - New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge. MIT rep-learn - DeepLearningLifeSciences (🥇12 · ⭐ 360 · 💀) - Example code from the book Deep Learning for the Life Sciences. MIT - Deep Learning for Molecules and Materials Book (🥇11 · ⭐ 630 · 💀) - Deep learning for molecules and materials book. Custom - OPTIMADE Tutorial Exercises (🥈9 · ⭐ 15 · 💀) - Tutorial exercises for the OPTIMADE API. MIT datasets - RDKit Tutorials (🥈8 · ⭐ 270 · 💀) - Tutorials to learn how to work with the RDKit. Custom - BestPractices (🥈8 · ⭐ 180 · 💀) - Things that you should (and should not) do in your Materials Informatics research. MIT - MAChINE (🥉7 · ⭐ 1 · 💀) - Client-Server Web App to introduce usage of ML in materials science to beginners. MIT - Applied AI for Materials (🥉6 · ⭐ 59 · 💀) - Course materials for Applied AI for Materials Science and Engineering. Unlicensed - ML for catalysis tutorials (🥉6 · ⭐ 8 · 💀) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis. MIT - AI4Science101 (🥉5 · ⭐ 86 · 💀) - AI for Science. Unlicensed - Machine Learning for Materials Hard and Soft (🥉5 · ⭐ 35 · 💀) - ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft. Unlicensed - Data Handling, DoE and Statistical Analysis for Material Chemists (🥉5 · ⭐ 2 · 💀) - Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University. GPL-3.0 - ML-in-chemistry-101 (🥉4 · ⭐ 72 · 💀) - The course materials for Machine Learning in Chemistry 101. Unlicensed - chemrev-gpr (🥉4 · ⭐ 10 · 💀) - Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020. Unlicensed - PiNN Lab (🥉4 · ⭐ 3 · 💀) - Material for running a lab session on atomic neural networks. GPL-3.0 - AI4ChemMat Hands-On Series (🥉4 · ⭐ 1 · 💤) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab. MPL-2.0 - MLDensity_tutorial (🥉2 · ⭐ 9 · 💀) - Tutorial files to work with ML for the charge density in molecules and solids. Unlicensed - LAMMPS-style pair potentials with GAP (🥉2 · ⭐ 4 · 💀) - A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD.. Unlicensed ML-IAP MD rep-eng - MALA Tutorial (🥉2 · ⭐ 2 · 💀) - A full MALA hands-on tutorial. Unlicensed


Explainable Artificial intelligence (XAI)

Back to top

Projects that focus on explainability and model interpretability in atomistic ML.

exmol (🥇21 · ⭐ 290) - Explainer for black box models that predict molecule properties. MIT - [GitHub](https://github.com/ur-whitelab/exmol) (👨‍💻 7 · 🔀 42 · 📦 23 · 📋 71 - 16% open · ⏱️ 22.11.2024):
git clone https://github.com/ur-whitelab/exmol
- [PyPi](https://pypi.org/project/exmol) (📥 1.3K / month · 📦 1 · ⏱️ 22.11.2024):
pip install exmol
MEGAN: Multi Explanation Graph Attention Student (🥉5 · ⭐ 8) - Minimal implementation of graph attention student model architecture. MIT rep-learn - [GitHub](https://github.com/aimat-lab/graph_attention_student) (👨‍💻 2 · 🔀 1 · 📋 3 - 33% open · ⏱️ 07.10.2024):
git clone https://github.com/aimat-lab/graph_attention_student
Show 1 hidden projects... - Linear vs blackbox (🥉3 · ⭐ 2 · 💀) - Code and data related to the publication: Interpretable models for extrapolation in scientific machine learning. MIT XAI single-paper rep-eng


Electronic structure methods (ML-ESM)

Back to top

Projects and models that focus on quantities of electronic structure methods, which do not fit into either of the categories ML-WFT or ML-DFT.

Show 5 hidden projects... - QDF for molecule (🥇8 · ⭐ 210 · 💀) - Quantum deep field: data-driven wave function, electron density generation, and energy prediction and extrapolation.. MIT - QMLearn (🥈5 · ⭐ 11 · 💀) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis... MIT - q-pac (🥈5 · ⭐ 4 · 💀) - Kernel charge equilibration method. MIT electrostatics - halex (🥈5 · ⭐ 3 · 💤) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844. Unlicensed excited-states - e3psi (🥉3 · ⭐ 3 · 💤) - Equivariant machine learning library for learning from electronic structures. LGPL-3.0


General Tools

Back to top

General tools for atomistic machine learning.

RDKit (🥇36 · ⭐ 2.7K) - BSD-3 C++ - [GitHub](https://github.com/rdkit/rdkit) (👨‍💻 240 · 🔀 880 · 📥 870 · 📦 3 · 📋 3.7K - 18% open · ⏱️ 25.12.2024):
git clone https://github.com/rdkit/rdkit
- [PyPi](https://pypi.org/project/rdkit) (📥 1.4M / month · 📦 840 · ⏱️ 29.12.2024):
pip install rdkit
- [Conda](https://anaconda.org/rdkit/rdkit) (📥 2.6M · ⏱️ 16.06.2023):
conda install -c rdkit rdkit
DeepChem (🥇34 · ⭐ 5.6K) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology. MIT - [GitHub](https://github.com/deepchem/deepchem) (👨‍💻 250 · 🔀 1.7K · 📦 480 · 📋 1.9K - 34% open · ⏱️ 24.12.2024):
git clone https://github.com/deepchem/deepchem
- [PyPi](https://pypi.org/project/deepchem) (📥 51K / month · 📦 14 · ⏱️ 24.12.2024):
pip install deepchem
- [Conda](https://anaconda.org/conda-forge/deepchem) (📥 110K · ⏱️ 05.04.2024):
conda install -c conda-forge deepchem
- [Docker Hub](https://hub.docker.com/r/deepchemio/deepchem) (📥 8K · ⭐ 5 · ⏱️ 24.12.2024):
docker pull deepchemio/deepchem
Matminer (🥇28 · ⭐ 490) - Data mining for materials science. Custom - [GitHub](https://github.com/hackingmaterials/matminer) (👨‍💻 56 · 🔀 190 · 📦 350 · 📋 230 - 13% open · ⏱️ 11.10.2024):
git clone https://github.com/hackingmaterials/matminer
- [PyPi](https://pypi.org/project/matminer) (📥 15K / month · 📦 60 · ⏱️ 06.10.2024):
pip install matminer
- [Conda](https://anaconda.org/conda-forge/matminer) (📥 78K · ⏱️ 21.12.2024):
conda install -c conda-forge matminer
QUIP (🥈24 · ⭐ 360) - libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io. GPL-2.0 MD ML-IAP rep-eng Fortran - [GitHub](https://github.com/libAtoms/QUIP) (👨‍💻 85 · 🔀 120 · 📥 730 · 📦 45 · 📋 470 - 22% open · ⏱️ 27.09.2024):
git clone https://github.com/libAtoms/QUIP
- [PyPi](https://pypi.org/project/quippy-ase) (📥 2.6K / month · 📦 4 · ⏱️ 15.01.2023):
pip install quippy-ase
- [Docker Hub](https://hub.docker.com/r/libatomsquip/quip) (📥 10K · ⭐ 4 · ⏱️ 24.04.2023):
docker pull libatomsquip/quip
JARVIS-Tools (🥈23 · ⭐ 320) - JARVIS-Tools: an open-source software package for data-driven atomistic materials design. Publications:.. Custom - [GitHub](https://github.com/usnistgov/jarvis) (👨‍💻 15 · 🔀 120 · 📦 110 · 📋 92 - 51% open · ⏱️ 20.11.2024):
git clone https://github.com/usnistgov/jarvis
- [PyPi](https://pypi.org/project/jarvis-tools) (📥 19K / month · 📦 31 · ⏱️ 20.11.2024):
pip install jarvis-tools
- [Conda](https://anaconda.org/conda-forge/jarvis-tools) (📥 87K · ⏱️ 20.11.2024):
conda install -c conda-forge jarvis-tools
MAML (🥈21 · ⭐ 380) - Python for Materials Machine Learning, Materials Descriptors, Machine Learning Force Fields, Deep Learning, etc. BSD-3 - [GitHub](https://github.com/materialsvirtuallab/maml) (👨‍💻 33 · 🔀 79 · 📦 12 · 📋 71 - 12% open · ⏱️ 06.11.2024):
git clone https://github.com/materialsvirtuallab/maml
- [PyPi](https://pypi.org/project/maml) (📥 460 / month · 📦 2 · ⏱️ 13.06.2024):
pip install maml
MAST-ML (🥈19 · ⭐ 110) - MAterials Simulation Toolkit for Machine Learning (MAST-ML). MIT - [GitHub](https://github.com/uw-cmg/MAST-ML) (👨‍💻 19 · 🔀 61 · 📥 140 · 📦 45 · 📋 220 - 14% open · ⏱️ 09.10.2024):
git clone https://github.com/uw-cmg/MAST-ML
QML (🥈18 · ⭐ 200) - QML: Quantum Machine Learning. MIT - [GitHub](https://github.com/qmlcode/qml) (👨‍💻 10 · 🔀 84 · 📋 59 - 64% open · ⏱️ 08.12.2024):
git clone https://github.com/qmlcode/qml
- [PyPi](https://pypi.org/project/qml) (📥 390 / month · ⏱️ 13.08.2018):
pip install qml
Scikit-Matter (🥈17 · ⭐ 77) - A collection of scikit-learn compatible utilities that implement methods born out of the materials science and.. BSD-3 scikit-learn - [GitHub](https://github.com/scikit-learn-contrib/scikit-matter) (👨‍💻 15 · 🔀 19 · 📦 11 · 📋 70 - 20% open · ⏱️ 09.10.2024):
git clone https://github.com/scikit-learn-contrib/scikit-matter
- [PyPi](https://pypi.org/project/skmatter) (📥 1.8K / month · ⏱️ 24.08.2023):
pip install skmatter
- [Conda](https://anaconda.org/conda-forge/skmatter) (📥 2.6K · ⏱️ 24.08.2023):
conda install -c conda-forge skmatter
MLatom (🥉16 · ⭐ 72) - AI-enhanced computational chemistry. MIT UIP ML-IAP MD ML-DFT ML-ESM transfer-learning active-learning spectroscopy structure-optimization - [GitHub](https://github.com/dralgroup/mlatom) (👨‍💻 4 · 🔀 11 · 📋 5 - 20% open · ⏱️ 18.12.2024):
git clone https://github.com/dralgroup/mlatom
- [PyPi](https://pypi.org/project/mlatom) (📥 3.4K / month · ⏱️ 18.12.2024):
pip install mlatom
XenonPy (🥉15 · ⭐ 140 · 💤) - XenonPy is a Python Software for Materials Informatics. BSD-3 - [GitHub](https://github.com/yoshida-lab/XenonPy) (👨‍💻 10 · 🔀 61 · 📥 1.5K · 📋 87 - 24% open · ⏱️ 21.04.2024):
git clone https://github.com/yoshida-lab/XenonPy
- [PyPi](https://pypi.org/project/xenonpy) (📥 890 / month · 📦 1 · ⏱️ 31.10.2022):
pip install xenonpy
Artificial Intelligence for Science (AIRS) (🥉13 · ⭐ 550) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 license rep-learn generative ML-IAP MD ML-DFT ML-WFT biomolecules - [GitHub](https://github.com/divelab/AIRS) (👨‍💻 30 · 🔀 63 · 📋 20 - 15% open · ⏱️ 15.11.2024):
git clone https://github.com/divelab/AIRS
Show 10 hidden projects... - Automatminer (🥉15 · ⭐ 140 · 💀) - An automatic engine for predicting materials properties. Custom autoML - AMPtorch (🥉11 · ⭐ 60 · 💀) - AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch. GPL-3.0 - OpenChem (🥉10 · ⭐ 680 · 💀) - OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research. MIT - JAXChem (🥉7 · ⭐ 79 · 💀) - JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling. MIT - uncertainty_benchmarking (🥉7 · ⭐ 41 · 💀) - Various code/notebooks to benchmark different ways we could estimate uncertainty in ML predictions. Unlicensed benchmarking probabilistic - torchchem (🥉7 · ⭐ 35 · 💀) - An experimental repo for experimenting with PyTorch models. MIT - Equisolve (🥉6 · ⭐ 5 · 💀) - A ML toolkit package utilizing the metatensor data format to build models for the prediction of equivariant properties.. BSD-3 ML-IAP - ACEatoms (🥉4 · ⭐ 2 · 💀) - Generic code for modelling atomic properties using ACE. Custom Julia - Magpie (🥉3) - Materials Agnostic Platform for Informatics and Exploration (Magpie). MIT Java - quantum-structure-ml (🥉2 · ⭐ 2 · 💀) - Multi-class classification model for predicting the magnetic order of magnetic structures and a binary classification.. Unlicensed magnetism benchmarking


Generative Models

Back to top

Projects that implement generative models for atomistic ML.

GT4SD (🥇18 · ⭐ 340 · 📈) - GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process. MIT pretrained drug-discovery rep-learn - [GitHub](https://github.com/GT4SD/gt4sd-core) (👨‍💻 20 · 🔀 72 · 📋 120 - 12% open · ⏱️ 12.09.2024):
git clone https://github.com/GT4SD/gt4sd-core
- [PyPi](https://pypi.org/project/gt4sd) (📥 2.4K / month · ⏱️ 12.09.2024):
pip install gt4sd
MoLeR (🥇15 · ⭐ 280 · 💤) - Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation. MIT - [GitHub](https://github.com/microsoft/molecule-generation) (👨‍💻 5 · 🔀 41 · 📋 40 - 22% open · ⏱️ 03.01.2024):
git clone https://github.com/microsoft/molecule-generation
- [PyPi](https://pypi.org/project/molecule-generation) (📥 240 / month · 📦 1 · ⏱️ 05.01.2024):
pip install molecule-generation
PMTransformer (🥈14 · ⭐ 89 · 💤) - Universal Transfer Learning in Porous Materials, including MOFs. MIT transfer-learning pretrained transformer - [GitHub](https://github.com/hspark1212/MOFTransformer) (👨‍💻 2 · 🔀 13 · 📦 8 · ⏱️ 20.06.2024):
git clone https://github.com/hspark1212/MOFTransformer
- [PyPi](https://pypi.org/project/moftransformer) (📥 570 / month · 📦 1 · ⏱️ 20.06.2024):
pip install moftransformer
SiMGen (🥈13 · ⭐ 17) - Zero Shot Molecular Generation via Similarity Kernels. MIT viz - [GitHub](https://github.com/RokasEl/simgen) (👨‍💻 4 · 🔀 2 · 📦 2 · 📋 4 - 25% open · ⏱️ 13.12.2024):
git clone https://github.com/RokasEl/simgen
- [PyPi](https://pypi.org/project/simgen) (📥 200 / month · ⏱️ 13.12.2024):
pip install simgen
SchNetPack G-SchNet (🥈12 · ⭐ 52) - G-SchNet extension for SchNetPack. MIT - [GitHub](https://github.com/atomistic-machine-learning/schnetpack-gschnet) (👨‍💻 3 · 🔀 8 · 📋 16 - 6% open · ⏱️ 07.11.2024):
git clone https://github.com/atomistic-machine-learning/schnetpack-gschnet
COATI (🥉5 · ⭐ 100 · 💤) - COATI: multi-modal contrastive pre-training for representing and traversing chemical space. Apache-2 drug-discovery multimodal pretrained rep-learn - [GitHub](https://github.com/terraytherapeutics/COATI) (👨‍💻 5 · 🔀 6 · 📋 3 - 33% open · ⏱️ 23.03.2024):
git clone https://github.com/terraytherapeutics/COATI
Show 8 hidden projects... - synspace (🥈12 · ⭐ 36 · 💀) - Synthesis generative model. MIT - EDM (🥉9 · ⭐ 460 · 💀) - E(3) Equivariant Diffusion Model for Molecule Generation in 3D. MIT - G-SchNet (🥉8 · ⭐ 130 · 💀) - G-SchNet - a generative model for 3d molecular structures. MIT - bVAE-IM (🥉8 · ⭐ 11 · 💀) - Implementation of Chemical Design with GPU-based Ising Machine. MIT QML single-paper - cG-SchNet (🥉7 · ⭐ 54 · 💀) - cG-SchNet - a conditional generative neural network for 3d molecular structures. MIT - rxngenerator (🥉6 · ⭐ 12 · 💀) - A generative model for molecular generation via multi-step chemical reactions. MIT - MolSLEPA (🥉5 · ⭐ 5 · 💀) - Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing. MIT XAI - Mapping out phase diagrams with generative classifiers (🥉4 · ⭐ 7 · 💀) - Repository for our ``Mapping out phase diagrams with generative models paper. MIT phase-transition


Interatomic Potentials (ML-IAP)

Back to top

Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and force fields (ML-FF) for molecular dynamics.

DeePMD-kit (🥇28 · ⭐ 1.5K) - A deep learning package for many-body potential energy representation and molecular dynamics. LGPL-3.0 C++ - [GitHub](https://github.com/deepmodeling/deepmd-kit) (👨‍💻 73 · 🔀 520 · 📥 46K · 📦 22 · 📋 870 - 10% open · ⏱️ 23.12.2024):
git clone https://github.com/deepmodeling/deepmd-kit
- [PyPi](https://pypi.org/project/deepmd-kit) (📥 6K / month · 📦 4 · ⏱️ 23.12.2024):
pip install deepmd-kit
- [Conda](https://anaconda.org/deepmodeling/deepmd-kit) (📥 1.7K · ⏱️ 06.04.2024):
conda install -c deepmodeling deepmd-kit
- [Docker Hub](https://hub.docker.com/r/deepmodeling/deepmd-kit) (📥 3.3K · ⭐ 1 · ⏱️ 25.11.2024):
docker pull deepmodeling/deepmd-kit
fairchem (🥇25 · ⭐ 940) - FAIR Chemistrys library of machine learning methods for chemistry. Formerly known as Open Catalyst Project. MIT pretrained UIP rep-learn catalysis - [GitHub](https://github.com/FAIR-Chem/fairchem) (👨‍💻 43 · 🔀 260 · 📋 250 - 11% open · ⏱️ 20.12.2024):
git clone https://github.com/FAIR-Chem/fairchem
- [PyPi](https://pypi.org/project/fairchem-core) (📥 4.8K / month · 📦 3 · ⏱️ 19.12.2024):
pip install fairchem-core
DP-GEN (🥇23 · ⭐ 320) - The deep potential generator to generate a deep-learning based model of interatomic potential energy and force field. LGPL-3.0 workflows - [GitHub](https://github.com/deepmodeling/dpgen) (👨‍💻 69 · 🔀 180 · 📥 1.9K · 📦 7 · 📋 310 - 14% open · ⏱️ 23.11.2024):
git clone https://github.com/deepmodeling/dpgen
- [PyPi](https://pypi.org/project/dpgen) (📥 870 / month · 📦 2 · ⏱️ 23.11.2024):
pip install dpgen
- [Conda](https://anaconda.org/deepmodeling/dpgen) (📥 220 · ⏱️ 16.06.2023):
conda install -c deepmodeling dpgen
NequIP (🥇22 · ⭐ 660) - NequIP is a code for building E(3)-equivariant interatomic potentials. MIT - [GitHub](https://github.com/mir-group/nequip) (👨‍💻 12 · 🔀 140 · 📦 33 · 📋 98 - 25% open · ⏱️ 14.11.2024):
git clone https://github.com/mir-group/nequip
- [PyPi](https://pypi.org/project/nequip) (📥 1.6K / month · 📦 1 · ⏱️ 09.07.2024):
pip install nequip
- [Conda](https://anaconda.org/conda-forge/nequip) (📥 7.1K · ⏱️ 31.12.2024):
conda install -c conda-forge nequip
MACE (🥇22 · ⭐ 580) - MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing. MIT - [GitHub](https://github.com/ACEsuit/mace) (👨‍💻 47 · 🔀 210 · 📋 320 - 21% open · ⏱️ 20.12.2024):
git clone https://github.com/ACEsuit/mace
GPUMD (🥇22 · ⭐ 500) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials.. GPL-3.0 MD C++ electrostatics - [GitHub](https://github.com/brucefan1983/GPUMD) (👨‍💻 42 · 🔀 120 · 📋 190 - 11% open · ⏱️ 02.01.2025):
git clone https://github.com/brucefan1983/GPUMD
TorchMD-NET (🥈21 · ⭐ 350) - Training neural network potentials. MIT MD rep-learn transformer pretrained - [GitHub](https://github.com/torchmd/torchmd-net) (👨‍💻 16 · 🔀 75 · 📋 130 - 34% open · ⏱️ 03.12.2024):
git clone https://github.com/torchmd/torchmd-net
- [Conda](https://anaconda.org/conda-forge/torchmd-net) (📥 270K · ⏱️ 03.12.2024):
conda install -c conda-forge torchmd-net
apax (🥈19 · ⭐ 19) - A flexible and performant framework for training machine learning potentials. MIT - [GitHub](https://github.com/apax-hub/apax) (👨‍💻 8 · 🔀 3 · 📦 3 · 📋 140 - 13% open · ⏱️ 17.12.2024):
git clone https://github.com/apax-hub/apax
- [PyPi](https://pypi.org/project/apax) (📥 600 / month · ⏱️ 03.12.2024):
pip install apax
Neural Force Field (🥈16 · ⭐ 250) - Neural Network Force Field based on PyTorch. MIT pretrained - [GitHub](https://github.com/learningmatter-mit/NeuralForceField) (👨‍💻 42 · 🔀 51 · 📋 21 - 14% open · ⏱️ 06.12.2024):
git clone https://github.com/learningmatter-mit/NeuralForceField
n2p2 (🥈16 · ⭐ 230) - n2p2 - A Neural Network Potential Package. GPL-3.0 C++ - [GitHub](https://github.com/CompPhysVienna/n2p2) (👨‍💻 11 · 🔀 78 · 📋 150 - 44% open · ⏱️ 24.11.2024):
git clone https://github.com/CompPhysVienna/n2p2
NNPOps (🥈15 · ⭐ 88) - High-performance operations for neural network potentials. MIT MD C++ - [GitHub](https://github.com/openmm/NNPOps) (👨‍💻 9 · 🔀 18 · 📋 57 - 38% open · ⏱️ 10.07.2024):
git clone https://github.com/openmm/NNPOps
- [Conda](https://anaconda.org/conda-forge/nnpops) (📥 310K · ⏱️ 14.11.2024):
conda install -c conda-forge nnpops
PyXtalFF (🥈15 · ⭐ 87 · 💤) - Machine Learning Interatomic Potential Predictions. MIT - [GitHub](https://github.com/MaterSim/PyXtal_FF) (👨‍💻 9 · 🔀 23 · 📋 63 - 19% open · ⏱️ 07.01.2024):
git clone https://github.com/MaterSim/PyXtal_FF
- [PyPi](https://pypi.org/project/pyxtal_ff) (📥 210 / month · ⏱️ 21.12.2022):
pip install pyxtal_ff
KLIFF (🥈15 · ⭐ 34) - KIM-based Learning-Integrated Fitting Framework for interatomic potentials. LGPL-2.1 probabilistic workflows - [GitHub](https://github.com/openkim/kliff) (👨‍💻 9 · 🔀 19 · 📦 4 · 📋 42 - 54% open · ⏱️ 08.10.2024):
git clone https://github.com/openkim/kliff
- [PyPi](https://pypi.org/project/kliff) (📥 270 / month · ⏱️ 17.12.2023):
pip install kliff
- [Conda](https://anaconda.org/conda-forge/kliff) (📥 130K · ⏱️ 10.09.2024):
conda install -c conda-forge kliff
Ultra-Fast Force Fields (UF3) (🥈14 · ⭐ 62) - UF3: a python library for generating ultra-fast interatomic potentials. Apache-2 - [GitHub](https://github.com/uf3/uf3) (👨‍💻 10 · 🔀 22 · 📦 2 · 📋 50 - 38% open · ⏱️ 04.10.2024):
git clone https://github.com/uf3/uf3
- [PyPi](https://pypi.org/project/uf3) (📥 57 / month · ⏱️ 27.10.2023):
pip install uf3
MLIPX - Machine-Learned Interatomic Potential eXploration (🥈14 · ⭐ 62 · 🐣) - Machine-Learned Interatomic Potential eXploration (mlipx) is designed at BASF for evaluating machine-learned.. MIT benchmarking viz workflows - [GitHub](https://github.com/basf/mlipx) (👨‍💻 4 · 🔀 4 · 📋 4 - 50% open · ⏱️ 12.12.2024):
git clone https://github.com/basf/mlipx
- [PyPi](https://pypi.org/project/mlipx) (📥 860 / month · ⏱️ 12.12.2024):
pip install mlipx
wfl (🥈14 · ⭐ 36) - Workflow is a Python toolkit for building interatomic potential creation and atomistic simulation workflows. GPL-2.0 workflows HTC - [GitHub](https://github.com/libAtoms/workflow) (👨‍💻 19 · 🔀 19 · 📦 2 · 📋 160 - 41% open · ⏱️ 04.12.2024):
git clone https://github.com/libAtoms/workflow
PiNN (🥈13 · ⭐ 110) - A Python library for building atomic neural networks. BSD-3 - [GitHub](https://github.com/Teoroo-CMC/PiNN) (👨‍💻 6 · 🔀 33 · 📋 7 - 14% open · ⏱️ 20.12.2024):
git clone https://github.com/Teoroo-CMC/PiNN
- [Docker Hub](https://hub.docker.com/r/teoroo/pinn) (📥 380 · ⏱️ 20.12.2024):
docker pull teoroo/pinn
So3krates (MLFF) (🥈13 · ⭐ 100) - Build neural networks for machine learning force fields with JAX. MIT - [GitHub](https://github.com/thorben-frank/mlff) (👨‍💻 4 · 🔀 22 · 📋 10 - 40% open · ⏱️ 23.08.2024):
git clone https://github.com/thorben-frank/mlff
ANI-1 (🥈12 · ⭐ 220 · 💤) - ANI-1 neural net potential with python interface (ASE). MIT - [GitHub](https://github.com/isayev/ASE_ANI) (👨‍💻 6 · 🔀 54 · 📋 37 - 43% open · ⏱️ 11.03.2024):
git clone https://github.com/isayev/ASE_ANI
DMFF (🥈12 · ⭐ 160 · 💤) - DMFF (Differentiable Molecular Force Field) is a Jax-based python package that provides a full differentiable.. LGPL-3.0 - [GitHub](https://github.com/deepmodeling/DMFF) (👨‍💻 14 · 🔀 45 · 📋 27 - 40% open · ⏱️ 12.01.2024):
git clone https://github.com/deepmodeling/DMFF
Pacemaker (🥈12 · ⭐ 73) - Python package for fitting atomic cluster expansion (ACE) potentials. Custom - [GitHub](https://github.com/ICAMS/python-ace) (👨‍💻 7 · 🔀 19 · 📋 58 - 34% open · ⏱️ 20.11.2024):
git clone https://github.com/ICAMS/python-ace
- [PyPi](https://pypi.org/project/python-ace) (📥 15 / month · ⏱️ 24.10.2022):
pip install python-ace
CCS_fit (🥈12 · ⭐ 8 · 💤) - Curvature Constrained Splines. GPL-3.0 - [GitHub](https://github.com/Teoroo-CMC/CCS) (👨‍💻 8 · 🔀 11 · 📥 750 · 📋 14 - 57% open · ⏱️ 16.02.2024):
git clone https://github.com/Teoroo-CMC/CCS
- [PyPi](https://pypi.org/project/ccs_fit) (📥 2.5K / month · ⏱️ 16.02.2024):
pip install ccs_fit
PyNEP (🥈11 · ⭐ 50) - A python interface of the machine learning potential NEP used in GPUMD. MIT - [GitHub](https://github.com/bigd4/PyNEP) (👨‍💻 9 · 🔀 16 · 📋 11 - 36% open · ⏱️ 15.12.2024):
git clone https://github.com/bigd4/PyNEP
calorine (🥈11 · ⭐ 14) - A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264. Custom - [PyPi](https://pypi.org/project/calorine) (📥 1.4K / month · 📦 4 · ⏱️ 25.10.2024):
pip install calorine
- [GitLab](https://gitlab.com/materials-modeling/calorine) (🔀 4 · 📋 91 - 5% open · ⏱️ 25.10.2024):
git clone https://gitlab.com/materials-modeling/calorine
Allegro (🥉10 · ⭐ 370) - Allegro is an open-source code for building highly scalable and accurate equivariant deep learning interatomic.. MIT - [GitHub](https://github.com/mir-group/allegro) (👨‍💻 2 · 🔀 46 · 📋 40 - 52% open · ⏱️ 14.11.2024):
git clone https://github.com/mir-group/allegro
ACE.jl (🥉10 · ⭐ 65) - Parameterisation of Equivariant Properties of Particle Systems. Custom Julia - [GitHub](https://github.com/ACEsuit/ACE.jl) (👨‍💻 12 · 🔀 15 · 📋 82 - 29% open · ⏱️ 17.12.2024):
git clone https://github.com/ACEsuit/ACE.jl
Asparagus (🥉10 · ⭐ 9 · 🐣) - Program Package for Sampling, Training and Applying ML-based Potential models https://doi.org/10.48550/arXiv.2407.15175. MIT workflows sampling MD - [GitHub](https://github.com/MMunibas/Asparagus) (👨‍💻 7 · 🔀 3 · ⏱️ 13.12.2024):
git clone https://github.com/MMunibas/Asparagus
tinker-hp (🥉9 · ⭐ 82 · 📉) - Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs. Custom - [GitHub](https://github.com/TinkerTools/tinker-hp) (👨‍💻 12 · 🔀 22 · 📋 22 - 22% open · ⏱️ 26.10.2024):
git clone https://github.com/TinkerTools/tinker-hp
ACE1.jl (🥉9 · ⭐ 21) - Atomic Cluster Expansion for Modelling Invariant Atomic Properties. Custom Julia - [GitHub](https://github.com/ACEsuit/ACE1.jl) (👨‍💻 9 · 🔀 7 · 📋 46 - 47% open · ⏱️ 11.09.2024):
git clone https://github.com/ACEsuit/ACE1.jl
Point Edge Transformer (PET) (🥉9 · ⭐ 19) - Point Edge Transformer. MIT rep-learn transformer - [GitHub](https://github.com/spozdn/pet) (👨‍💻 7 · 🔀 5 · ⏱️ 02.07.2024):
git clone https://github.com/spozdn/pet
ACEfit (🥉9 · ⭐ 7) - MIT Julia - [GitHub](https://github.com/ACEsuit/ACEfit.jl) (👨‍💻 8 · 🔀 7 · 📋 57 - 38% open · ⏱️ 14.09.2024):
git clone https://github.com/ACEsuit/ACEfit.jl
GAP (🥉8 · ⭐ 40) - Gaussian Approximation Potential (GAP). Custom - [GitHub](https://github.com/libAtoms/GAP) (👨‍💻 13 · 🔀 20 · ⏱️ 17.08.2024):
git clone https://github.com/libAtoms/GAP
ALF (🥉8 · ⭐ 31) - A framework for performing active learning for training machine-learned interatomic potentials. Custom active-learning - [GitHub](https://github.com/lanl/ALF) (👨‍💻 5 · 🔀 12 · ⏱️ 04.11.2024):
git clone https://github.com/lanl/alf
TurboGAP (🥉8 · ⭐ 16) - The TurboGAP code. Custom Fortran - [GitHub](https://github.com/mcaroba/turbogap) (👨‍💻 8 · 🔀 10 · 📋 11 - 72% open · ⏱️ 17.12.2024):
git clone https://github.com/mcaroba/turbogap
MLXDM (🥉6 · ⭐ 7) - A Neural Network Potential with Rigorous Treatment of Long-Range Dispersion https://doi.org/10.1039/D2DD00150K. MIT long-range - [GitHub](https://github.com/RowleyGroup/MLXDM) (👨‍💻 7 · 🔀 2 · ⏱️ 18.12.2024):
git clone https://github.com/RowleyGroup/MLXDM
TensorPotential (🥉5 · ⭐ 10) - Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic.. Custom - [GitHub](https://github.com/ICAMS/TensorPotential) (👨‍💻 4 · 🔀 4 · ⏱️ 12.09.2024):
git clone https://github.com/ICAMS/TensorPotential
Show 35 hidden projects... - TorchANI (🥇24 · ⭐ 480 · 💀) - Accurate Neural Network Potential on PyTorch. MIT - MEGNet (🥇23 · ⭐ 510 · 💀) - Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. BSD-3 multifidelity - sGDML (🥈16 · ⭐ 140 · 💀) - sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model. MIT - TensorMol (🥈12 · ⭐ 270 · 💀) - Tensorflow + Molecules = TensorMol. GPL-3.0 single-paper - SIMPLE-NN (🥈11 · ⭐ 47 · 💀) - SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network). GPL-3.0 - NNsforMD (🥉10 · ⭐ 10 · 💀) - Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings. MIT - DimeNet (🥉9 · ⭐ 300 · 💀) - DimeNet and DimeNet++ models, as proposed in Directional Message Passing for Molecular Graphs (ICLR 2020) and Fast and.. Custom - SchNet (🥉9 · ⭐ 230 · 💀) - SchNet - a deep learning architecture for quantum chemistry. MIT - GemNet (🥉9 · ⭐ 190 · 💀) - GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS.. Custom - AIMNet (🥉8 · ⭐ 100 · 💀) - Atoms In Molecules Neural Network Potential. MIT single-paper - MACE-Jax (🥉8 · ⭐ 64 · 💀) - Equivariant machine learning interatomic potentials in JAX. MIT - SIMPLE-NN v2 (🥉8 · ⭐ 41 · 💀) - SIMPLE-NN is an open package that constructs Behler-Parrinello-type neural-network interatomic potentials from ab.. GPL-3.0 - SNAP (🥉8 · ⭐ 37 · 💀) - Repository for spectral neighbor analysis potential (SNAP) model development. BSD-3 - Atomistic Adversarial Attacks (🥉8 · ⭐ 34 · 💀) - Code for performing adversarial attacks on atomistic systems using NN potentials. MIT probabilistic - MEGNetSparse (🥉8 · ⭐ 2) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT material-defect - PhysNet (🥉7 · ⭐ 94 · 💀) - Code for training PhysNet models. MIT electrostatics - MLIP-3 (🥉6 · ⭐ 26 · 💀) - MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP). BSD-2 C++ - testing-framework (🥉6 · ⭐ 11 · 💀) - The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of.. Unlicensed benchmarking - PANNA (🥉6 · ⭐ 10 · 💀) - A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic.. MIT benchmarking - GN-MM (🥉5 · ⭐ 10 · 💀) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic.. MIT active-learning MD rep-eng magnetism - Alchemical learning (🥉5 · ⭐ 2 · 💀) - Code for the Modeling high-entropy transition metal alloys with alchemical compression article. BSD-3 - ACE1Pack.jl (🥉5 · ⭐ 1 · 💀) - Provides convenience functionality for the usage of ACE1.jl, ACEfit.jl, JuLIP.jl for fitting interatomic potentials.. MIT Julia - NequIP-JAX (🥉4 · ⭐ 20 · 💀) - JAX implementation of the NequIP interatomic potential. Unlicensed - Allegro-Legato (🥉4 · ⭐ 19 · 💀) - An extension of Allegro with enhanced robustness and time-to-failure. MIT MD - glp (🥉4 · ⭐ 18 · 💤) - tools for graph-based machine-learning potentials in jax. MIT - ACE Workflows (🥉4 · 💀) - Workflow Examples for ACE Models. Unlicensed Julia workflows - PeriodicPotentials (🥉4 · 💀) - A Periodic table app that displays potentials based on the selected elements. MIT community-resource viz JavaScript - PyFLAME (🥉3 · 💀) - An automated approach for developing neural network interatomic potentials with FLAME.. Unlicensed active-learning structure-prediction structure-optimization rep-eng Fortran - SingleNN (🥉2 · ⭐ 9 · 💀) - An efficient package for training and executing neural-network interatomic potentials. Unlicensed C++ - AisNet (🥉2 · ⭐ 3 · 💀) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features.. MIT - RuNNer (🥉2) - The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-.. GPL-3.0 Fortran - Allegro-JAX (🥉1 · ⭐ 21 · 💤) - JAX implementation of the Allegro interatomic potential. Unlicensed - nnp-pre-training (🥉1 · ⭐ 6 · 💀) - Synthetic pre-training for neural-network interatomic potentials. Unlicensed pretrained MD - mag-ace (🥉1 · ⭐ 2 · 💀) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package. Unlicensed magnetism MD Fortran - mlp (🥉1 · ⭐ 1 · 💀) - Proper orthogonal descriptors for efficient and accurate interatomic potentials... Unlicensed Julia


Language Models

Back to top

Projects that use (large) language models (LMs, LLMs) or natural language procesing (NLP) techniques for atomistic ML.

paper-qa (🥇30 · ⭐ 6.7K) - High accuracy RAG for answering questions from scientific documents with citations. Apache-2 ai-agent - [GitHub](https://github.com/Future-House/paper-qa) (👨‍💻 31 · 🔀 640 · 📦 89 · 📋 290 - 43% open · ⏱️ 30.12.2024):
git clone https://github.com/whitead/paper-qa
- [PyPi](https://pypi.org/project/paper-qa) (📥 17K / month · 📦 10 · ⏱️ 11.12.2024):
pip install paper-qa
ChemCrow (🥇18 · ⭐ 660 · 📈) - Open source package for the accurate solution of reasoning-intensive chemical tasks. MIT ai-agent - [GitHub](https://github.com/ur-whitelab/chemcrow-public) (👨‍💻 3 · 🔀 98 · 📦 8 · 📋 22 - 36% open · ⏱️ 19.12.2024):
git clone https://github.com/ur-whitelab/chemcrow-public
- [PyPi](https://pypi.org/project/chemcrow) (📥 1.2K / month · ⏱️ 27.03.2024):
pip install chemcrow
OpenBioML ChemNLP (🥇18 · ⭐ 150) - ChemNLP project. MIT datasets - [GitHub](https://github.com/OpenBioML/chemnlp) (👨‍💻 27 · 🔀 45 · 📋 250 - 44% open · ⏱️ 19.08.2024):
git clone https://github.com/OpenBioML/chemnlp
- [PyPi](https://pypi.org/project/chemnlp) (📥 270 / month · 📦 1 · ⏱️ 07.08.2023):
pip install chemnlp
NIST ChemNLP (🥈12 · ⭐ 73) - ChemNLP: A Natural Language Processing based Library for Materials Chemistry Text Data. MIT literature-data - [GitHub](https://github.com/usnistgov/chemnlp) (👨‍💻 2 · 🔀 17 · 📦 4 · ⏱️ 19.08.2024):
git clone https://github.com/usnistgov/chemnlp
- [PyPi](https://pypi.org/project/chemnlp) (📥 270 / month · 📦 1 · ⏱️ 07.08.2023):
pip install chemnlp
ChatMOF (🥈11 · ⭐ 67) - Predict and Inverse design for metal-organic framework with large-language models (llms). MIT generative - [GitHub](https://github.com/Yeonghun1675/ChatMOF) (👨‍💻 1 · 🔀 12 · 📦 3 · ⏱️ 01.07.2024):
git clone https://github.com/Yeonghun1675/ChatMOF
- [PyPi](https://pypi.org/project/chatmof) (📥 840 / month · ⏱️ 01.07.2024):
pip install chatmof
AtomGPT (🥈11 · ⭐ 36) - AtomGPT: Atomistic Generative Pretrained Transformer for Forward and Inverse Materials Design.. Custom generative pretrained transformer - [GitHub](https://github.com/usnistgov/atomgpt) (👨‍💻 2 · 🔀 6 · 📦 2 · ⏱️ 12.12.2024):
git clone https://github.com/usnistgov/atomgpt
- [PyPi](https://pypi.org/project/atomgpt) (📥 180 / month · ⏱️ 22.09.2024):
pip install atomgpt
LLaMP (🥉7 · ⭐ 71) - A web app and Python API for multi-modal RAG framework to ground LLMs on high-fidelity materials informatics. An.. BSD-3 materials-discovery cheminformatics generative MD multimodal language-models Python general-tool - [GitHub](https://github.com/chiang-yuan/llamp) (👨‍💻 6 · 🔀 12 · 📋 25 - 32% open · ⏱️ 14.10.2024):
git clone https://github.com/chiang-yuan/llamp
LLM-Prop (🥉7 · ⭐ 30 · 💤) - A repository for the LLM-Prop implementation. MIT - [GitHub](https://github.com/vertaix/LLM-Prop) (👨‍💻 6 · 🔀 6 · 📋 2 - 50% open · ⏱️ 26.04.2024):
git clone https://github.com/vertaix/LLM-Prop
crystal-text-llm (🥉5 · ⭐ 90 · 💤) - Large language models to generate stable crystals. CC-BY-NC-4.0 materials-discovery - [GitHub](https://github.com/facebookresearch/crystal-text-llm) (👨‍💻 3 · 🔀 17 · 📋 11 - 81% open · ⏱️ 18.06.2024):
git clone https://github.com/facebookresearch/crystal-text-llm
SciBot (🥉5 · ⭐ 30) - SciBot is a simple demo of building a domain-specific chatbot for science. Unlicensed ai-agent - [GitHub](https://github.com/CFN-softbio/SciBot) (👨‍💻 1 · 🔀 9 · 📦 2 · ⏱️ 03.09.2024):
git clone https://github.com/CFN-softbio/SciBot
MAPI_LLM (🥉5 · ⭐ 9 · 💤) - A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J. MIT ai-agent dataset - [GitHub](https://github.com/maykcaldas/MAPI_LLM) (👨‍💻 2 · 🔀 2 · ⏱️ 11.04.2024):
git clone https://github.com/maykcaldas/MAPI_LLM
Cephalo (🥉5 · ⭐ 9) - Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design. Apache-2 generative multimodal pretrained - [GitHub](https://github.com/lamm-mit/Cephalo) (🔀 1 · ⏱️ 23.07.2024):
git clone https://github.com/lamm-mit/Cephalo
Show 10 hidden projects... - ChemDataExtractor (🥈16 · ⭐ 310 · 💀) - Automatically extract chemical information from scientific documents. MIT literature-data - gptchem (🥈13 · ⭐ 240 · 💀) - Use GPT-3 to solve chemistry problems. MIT - mat2vec (🥈12 · ⭐ 620 · 💀) - Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from materials.. MIT rep-learn - nlcc (🥈12 · ⭐ 44 · 💀) - Natural language computational chemistry command line interface. MIT single-paper - MoLFormer (🥉9 · ⭐ 280 · 💀) - Repository for MolFormer. Apache-2 transformer pretrained drug-discovery - MolSkill (🥉9 · ⭐ 100 · 💀) - Extracting medicinal chemistry intuition via preference machine learning. MIT drug-discovery recommender - chemlift (🥉7 · ⭐ 32 · 💀) - Language-interfaced fine-tuning for chemistry. MIT - BERT-PSIE-TC (🥉5 · ⭐ 12 · 💀) - A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE.. MIT magnetism - CatBERTa (🥉4 · ⭐ 22 · 💤) - Large Language Model for Catalyst Property Prediction. Unlicensed transformer catalysis - ChemDataWriter (🥉4 · ⭐ 14 · 💀) - ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area. MIT literature-data


Materials Discovery

Back to top

Projects that implement materials discovery methods using atomistic ML.

🔗 MatterGen - A generative model for inorganic materials design https://doi.org/10.48550/arXiv.2312.03687. generative proprietary

BOSS (🥇14 · ⭐ 21) - Bayesian Optimization Structure Search (BOSS). Apache-2 probabilistic - [PyPi](https://pypi.org/project/aalto-boss) (📥 1.7K / month · ⏱️ 13.11.2024):
pip install aalto-boss
- [GitLab](https://gitlab.com/cest-group/boss) (🔀 11 · 📋 31 - 6% open · ⏱️ 13.11.2024):
git clone https://gitlab.com/cest-group/boss
aviary (🥇13 · ⭐ 48) - The Wren sits on its Roost in the Aviary. MIT - [GitHub](https://github.com/CompRhys/aviary) (👨‍💻 5 · 🔀 12 · 📋 31 - 12% open · ⏱️ 15.12.2024):
git clone https://github.com/CompRhys/aviary
Materials Discovery: GNoME (🥈10 · ⭐ 920) - Graph Networks for Materials Science (GNoME) and dataset of 381,000 novel stable materials. Apache-2 UIP datasets rep-learn proprietary - [GitHub](https://github.com/google-deepmind/materials_discovery) (👨‍💻 2 · 🔀 150 · 📋 25 - 84% open · ⏱️ 09.12.2024):
git clone https://github.com/google-deepmind/materials_discovery
AGOX (🥈9 · ⭐ 14) - AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional.. GPL-3.0 structure-optimization - [PyPi](https://pypi.org/project/agox) (📥 240 / month · ⏱️ 23.10.2024):
pip install agox
- [GitLab](https://gitlab.com/agox/agox) (🔀 5 · 📋 26 - 38% open · ⏱️ 23.10.2024):
git clone https://gitlab.com/agox/agox
CSPML (crystal structure prediction with machine learning-based element substitution) (🥈6 · ⭐ 22) - Original implementation of CSPML. MIT structure-prediction - [GitHub](https://github.com/Minoru938/CSPML) (👨‍💻 1 · 🔀 8 · 📋 3 - 66% open · ⏱️ 22.12.2024):
git clone https://github.com/minoru938/cspml
Show 6 hidden projects... - Computational Autonomy for Materials Discovery (CAMD) (🥈6 · ⭐ 1 · 💀) - Agent-based sequential learning software for materials discovery. Apache-2 - MAGUS (🥉4 · ⭐ 63 · 💀) - Machine learning And Graph theory assisted Universal structure Searcher. Unlicensed structure-prediction active-learning - ML-atomate (🥉4 · ⭐ 5 · 💀) - Machine learning-assisted Atomate code for autonomous computational materials screening. GPL-3.0 active-learning workflows - closed-loop-acceleration-benchmarks (🥉4 · 💀) - Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational.. MIT materials-discovery active-learning single-paper - SPINNER (🥉3 · ⭐ 12 · 💀) - SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random.. GPL-3.0 C++ structure-prediction - sl_discovery (🥉3 · ⭐ 5 · 💀) - Data processing and models related to Quantifying the performance of machine learning models in materials discovery. Apache-2 materials-discovery single-paper


Mathematical tools

Back to top

Projects that implement mathematical objects used in atomistic machine learning.

KFAC-JAX (🥇19 · ⭐ 260) - Second Order Optimization and Curvature Estimation with K-FAC in JAX. Apache-2 - [GitHub](https://github.com/google-deepmind/kfac-jax) (👨‍💻 17 · 🔀 23 · 📦 11 · 📋 20 - 45% open · ⏱️ 19.12.2024):
git clone https://github.com/google-deepmind/kfac-jax
- [PyPi](https://pypi.org/project/kfac-jax) (📥 660 / month · 📦 1 · ⏱️ 04.04.2024):
pip install kfac-jax
gpax (🥇17 · ⭐ 220 · 💤) - Gaussian Processes for Experimental Sciences. MIT probabilistic active-learning - [GitHub](https://github.com/ziatdinovmax/gpax) (👨‍💻 6 · 🔀 26 · 📦 3 · 📋 40 - 20% open · ⏱️ 21.05.2024):
git clone https://github.com/ziatdinovmax/gpax
- [PyPi](https://pypi.org/project/gpax) (📥 520 / month · ⏱️ 20.03.2024):
pip install gpax
SpheriCart (🥈16 · ⭐ 75) - Multi-language library for the calculation of spherical harmonics in Cartesian coordinates. MIT - [GitHub](https://github.com/lab-cosmo/sphericart) (👨‍💻 11 · 🔀 12 · 📥 100 · 📦 5 · 📋 41 - 56% open · ⏱️ 07.11.2024):
git clone https://github.com/lab-cosmo/sphericart
- [PyPi](https://pypi.org/project/sphericart) (📥 700 / month · ⏱️ 04.09.2024):
pip install sphericart
Polynomials4ML.jl (🥈11 · ⭐ 12 · 💤) - Polynomials for ML: fast evaluation, batching, differentiation. MIT Julia - [GitHub](https://github.com/ACEsuit/Polynomials4ML.jl) (👨‍💻 10 · 🔀 5 · 📋 51 - 33% open · ⏱️ 22.06.2024):
git clone https://github.com/ACEsuit/Polynomials4ML.jl
GElib (🥈9 · ⭐ 21) - C++/CUDA library for SO(3) equivariant operations. MPL-2.0 C++ - [GitHub](https://github.com/risi-kondor/GElib) (👨‍💻 4 · 🔀 3 · 📋 8 - 50% open · ⏱️ 27.07.2024):
git clone https://github.com/risi-kondor/GElib
COSMO Toolbox (🥉6 · ⭐ 7 · 💤) - Assorted libraries and utilities for atomistic simulation analysis. Unlicensed C++ - [GitHub](https://github.com/lab-cosmo/toolbox) (👨‍💻 9 · 🔀 7 · ⏱️ 19.03.2024):
git clone https://github.com/lab-cosmo/toolbox
Show 5 hidden projects... - lie-nn (🥈9 · ⭐ 27 · 💀) - Tools for building equivariant polynomials on reductive Lie groups. MIT rep-learn - EquivariantOperators.jl (🥉6 · ⭐ 19 · 💀) - This package is deprecated. Functionalities are migrating to Porcupine.jl. MIT Julia - cnine (🥉5 · ⭐ 4) - Cnine tensor library. Unlicensed C++ - torch_spex (🥉3 · ⭐ 3 · 💤) - Spherical expansions in PyTorch. Unlicensed - Wigner Kernels (🥉1 · ⭐ 2 · 💀) - Collection of programs to benchmark Wigner kernels. Unlicensed benchmarking


Molecular Dynamics

Back to top

Projects that simplify the integration of molecular dynamics and atomistic machine learning.

JAX-MD (🥇25 · ⭐ 1.2K) - Differentiable, Hardware Accelerated, Molecular Dynamics. Apache-2 - [GitHub](https://github.com/jax-md/jax-md) (👨‍💻 36 · 🔀 200 · 📦 64 · 📋 160 - 49% open · ⏱️ 26.11.2024):
git clone https://github.com/jax-md/jax-md
- [PyPi](https://pypi.org/project/jax-md) (📥 3.7K / month · 📦 3 · ⏱️ 09.08.2023):
pip install jax-md
mlcolvar (🥈19 · ⭐ 95) - A unified framework for machine learning collective variables for enhanced sampling simulations. MIT sampling - [GitHub](https://github.com/luigibonati/mlcolvar) (👨‍💻 8 · 🔀 26 · 📦 3 · 📋 74 - 17% open · ⏱️ 25.11.2024):
git clone https://github.com/luigibonati/mlcolvar
- [PyPi](https://pypi.org/project/mlcolvar) (📥 200 / month · ⏱️ 12.06.2024):
pip install mlcolvar
FitSNAP (🥈18 · ⭐ 160) - Software for generating machine-learning interatomic potentials for LAMMPS. GPL-2.0 - [GitHub](https://github.com/FitSNAP/FitSNAP) (👨‍💻 24 · 🔀 54 · 📥 13 · 📋 73 - 21% open · ⏱️ 02.12.2024):
git clone https://github.com/FitSNAP/FitSNAP
- [Conda](https://anaconda.org/conda-forge/fitsnap3) (📥 9.9K · ⏱️ 16.06.2023):
conda install -c conda-forge fitsnap3
openmm-torch (🥈17 · ⭐ 190) - OpenMM plugin to define forces with neural networks. Custom ML-IAP C++ - [GitHub](https://github.com/openmm/openmm-torch) (👨‍💻 8 · 🔀 24 · 📋 96 - 29% open · ⏱️ 11.11.2024):
git clone https://github.com/openmm/openmm-torch
- [Conda](https://anaconda.org/conda-forge/openmm-torch) (📥 590K · ⏱️ 12.11.2024):
conda install -c conda-forge openmm-torch
OpenMM-ML (🥉12 · ⭐ 85) - High level API for using machine learning models in OpenMM simulations. MIT ML-IAP - [GitHub](https://github.com/openmm/openmm-ml) (👨‍💻 5 · 🔀 20 · 📋 55 - 36% open · ⏱️ 06.08.2024):
git clone https://github.com/openmm/openmm-ml
- [Conda](https://anaconda.org/conda-forge/openmm-ml) (📥 6.4K · ⏱️ 07.06.2024):
conda install -c conda-forge openmm-ml
pair_nequip (🥉10 · ⭐ 41 · 💤) - LAMMPS pair style for NequIP. MIT ML-IAP rep-learn - [GitHub](https://github.com/mir-group/pair_nequip) (👨‍💻 3 · 🔀 13 · 📋 31 - 35% open · ⏱️ 05.06.2024):
git clone https://github.com/mir-group/pair_nequip
PACE (🥉10 · ⭐ 28) - The LAMMPS ML-IAP `pair_style pace`, aka Atomic Cluster Expansion (ACE), aka ML-PACE,.. Custom - [GitHub](https://github.com/ICAMS/lammps-user-pace) (👨‍💻 8 · 🔀 12 · 📋 8 - 25% open · ⏱️ 17.12.2024):
git clone https://github.com/ICAMS/lammps-user-pace
pair_allegro (🥉7 · ⭐ 39 · 💤) - LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support. MIT ML-IAP rep-learn - [GitHub](https://github.com/mir-group/pair_allegro) (👨‍💻 2 · 🔀 8 · 📋 33 - 45% open · ⏱️ 05.06.2024):
git clone https://github.com/mir-group/pair_allegro
SOMD (🥉6 · ⭐ 14) - Molecular dynamics package designed for the SIESTA DFT code. AGPL-3.0 ML-IAP active-learning - [GitHub](https://github.com/initqp/somd) (🔀 2 · ⏱️ 04.11.2024):
git clone https://github.com/initqp/somd
Show 1 hidden projects... - interface-lammps-mlip-3 (🥉3 · ⭐ 5 · 💀) - An interface between LAMMPS and MLIP (version 3). GPL-2.0


Reinforcement Learning

Back to top

Projects that focus on reinforcement learning for atomistic ML.

Show 2 hidden projects... - ReLeaSE (🥇11 · ⭐ 350 · 💀) - Deep Reinforcement Learning for de-novo Drug Design. MIT drug-discovery - CatGym (🥉6 · ⭐ 11 · 💀) - Surface segregation using Deep Reinforcement Learning. GPL


Representation Engineering

Back to top

Projects that offer implementations of representations aka descriptors, fingerprints of atomistic systems, and models built with them, aka feature engineering.

cdk (🥇26 · ⭐ 500) - The Chemistry Development Kit. LGPL-2.1 cheminformatics Java - [GitHub](https://github.com/cdk/cdk) (👨‍💻 170 · 🔀 160 · 📥 24K · 📋 300 - 10% open · ⏱️ 17.12.2024):
git clone https://github.com/cdk/cdk
- [Maven](https://search.maven.org/artifact/org.openscience.cdk/cdk-bundle) (📦 16 · ⏱️ 21.08.2023):
<dependency>
    <groupId>org.openscience.cdk</groupId>
    <artifactId>cdk-bundle</artifactId>
    <version>[VERSION]</version>
</dependency>
DScribe (🥇25 · ⭐ 410 · 💤) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2 - [GitHub](https://github.com/SINGROUP/dscribe) (👨‍💻 18 · 🔀 88 · 📦 220 · 📋 100 - 11% open · ⏱️ 28.05.2024):
git clone https://github.com/SINGROUP/dscribe
- [PyPi](https://pypi.org/project/dscribe) (📥 63K / month · 📦 35 · ⏱️ 28.05.2024):
pip install dscribe
- [Conda](https://anaconda.org/conda-forge/dscribe) (📥 160K · ⏱️ 28.05.2024):
conda install -c conda-forge dscribe
MODNet (🥇16 · ⭐ 82) - MODNet: a framework for machine learning materials properties. MIT pretrained small-data transfer-learning - [GitHub](https://github.com/ppdebreuck/modnet) (👨‍💻 11 · 🔀 33 · 📦 10 · 📋 56 - 46% open · ⏱️ 28.11.2024):
git clone https://github.com/ppdebreuck/modnet
Rascaline (🥇16 · ⭐ 49 · 📈) - Computing representations for atomistic machine learning. BSD-3 Rust C++ - [GitHub](https://github.com/metatensor/featomic) (👨‍💻 14 · 🔀 14 · 📥 22 · 📋 71 - 46% open · ⏱️ 20.12.2024):
git clone https://github.com/Luthaf/rascaline
GlassPy (🥈14 · ⭐ 29) - Python module for scientists working with glass materials. GPL-3.0 - [GitHub](https://github.com/drcassar/glasspy) (👨‍💻 2 · 🔀 7 · 📦 7 · 📋 15 - 46% open · ⏱️ 13.10.2024):
git clone https://github.com/drcassar/glasspy
- [PyPi](https://pypi.org/project/glasspy) (📥 720 / month · ⏱️ 05.09.2024):
pip install glasspy
SISSO (🥈12 · ⭐ 260) - A data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models. Apache-2 Fortran - [GitHub](https://github.com/rouyang2017/SISSO) (👨‍💻 3 · 🔀 85 · 📋 77 - 23% open · ⏱️ 20.09.2024):
git clone https://github.com/rouyang2017/SISSO
fplib (🥉8 · ⭐ 7 · 📉) - libfp is a library for calculating crystalline fingerprints and measuring similarities of materials. MIT C-lang single-paper - [GitHub](https://github.com/Rutgers-ZRG/libfp) (🔀 1 · 📦 1 · ⏱️ 15.10.2024):
git clone https://github.com/zhuligs/fplib
NICE (🥉7 · ⭐ 12 · 💤) - NICE (N-body Iteratively Contracted Equivariants) is a set of tools designed for the calculation of invariant and.. MIT - [GitHub](https://github.com/lab-cosmo/nice) (👨‍💻 4 · 🔀 3 · 📋 3 - 66% open · ⏱️ 15.04.2024):
git clone https://github.com/lab-cosmo/nice
milad (🥉6 · ⭐ 31) - Moment Invariants Local Atomic Descriptor. GPL-3.0 generative - [GitHub](https://github.com/muhrin/milad) (👨‍💻 1 · 🔀 2 · 📦 3 · ⏱️ 20.08.2024):
git clone https://github.com/muhrin/milad
SA-GPR (🥉6 · ⭐ 19) - Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR). LGPL-3.0 C-lang - [GitHub](https://github.com/dilkins/TENSOAP) (👨‍💻 5 · 🔀 14 · 📋 7 - 28% open · ⏱️ 23.07.2024):
git clone https://github.com/dilkins/TENSOAP
Show 15 hidden projects... - CatLearn (🥇16 · ⭐ 100 · 💀) - GPL-3.0 surface-science - Librascal (🥈13 · ⭐ 80 · 💀) - A scalable and versatile library to generate representations for atomic-scale learning. LGPL-2.1 - BenchML (🥈12 · ⭐ 15 · 💀) - ML benchmarking and pipeling framework. Apache-2 benchmarking - cmlkit (🥈11 · ⭐ 34 · 💀) - tools for machine learning in condensed matter physics and quantum chemistry. MIT benchmarking - CBFV (🥈11 · ⭐ 27 · 💀) - Tool to quickly create a composition-based feature vector. Unlicensed - SkipAtom (🥉10 · ⭐ 24 · 💀) - Distributed representations of atoms, inspired by the Skip-gram model. MIT - SOAPxx (🥉6 · ⭐ 7 · 💀) - A SOAP implementation. GPL-2.0 C++ - pyLODE (🥉6 · ⭐ 3 · 💀) - Pythonic implementation of LOng Distance Equivariants. Apache-2 electrostatics - AMP (🥉6 · 💀) - Amp is an open-source package designed to easily bring machine-learning to atomistic calculations. Unlicensed - MXenes4HER (🥉5 · ⭐ 6 · 💀) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B. GPL-3.0 materials-discovery catalysis scikit-learn single-paper - soap_turbo (🥉5 · ⭐ 5 · 💀) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP. Custom Fortran - SISSO++ (🥉5 · ⭐ 3 · 💀) - C++ Implementation of SISSO with python bindings. Apache-2 C++ - automl-materials (🥉4 · ⭐ 5 · 💀) - AutoML for Regression Tasks on Small Tabular Data in Materials Design. MIT autoML benchmarking single-paper - magnetism-prediction (🥉4 · ⭐ 1 · 💀) - DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides. Apache-2 magnetism single-paper - ML-for-CurieTemp-Predictions (🥉3 · ⭐ 1 · 💀) - Machine Learning Predictions of High-Curie-Temperature Materials. MIT single-paper magnetism


Representation Learning

Back to top

General models that learn a representations aka embeddings of atomistic systems, such as message-passing neural networks (MPNN).

PyG Models (🥇35 · ⭐ 22K) - Representation learning models implemented in PyTorch Geometric. MIT general-ml - [GitHub](https://github.com/pyg-team/pytorch_geometric) (👨‍💻 530 · 🔀 3.7K · 📦 7.4K · 📋 3.8K - 29% open · ⏱️ 30.12.2024):
git clone https://github.com/pyg-team/pytorch_geometric
Deep Graph Library (DGL) (🥇35 · ⭐ 14K) - Python package built to ease deep learning on graph, on top of existing DL frameworks. Apache-2 - [GitHub](https://github.com/dmlc/dgl) (👨‍💻 300 · 🔀 3K · 📦 330 · 📋 2.9K - 18% open · ⏱️ 18.10.2024):
git clone https://github.com/dmlc/dgl
- [PyPi](https://pypi.org/project/dgl) (📥 95K / month · 📦 150 · ⏱️ 13.05.2024):
pip install dgl
- [Conda](https://anaconda.org/dglteam/dgl) (📥 400K · ⏱️ 03.09.2024):
conda install -c dglteam dgl
e3nn (🥇28 · ⭐ 1K) - A modular framework for neural networks with Euclidean symmetry. MIT - [GitHub](https://github.com/e3nn/e3nn) (👨‍💻 34 · 🔀 140 · 📦 370 · 📋 160 - 14% open · ⏱️ 23.12.2024):
git clone https://github.com/e3nn/e3nn
- [PyPi](https://pypi.org/project/e3nn) (📥 170K / month · 📦 34 · ⏱️ 06.11.2024):
pip install e3nn
- [Conda](https://anaconda.org/conda-forge/e3nn) (📥 28K · ⏱️ 21.12.2024):
conda install -c conda-forge e3nn
SchNetPack (🥇26 · ⭐ 800) - SchNetPack - Deep Neural Networks for Atomistic Systems. MIT - [GitHub](https://github.com/atomistic-machine-learning/schnetpack) (👨‍💻 36 · 🔀 210 · 📦 96 · 📋 260 - 2% open · ⏱️ 26.11.2024):
git clone https://github.com/atomistic-machine-learning/schnetpack
- [PyPi](https://pypi.org/project/schnetpack) (📥 830 / month · 📦 4 · ⏱️ 05.09.2024):
pip install schnetpack
MatGL (Materials Graph Library) (🥇24 · ⭐ 300) - Graph deep learning library for materials. BSD-3 multifidelity - [GitHub](https://github.com/materialsvirtuallab/matgl) (👨‍💻 17 · 🔀 68 · 📦 59 · 📋 110 - 6% open · ⏱️ 31.12.2024):
git clone https://github.com/materialsvirtuallab/matgl
- [PyPi](https://pypi.org/project/m3gnet) (📥 880 / month · 📦 5 · ⏱️ 17.11.2022):
pip install m3gnet
e3nn-jax (🥈22 · ⭐ 190) - jax library for E3 Equivariant Neural Networks. Apache-2 - [GitHub](https://github.com/e3nn/e3nn-jax) (👨‍💻 7 · 🔀 18 · 📦 46 · 📋 23 - 4% open · ⏱️ 15.12.2024):
git clone https://github.com/e3nn/e3nn-jax
- [PyPi](https://pypi.org/project/e3nn-jax) (📥 2.9K / month · 📦 13 · ⏱️ 14.08.2024):
pip install e3nn-jax
ALIGNN (🥈21 · ⭐ 240) - Atomistic Line Graph Neural Network https://scholar.google.com/citations?user=9Q-tNnwAAAAJ&hl=en.. Custom - [GitHub](https://github.com/usnistgov/alignn) (👨‍💻 7 · 🔀 86 · 📦 17 · 📋 70 - 61% open · ⏱️ 02.12.2024):
git clone https://github.com/usnistgov/alignn
- [PyPi](https://pypi.org/project/alignn) (📥 6.1K / month · 📦 8 · ⏱️ 02.12.2024):
pip install alignn
NVIDIA Deep Learning Examples for Tensor Cores (🥈20 · ⭐ 14K · 💤) - State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and.. Custom educational drug-discovery - [GitHub](https://github.com/NVIDIA/DeepLearningExamples) (👨‍💻 120 · 🔀 3.2K · 📋 910 - 37% open · ⏱️ 04.04.2024):
git clone https://github.com/NVIDIA/DeepLearningExamples
DIG: Dive into Graphs (🥈20 · ⭐ 1.9K · 💤) - A library for graph deep learning research. GPL-3.0 - [GitHub](https://github.com/divelab/DIG) (👨‍💻 50 · 🔀 280 · 📋 210 - 16% open · ⏱️ 04.02.2024):
git clone https://github.com/divelab/DIG
- [PyPi](https://pypi.org/project/dive-into-graphs) (📥 840 / month · ⏱️ 27.06.2022):
pip install dive-into-graphs
matsciml (🥈19 · ⭐ 160) - Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery.. MIT workflows benchmarking - [GitHub](https://github.com/IntelLabs/matsciml) (👨‍💻 12 · 🔀 23 · 📋 66 - 34% open · ⏱️ 20.12.2024):
git clone https://github.com/IntelLabs/matsciml
Uni-Mol (🥈18 · ⭐ 760) - Official Repository for the Uni-Mol Series Methods. MIT pretrained - [GitHub](https://github.com/deepmodeling/Uni-Mol) (👨‍💻 19 · 🔀 130 · 📥 17K · 📋 180 - 44% open · ⏱️ 02.01.2025):
git clone https://github.com/deepmodeling/Uni-Mol
kgcnn (🥈18 · ⭐ 110 · 💤) - Graph convolutions in Keras with TensorFlow, PyTorch or Jax. MIT - [GitHub](https://github.com/aimat-lab/gcnn_keras) (👨‍💻 7 · 🔀 31 · 📦 19 · 📋 87 - 14% open · ⏱️ 06.05.2024):
git clone https://github.com/aimat-lab/gcnn_keras
- [PyPi](https://pypi.org/project/kgcnn) (📥 630 / month · 📦 3 · ⏱️ 27.02.2024):
pip install kgcnn
escnn (🥈16 · ⭐ 380) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom - [GitHub](https://github.com/QUVA-Lab/escnn) (👨‍💻 10 · 🔀 47 · 📋 75 - 50% open · ⏱️ 31.10.2024):
git clone https://github.com/QUVA-Lab/escnn
- [PyPi](https://pypi.org/project/escnn) (📥 1.1K / month · 📦 6 · ⏱️ 01.04.2022):
pip install escnn
Graphormer (🥈15 · ⭐ 2.2K · 💤) - Graphormer is a general-purpose deep learning backbone for molecular modeling. MIT transformer pretrained - [GitHub](https://github.com/microsoft/Graphormer) (👨‍💻 14 · 🔀 330 · 📋 160 - 57% open · ⏱️ 28.05.2024):
git clone https://github.com/microsoft/Graphormer
HydraGNN (🥈14 · ⭐ 68) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks. BSD-3 - [GitHub](https://github.com/ORNL/HydraGNN) (👨‍💻 15 · 🔀 28 · 📦 2 · 📋 49 - 34% open · ⏱️ 31.12.2024):
git clone https://github.com/ORNL/HydraGNN
Compositionally-Restricted Attention-Based Network (CrabNet) (🥈13 · ⭐ 15) - Predict materials properties using only the composition information!. MIT - [GitHub](https://github.com/sparks-baird/CrabNet) (👨‍💻 6 · 🔀 5 · 📦 14 · 📋 19 - 84% open · ⏱️ 09.09.2024):
git clone https://github.com/sparks-baird/CrabNet
- [PyPi](https://pypi.org/project/crabnet) (📥 1.1K / month · 📦 2 · ⏱️ 10.01.2023):
pip install crabnet
hippynn (🥈12 · ⭐ 72) - python library for atomistic machine learning. Custom workflows - [GitHub](https://github.com/lanl/hippynn) (👨‍💻 14 · 🔀 23 · 📦 2 · 📋 22 - 45% open · ⏱️ 31.10.2024):
git clone https://github.com/lanl/hippynn
Atom2Vec (🥈10 · ⭐ 36 · 💤) - Atom2Vec: a simple way to describe atoms for machine learning. MIT - [GitHub](https://github.com/idocx/Atom2Vec) (👨‍💻 1 · 🔀 9 · 📦 3 · 📋 4 - 75% open · ⏱️ 23.02.2024):
git clone https://github.com/idocx/Atom2Vec
- [PyPi](https://pypi.org/project/atom2vec) (📥 120 / month · ⏱️ 23.02.2024):
pip install atom2vec
GATGNN: Global Attention Graph Neural Network (🥉9 · ⭐ 72) - Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials.. MIT - [GitHub](https://github.com/superlouis/GATGNN) (👨‍💻 4 · 🔀 16 · 📋 7 - 57% open · ⏱️ 17.12.2024):
git clone https://github.com/superlouis/GATGNN
EquiformerV2 (🥉8 · ⭐ 230) - [ICLR 2024] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations. MIT - [GitHub](https://github.com/atomicarchitects/equiformer_v2) (👨‍💻 2 · 🔀 32 · 📋 19 - 68% open · ⏱️ 16.07.2024):
git clone https://github.com/atomicarchitects/equiformer_v2
Equiformer (🥉8 · ⭐ 220) - [ICLR 2023 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. MIT transformer - [GitHub](https://github.com/atomicarchitects/equiformer) (👨‍💻 2 · 🔀 40 · 📋 18 - 50% open · ⏱️ 18.07.2024):
git clone https://github.com/atomicarchitects/equiformer
graphite (🥉8 · ⭐ 66) - A repository for implementing graph network models based on atomic structures. MIT - [GitHub](https://github.com/LLNL/graphite) (👨‍💻 2 · 🔀 9 · 📦 15 · 📋 4 - 75% open · ⏱️ 08.08.2024):
git clone https://github.com/llnl/graphite
DeeperGATGNN (🥉8 · ⭐ 49 · 💤) - Scalable graph neural networks for materials property prediction. MIT - [GitHub](https://github.com/usccolumbia/deeperGATGNN) (👨‍💻 3 · 🔀 7 · 📋 12 - 33% open · ⏱️ 19.01.2024):
git clone https://github.com/usccolumbia/deeperGATGNN
T-e3nn (🥉8 · ⭐ 12) - Time-reversal Euclidean neural networks based on e3nn. MIT magnetism - [GitHub](https://github.com/Hongyu-yu/T-e3nn) (👨‍💻 26 · 🔀 1 · ⏱️ 29.09.2024):
git clone https://github.com/Hongyu-yu/T-e3nn
Show 34 hidden projects... - dgl-lifesci (🥇24 · ⭐ 740 · 💀) - Python package for graph neural networks in chemistry and biology. Apache-2 - benchmarking-gnns (🥈14 · ⭐ 2.5K · 💀) - Repository for benchmarking graph neural networks. MIT single-paper benchmarking - Crystal Graph Convolutional Neural Networks (CGCNN) (🥈13 · ⭐ 670 · 💀) - Crystal graph convolutional neural networks for predicting material properties. MIT - Neural fingerprint (nfp) (🥈12 · ⭐ 57 · 💀) - Keras layers for end-to-end learning with rdkit and pymatgen. Custom - FAENet (🥈11 · ⭐ 33 · 💀) - Frame Averaging Equivariant GNN for materials modeling. MIT - pretrained-gnns (🥈10 · ⭐ 980 · 💀) - Strategies for Pre-training Graph Neural Networks. MIT pretrained - GDC (🥈10 · ⭐ 270 · 💀) - Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019). MIT generative - SE(3)-Transformers (🥉9 · ⭐ 500 · 💀) - code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503. MIT single-paper transformer - ai4material_design (🥉9 · ⭐ 6 · 💀) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of.. Apache-2 pretrained material-defect - molecularGNN_smiles (🥉8 · ⭐ 300 · 💀) - The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius.. Apache-2 - CGAT (🥉8 · ⭐ 27 · 💀) - Crystal graph attention neural networks for materials prediction. MIT - UVVisML (🥉8 · ⭐ 26 · 💀) - Predict optical properties of molecules with machine learning. MIT optical-properties single-paper probabilistic - tensorfieldnetworks (🥉7 · ⭐ 150 · 💀) - Rotation- and translation-equivariant neural networks for 3D point clouds. MIT - DTNN (🥉7 · ⭐ 78 · 💀) - Deep Tensor Neural Network. MIT - Cormorant (🥉7 · ⭐ 60 · 💀) - Codebase for Cormorant Neural Networks. Custom - AdsorbML (🥉7 · ⭐ 39 · 💀) - MIT surface-science single-paper - escnn_jax (🥉7 · ⭐ 29 · 💀) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom - ML4pXRDs (🥉7 · 💀) - Contains code to train neural networks based on simulated powder XRDs from synthetic crystals. MIT XRD single-paper - MACE-Layer (🥉6 · ⭐ 33 · 💀) - Higher order equivariant graph neural networks for 3D point clouds. MIT - charge_transfer_nnp (🥉6 · ⭐ 33 · 💀) - Graph neural network potential with charge transfer. MIT electrostatics - GLAMOUR (🥉6 · ⭐ 21 · 💀) - Graph Learning over Macromolecule Representations. MIT single-paper - Autobahn (🥉5 · ⭐ 29 · 💀) - Repository for Autobahn: Automorphism Based Graph Neural Networks. MIT - FieldSchNet (🥉5 · ⭐ 19 · 💀) - Deep neural network for molecules in external fields. MIT - SCFNN (🥉5 · ⭐ 14 · 💀) - Self-consistent determination of long-range electrostatics in neural network potentials. MIT C++ electrostatics single-paper - CraTENet (🥉5 · ⭐ 14 · 💀) - An attention-based deep neural network for thermoelectric transport properties. MIT transport-phenomena - EGraFFBench (🥉5 · ⭐ 10 · 💀) - Unlicensed single-paper benchmarking ML-IAP - Per-Site CGCNN (🥉5 · ⭐ 1 · 💀) - Crystal graph convolutional neural networks for predicting material properties. MIT pretrained single-paper - Per-site PAiNN (🥉5 · ⭐ 1 · 💀) - Fork of PaiNN for PerovskiteOrderingGCNNs. MIT probabilistic pretrained single-paper - Graph Transport Network (🥉4 · ⭐ 16 · 💀) - Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,.. Custom transport-phenomena - gkx: Green-Kubo Method in JAX (🥉4 · ⭐ 5 · 💤) - Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast. MIT transport-phenomena - atom_by_atom (🥉3 · ⭐ 9 · 💀) - Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning. Unlicensed surface-science single-paper - Element encoder (🥉3 · ⭐ 6 · 💀) - Autoencoder neural network to compress properties of atomic species into a vector representation. GPL-3.0 single-paper - Point Edge Transformer (🥉2) - Smooth, exact rotational symmetrization for deep learning on point clouds. CC-BY-4.0 - SphericalNet (🥉1 · ⭐ 3 · 💀) - Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in.. Unlicensed


Universal Potentials

Back to top

Machine-learned interatomic potentials (ML-IAP) that have been trained on large, chemically and structural diverse datasets. For materials, this means e.g. datasets that include a majority of the periodic table.

🔗 TeaNet - Universal neural network interatomic potential inspired by iterative electronic relaxations.. ML-IAP

🔗 PreFerred Potential (PFP) - Universal neural network potential for material discovery https://doi.org/10.1038/s41467-022-30687-9. ML-IAP proprietary

🔗 MatterSim - A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures https://doi.org/10.48550/arXiv.2405.04967. ML-IAP active-learning proprietary

DPA-2 (🥇27 · ⭐ 1.5K) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492. LGPL-3.0 ML-IAP pretrained workflows datasets - [GitHub](https://github.com/deepmodeling/deepmd-kit) (👨‍💻 73 · 🔀 520 · 📥 46K · 📦 22 · 📋 870 - 10% open · ⏱️ 23.12.2024):
git clone https://github.com/deepmodeling/deepmd-kit
CHGNet (🥈22 · ⭐ 260) - Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov. Custom ML-IAP MD pretrained electrostatics magnetism structure-relaxation - [GitHub](https://github.com/CederGroupHub/chgnet) (👨‍💻 10 · 🔀 68 · 📦 43 · 📋 62 - 4% open · ⏱️ 16.11.2024):
git clone https://github.com/CederGroupHub/chgnet
- [PyPi](https://pypi.org/project/chgnet) (📥 24K / month · 📦 21 · ⏱️ 16.09.2024):
pip install chgnet
MACE-MP (🥈18 · ⭐ 560) - Pretrained foundation models for materials chemistry. MIT ML-IAP pretrained rep-learn MD - [GitHub](https://github.com/ACEsuit/mace-mp) (👨‍💻 2 · 🔀 210 · 📥 46K · 📋 10 - 10% open · ⏱️ 15.11.2024):
git clone https://github.com/ACEsuit/mace-mp
- [PyPi](https://pypi.org/project/mace-torch) (📥 8.9K / month · 📦 23 · ⏱️ 07.12.2024):
pip install mace-torch
M3GNet (🥈18 · ⭐ 260) - Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art.. BSD-3 ML-IAP pretrained - [GitHub](https://github.com/materialsvirtuallab/m3gnet) (👨‍💻 16 · 🔀 66 · 📦 30 · 📋 35 - 42% open · ⏱️ 04.10.2024):
git clone https://github.com/materialsvirtuallab/m3gnet
- [PyPi](https://pypi.org/project/m3gnet) (📥 880 / month · 📦 5 · ⏱️ 17.11.2022):
pip install m3gnet
Orb Models (🥈18 · ⭐ 220 · 🐣) - ORB forcefield models from Orbital Materials. Custom ML-IAP pretrained - [GitHub](https://github.com/orbital-materials/orb-models) (👨‍💻 7 · 🔀 23 · 📦 6 · 📋 19 - 10% open · ⏱️ 19.12.2024):
git clone https://github.com/orbital-materials/orb-models
- [PyPi](https://pypi.org/project/orb-models) (📥 1.9K / month · 📦 4 · ⏱️ 20.12.2024):
pip install orb-models
SevenNet (🥉17 · ⭐ 140) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that.. GPL-3.0 ML-IAP MD pretrained - [GitHub](https://github.com/MDIL-SNU/SevenNet) (👨‍💻 14 · 🔀 21 · 📦 8 · 📋 33 - 30% open · ⏱️ 19.12.2024):
git clone https://github.com/MDIL-SNU/SevenNet
MLIP Arena Leaderboard (🥉13 · ⭐ 53) - Fair and transparent benchmark of machine-learned interatomic potentials (MLIPs), beyond basic error metrics. Apache-2 ML-IAP community-resource - [GitHub](https://github.com/atomind-ai/mlip-arena) (👨‍💻 3 · 🔀 2 · 📦 2 · 📋 11 - 63% open · ⏱️ 25.12.2024):
git clone https://github.com/atomind-ai/mlip-arena
GRACE (🥉10 · ⭐ 27 · 🐣) - GRACE models and gracemaker (as implemented in TensorPotential package). Custom ML-IAP pretrained MD rep-learn rep-eng - [GitHub](https://github.com/ICAMS/grace-tensorpotential) (👨‍💻 3 · 🔀 3 · 📦 1 · 📋 2 - 50% open · ⏱️ 13.12.2024):
git clone https://github.com/ICAMS/grace-tensorpotential
Joint Multidomain Pre-Training (JMP) (🥉5 · ⭐ 43) - Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction. CC-BY-NC-4.0 pretrained ML-IAP general-tool - [GitHub](https://github.com/facebookresearch/JMP) (👨‍💻 2 · 🔀 6 · 📋 5 - 40% open · ⏱️ 22.10.2024):
git clone https://github.com/facebookresearch/JMP


Unsupervised Learning

Back to top

Projects that focus on unsupervised learning (USL) for atomistic ML, such as dimensionality reduction, clustering and visualization.

DADApy (🥇19 · ⭐ 110) - Distance-based Analysis of DAta-manifolds in python. Apache-2 - [GitHub](https://github.com/sissa-data-science/DADApy) (👨‍💻 20 · 🔀 18 · 📦 12 · 📋 37 - 27% open · ⏱️ 20.11.2024):
git clone https://github.com/sissa-data-science/DADApy
- [PyPi](https://pypi.org/project/dadapy) (📥 240 / month · ⏱️ 20.11.2024):
pip install dadapy
ASAP (🥈11 · ⭐ 140 · 💤) - ASAP is a package that can quickly analyze and visualize datasets of crystal or molecular structures. MIT - [GitHub](https://github.com/BingqingCheng/ASAP) (👨‍💻 6 · 🔀 28 · 📦 7 · 📋 25 - 24% open · ⏱️ 27.06.2024):
git clone https://github.com/BingqingCheng/ASAP
Show 5 hidden projects... - Sketchmap (🥈8 · ⭐ 46 · 💀) - Suite of programs to perform non-linear dimensionality reduction -- sketch-map in particular. GPL-3.0 C++ - Coarse-Graining-Auto-encoders (🥉5 · ⭐ 21 · 💀) - Implementation of coarse-graining Autoencoders. Unlicensed single-paper - paper-ml-robustness-material-property (🥉5 · ⭐ 4 · 💀) - A critical examination of robustness and generalizability of machine learning prediction of materials properties. BSD-3 datasets single-paper - KmdPlus (🥉4 · ⭐ 4) - This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with.. MIT - Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF) ( ⭐ 2) - Provides a workflow to obtain clustering of local environments in dataset of structures. Unlicensed


Visualization

Back to top

Projects that focus on visualization (viz.) for atomistic ML.

Crystal Toolkit (🥇24 · ⭐ 160) - Crystal Toolkit is a framework for building web apps for materials science and is currently powering the new Materials.. MIT - [GitHub](https://github.com/materialsproject/crystaltoolkit) (👨‍💻 31 · 🔀 57 · 📦 41 · 📋 110 - 47% open · ⏱️ 02.01.2025):
git clone https://github.com/materialsproject/crystaltoolkit
- [PyPi](https://pypi.org/project/crystal-toolkit) (📥 2.8K / month · 📦 10 · ⏱️ 22.10.2024):
pip install crystal-toolkit
pymatviz (🥈22 · ⭐ 180) - A toolkit for visualizations in materials informatics. MIT general-tool probabilistic - [GitHub](https://github.com/janosh/pymatviz) (👨‍💻 9 · 🔀 16 · 📦 17 · 📋 54 - 22% open · ⏱️ 31.12.2024):
git clone https://github.com/janosh/pymatviz
- [PyPi](https://pypi.org/project/pymatviz) (📥 6.7K / month · 📦 6 · ⏱️ 20.12.2024):
pip install pymatviz
ZnDraw (🥈21 · ⭐ 38) - A powerful tool for visualizing, modifying, and analysing atomistic systems. EPL-2.0 MD generative JavaScript - [GitHub](https://github.com/zincware/ZnDraw) (👨‍💻 7 · 🔀 4 · 📦 10 · 📋 360 - 27% open · ⏱️ 13.12.2024):
git clone https://github.com/zincware/ZnDraw
- [PyPi](https://pypi.org/project/zndraw) (📥 1.9K / month · 📦 4 · ⏱️ 13.12.2024):
pip install zndraw
Chemiscope (🥉19 · ⭐ 140) - An interactive structure/property explorer for materials and molecules. BSD-3 JavaScript - [GitHub](https://github.com/lab-cosmo/chemiscope) (👨‍💻 24 · 🔀 34 · 📥 400 · 📦 6 · 📋 140 - 28% open · ⏱️ 14.11.2024):
git clone https://github.com/lab-cosmo/chemiscope
- [npm](https://www.npmjs.com/package/chemiscope) (📥 27 / month · 📦 3 · ⏱️ 15.03.2023):
npm install chemiscope
Elementari (🥉12 · ⭐ 140) - Interactive browser visualizations for materials science: periodic tables, 3d crystal structures, Bohr atoms, nuclei,.. MIT JavaScript - [GitHub](https://github.com/janosh/elementari) (👨‍💻 2 · 🔀 13 · 📦 3 · 📋 7 - 28% open · ⏱️ 07.10.2024):
git clone https://github.com/janosh/elementari
- [npm](https://www.npmjs.com/package/elementari) (📥 170 / month · 📦 1 · ⏱️ 15.01.2024):
npm install elementari
Show 1 hidden projects... - Atomvision (🥉12 · ⭐ 30 · 💀) - Deep learning framework for atomistic image data. Custom computer-vision experimental-data rep-learn


Wavefunction methods (ML-WFT)

Back to top

Projects and models that focus on quantities of wavefunction theory methods, such as Monte Carlo techniques like deep learning variational Monte Carlo (DL-VMC), quantum chemistry methods, etc.

DeepQMC (🥇20 · ⭐ 360 · 📉) - Deep learning quantum Monte Carlo for electrons in real space. MIT - [GitHub](https://github.com/deepqmc/deepqmc) (👨‍💻 13 · 🔀 62 · 📦 3 · 📋 51 - 5% open · ⏱️ 23.10.2024):
git clone https://github.com/deepqmc/deepqmc
- [PyPi](https://pypi.org/project/deepqmc) (📥 450 / month · ⏱️ 24.09.2024):
pip install deepqmc
FermiNet (🥈13 · ⭐ 750) - An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations. Apache-2 transformer - [GitHub](https://github.com/google-deepmind/ferminet) (👨‍💻 18 · 🔀 130 · 📋 57 - 1% open · ⏱️ 08.12.2024):
git clone https://github.com/google-deepmind/ferminet
DeepErwin (🥉10 · ⭐ 54) - DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions.. Custom - [GitHub](https://github.com/mdsunivie/deeperwin) (👨‍💻 7 · 🔀 8 · 📥 13 · 📦 2 · ⏱️ 19.12.2024):
git clone https://github.com/mdsunivie/deeperwin
- [PyPi](https://pypi.org/project/deeperwin) (📥 190 / month · ⏱️ 14.12.2021):
pip install deeperwin
Show 2 hidden projects... - ACEpsi.jl (🥉6 · ⭐ 2 · 💀) - ACE wave function parameterizations. MIT rep-eng Julia - SchNOrb (🥉5 · ⭐ 61 · 💀) - Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. MIT


Others

Back to top

Show 1 hidden projects...

Contribution

Contributions are encouraged and always welcome! If you like to add or update projects, choose one of the following ways:

  • Open an issue by selecting one of the provided categories from the issue page and fill in the requested information.
  • Modify the projects.yaml with your additions or changes, and submit a pull request. This can also be done directly via the Github UI.

If you like to contribute to or share suggestions regarding the project metadata collection or markdown generation, please refer to the best-of-generator repository. If you like to create your own best-of list, we recommend to follow this guide.

For more information on how to add or update projects, please read the contribution guidelines. By participating in this project, you agree to abide by its Code of Conduct.

License

CC0

Awesome Python

# Awesome Python Awesome

An opinionated list of awesome Python frameworks, libraries, software and resources.

Inspired by awesome-php.


Admin Panels

Libraries for administrative interfaces.

  • ajenti - The admin panel your servers deserve.
  • django-grappelli - A jazzy skin for the Django Admin-Interface.
  • flask-admin - Simple and extensible administrative interface framework for Flask.
  • flower - Real-time monitor and web admin for Celery.
  • jet-bridge - Admin panel framework for any application with nice UI (ex Jet Django).
  • wooey - A Django app which creates automatic web UIs for Python scripts.
  • streamlit - A framework which lets you build dashboards, generate reports, or create chat apps in minutes.

Algorithms and Design Patterns

Python implementation of data structures, algorithms and design patterns. Also see awesome-algorithms.

  • Algorithms
    • algorithms - Minimal examples of data structures and algorithms.
    • python-ds - A collection of data structure and algorithms for coding interviews.
    • sortedcontainers - Fast and pure-Python implementation of sorted collections.
    • thealgorithms - All Algorithms implemented in Python.
  • Design Patterns
    • pypattyrn - A simple yet effective library for implementing common design patterns.
    • python-patterns - A collection of design patterns in Python.
    • transitions - A lightweight, object-oriented finite state machine implementation.

ASGI Servers

ASGI-compatible web servers.

  • daphne - A HTTP, HTTP2 and WebSocket protocol server for ASGI and ASGI-HTTP.
  • uvicorn - A lightning-fast ASGI server implementation, using uvloop and httptools.
  • hypercorn - An ASGI and WSGI Server based on Hyper libraries and inspired by Gunicorn.

Asynchronous Programming

Libraries for asynchronous, concurrent and parallel execution. Also see awesome-asyncio.

  • asyncio - (Python standard library) Asynchronous I/O, event loop, coroutines and tasks.
  • concurrent.futures - (Python standard library) A high-level interface for asynchronously executing callables.
  • multiprocessing - (Python standard library) Process-based parallelism.
  • trio - A friendly library for async concurrency and I/O.
  • twisted - An event-driven networking engine.
  • uvloop - Ultra fast asyncio event loop.
  • eventlet - Asynchronous framework with WSGI support.
  • gevent - A coroutine-based Python networking library that uses greenlet.

Audio

Libraries for manipulating audio and its metadata.

  • Audio
    • audioread - Cross-library (GStreamer + Core Audio + MAD + FFmpeg) audio decoding.
    • audioFlux - A library for audio and music analysis, feature extraction.
    • dejavu - Audio fingerprinting and recognition.
    • kapre - Keras Audio Preprocessors.
    • librosa - Python library for audio and music analysis.
    • matchering - A library for automated reference audio mastering.
    • mingus - An advanced music theory and notation package with MIDI file and playback support.
    • pyaudioanalysis - Audio feature extraction, classification, segmentation and applications.
    • pydub - Manipulate audio with a simple and easy high level interface.
    • timeside - Open web audio processing framework.
  • Metadata
    • beets - A music library manager and MusicBrainz tagger.
    • eyed3 - A tool for working with audio files, specifically MP3 files containing ID3 metadata.
    • mutagen - A Python module to handle audio metadata.
    • tinytag - A library for reading music meta data of MP3, OGG, FLAC and Wave files.

Authentication

Libraries for implementing authentications schemes.

  • OAuth
    • authlib - JavaScript Object Signing and Encryption draft implementation.
    • django-allauth - Authentication app for Django that "just works."
    • django-oauth-toolkit - OAuth 2 goodies for Django.
    • oauthlib - A generic and thorough implementation of the OAuth request-signing logic.
  • JWT
    • pyjwt - JSON Web Token implementation in Python.
    • python-jose - A JOSE implementation in Python.

Build Tools

Compile software from source code.

  • bitbake - A make-like build tool for embedded Linux.
  • buildout - A build system for creating, assembling and deploying applications from multiple parts.
  • platformio - A console tool to build code with different development platforms.
  • pybuilder - A continuous build tool written in pure Python.
  • scons - A software construction tool.

Built-in Classes Enhancement

Libraries for enhancing Python built-in classes.

  • attrs - Replacement for __init__, __eq__, __repr__, etc. boilerplate in class definitions.
  • bidict - Efficient, Pythonic bidirectional map data structures and related functionality..
  • box - Python dictionaries with advanced dot notation access.
  • dataclasses - (Python standard library) Data classes.
  • dotteddict - A library that provides a method of accessing lists and dicts with a dotted path notation.

CMS

Content Management Systems.

  • feincms - One of the most advanced Content Management Systems built on Django.
  • indico - A feature-rich event management system, made @ CERN.
  • wagtail - A Django content management system.

Caching

Libraries for caching data.

  • beaker - A WSGI middleware for sessions and caching.
  • django-cache-machine - Automatic caching and invalidation for Django models.
  • django-cacheops - A slick ORM cache with automatic granular event-driven invalidation.
  • dogpile.cache - dogpile.cache is a next generation replacement for Beaker made by the same authors.
  • hermescache - Python caching library with tag-based invalidation and dogpile effect prevention.
  • pylibmc - A Python wrapper around the libmemcached interface.
  • python-diskcache - SQLite and file backed cache backend with faster lookups than memcached and redis.

ChatOps Tools

Libraries for chatbot development.

  • errbot - The easiest and most popular chatbot to implement ChatOps.

Code Analysis

Tools of static analysis, linters and code quality checkers. Also see awesome-static-analysis.

  • Code Analysis
    • code2flow - Turn your Python and JavaScript code into DOT flowcharts.
    • prospector - A tool to analyse Python code.
    • vulture - A tool for finding and analysing dead Python code.
  • Code Linters
  • Code Formatters
    • black - The uncompromising Python code formatter.
    • isort - A Python utility / library to sort imports.
    • yapf - Yet another Python code formatter from Google.
  • Static Type Checkers, also see awesome-python-typing
    • mypy - Check variable types during compile time.
    • pyre-check - Performant type checking.
    • typeshed - Collection of library stubs for Python, with static types.
  • Static Type Annotations Generators
    • monkeytype - A system for Python that generates static type annotations by collecting runtime types.
    • pytype - Pytype checks and infers types for Python code - without requiring type annotations.

Command-line Interface Development

Libraries for building command-line applications.

  • Command-line Application Development
    • cement - CLI Application Framework for Python.
    • click - A package for creating beautiful command line interfaces in a composable way.
    • cliff - A framework for creating command-line programs with multi-level commands.
    • python-fire - A library for creating command line interfaces from absolutely any Python object.
    • python-prompt-toolkit - A library for building powerful interactive command lines.
  • Terminal Rendering
    • alive-progress - A new kind of Progress Bar, with real-time throughput, eta and very cool animations.
    • asciimatics - A package to create full-screen text UIs (from interactive forms to ASCII animations).
    • bashplotlib - Making basic plots in the terminal.
    • colorama - Cross-platform colored terminal text.
    • rich - Python library for rich text and beautiful formatting in the terminal. Also provides a great RichHandler log handler.
    • tqdm - Fast, extensible progress bar for loops and CLI.

Command-line Tools

Useful CLI-based tools for productivity.

  • Productivity Tools
    • copier - A library and command-line utility for rendering projects templates.
    • cookiecutter - A command-line utility that creates projects from cookiecutters (project templates).
    • doitlive - A tool for live presentations in the terminal.
    • howdoi - Instant coding answers via the command line.
    • invoke - A tool for managing shell-oriented subprocesses and organizing executable Python code into CLI-invokable tasks.
    • pathpicker - Select files out of bash output.
    • thefuck - Correcting your previous console command.
    • tmuxp - A tmux session manager.
    • try - A dead simple CLI to try out python packages - it's never been easier.
  • CLI Enhancements
    • httpie - A command line HTTP client, a user-friendly cURL replacement.
    • iredis - Redis CLI with autocompletion and syntax highlighting.
    • litecli - SQLite CLI with autocompletion and syntax highlighting.
    • mycli - MySQL CLI with autocompletion and syntax highlighting.
    • pgcli - PostgreSQL CLI with autocompletion and syntax highlighting.

Computer Vision

Libraries for Computer Vision.

  • easyocr - Ready-to-use OCR with 40+ languages supported.
  • kornia - Open Source Differentiable Computer Vision Library for PyTorch.
  • opencv - Open Source Computer Vision Library.
  • pytesseract - A wrapper for Google Tesseract OCR.
  • tesserocr - Another simple, Pillow-friendly, wrapper around the tesseract-ocr API for OCR.

Configuration Files

Libraries for storing and parsing configuration options.

  • configparser - (Python standard library) INI file parser.
  • configobj - INI file parser with validation.
  • hydra - Hydra is a framework for elegantly configuring complex applications.
  • python-decouple - Strict separation of settings from code.

Cryptography

  • cryptography - A package designed to expose cryptographic primitives and recipes to Python developers.
  • paramiko - The leading native Python SSHv2 protocol library.
  • pynacl - Python binding to the Networking and Cryptography (NaCl) library.

Data Analysis

Libraries for data analyzing.

  • pandas - A library providing high-performance, easy-to-use data structures and data analysis tools.
  • aws-sdk-pandas - Pandas on AWS.
  • datasette - An open source multi-tool for exploring and publishing data.
  • optimus - Agile Data Science Workflows made easy with PySpark.

Data Validation

Libraries for validating data. Used for forms in many cases.

  • cerberus - A lightweight and extensible data validation library.
  • colander - Validating and deserializing data obtained via XML, JSON, an HTML form post.
  • jsonschema - An implementation of JSON Schema for Python.
  • schema - A library for validating Python data structures.
  • schematics - Data Structure Validation.
  • voluptuous - A Python data validation library.
  • pydantic - Data validation using Python type hints.

Data Visualization

Libraries for visualizing data. Also see awesome-javascript.

  • altair - Declarative statistical visualization library for Python.
  • bokeh - Interactive Web Plotting for Python.
  • bqplot - Interactive Plotting Library for the Jupyter Notebook.
  • cartopy - A cartographic python library with matplotlib support.
  • diagrams - Diagram as Code.
  • matplotlib - A Python 2D plotting library.
  • plotnine - A grammar of graphics for Python based on ggplot2.
  • pygal - A Python SVG Charts Creator.
  • pygraphviz - Python interface to Graphviz.
  • pyqtgraph - Interactive and realtime 2D/3D/Image plotting and science/engineering widgets.
  • seaborn - Statistical data visualization using Matplotlib.
  • vispy - High-performance scientific visualization based on OpenGL.

Database

Databases implemented in Python.

  • pickleDB - A simple and lightweight key-value store for Python.
  • tinydb - A tiny, document-oriented database.
  • zodb - A native object database for Python. A key-value and object graph database.

Database Drivers

Libraries for connecting and operating databases.

  • MySQL - awesome-mysql
  • PostgreSQL - awesome-postgres
    • psycopg - The most popular PostgreSQL adapter for Python.
  • SQlite - awesome-sqlite
    • sqlite3 - (Python standard library) SQlite interface compliant with DB-API 2.0.
    • sqlite-utils - Python CLI utility and library for manipulating SQLite databases.
  • Other Relational Databases
    • pymssql - A simple database interface to Microsoft SQL Server.
    • clickhouse-driver - Python driver with native interface for ClickHouse.
  • NoSQL Databases
    • cassandra-driver - The Python Driver for Apache Cassandra.
    • happybase - A developer-friendly library for Apache HBase.
    • kafka-python - The Python client for Apache Kafka.
    • pymongo - The official Python client for MongoDB.
    • motor - The async Python driver for MongoDB.
    • redis-py - The Python client for Redis.

Date and Time

Libraries for working with dates and times.

  • arrow - A Python library that offers a sensible and human-friendly approach to creating, manipulating, formatting and converting dates, times and timestamps.
  • dateutil - Extensions to the standard Python datetime module.
  • pendulum - Python datetimes made easy.
  • pytz - World timezone definitions, modern and historical. Brings the tz database into Python.

Debugging Tools

Libraries for debugging code.

  • pdb-like Debugger
    • ipdb - IPython-enabled pdb.
    • pudb - A full-screen, console-based Python debugger.
  • Tracing
    • manhole - Debugging UNIX socket connections and present the stacktraces for all threads and an interactive prompt.
    • python-hunter - A flexible code tracing toolkit.
  • Profiler
    • py-spy - A sampling profiler for Python programs. Written in Rust.
    • vprof - Visual Python profiler.
  • Others
    • django-debug-toolbar - Display various debug information for Django.
    • flask-debugtoolbar - A port of the django-debug-toolbar to flask.
    • icecream - Inspect variables, expressions, and program execution with a single, simple function call.
    • pyelftools - Parsing and analyzing ELF files and DWARF debugging information.

Deep Learning

Frameworks for Neural Networks and Deep Learning. Also see awesome-deep-learning.

  • keras - A high-level neural networks library and capable of running on top of either TensorFlow or Theano.
  • pytorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration.
  • pytorch-lightning - Deep learning framework to train, deploy, and ship AI products Lightning fast.
  • stable-baselines3 - PyTorch implementations of Stable Baselines (deep) reinforcement learning algorithms.
  • tensorflow - The most popular Deep Learning framework created by Google.
  • theano - A library for fast numerical computation.

DevOps Tools

Software and libraries for DevOps.

  • Configuration Management
    • ansible - A radically simple IT automation platform.
    • cloudinit - A multi-distribution package that handles early initialization of a cloud instance.
    • openstack - Open source software for building private and public clouds.
    • pyinfra - A versatile CLI tools and python libraries to automate infrastructure.
    • saltstack - Infrastructure automation and management system.
  • SSH-style Deployment
    • cuisine - Chef-like functionality for Fabric.
    • fabric - A simple, Pythonic tool for remote execution and deployment.
  • Process Management
    • supervisor - Supervisor process control system for UNIX.
  • Monitoring
    • psutil - A cross-platform process and system utilities module.
  • Backup
    • borg - A deduplicating archiver with compression and encryption.

Distributed Computing

Frameworks and libraries for Distributed Computing.

  • Batch Processing
    • dask - A flexible parallel computing library for analytic computing.
    • luigi - A module that helps you build complex pipelines of batch jobs.
    • PySpark - Apache Spark Python API.
    • Ray - A system for parallel and distributed Python that unifies the machine learning ecosystem.
  • Stream Processing

Distribution

Libraries to create packaged executables for release distribution.

  • py2app - Freezes Python scripts (Mac OS X).
  • py2exe - Freezes Python scripts (Windows).
  • pyarmor - A tool used to obfuscate python scripts, bind obfuscated scripts to fixed machine or expire obfuscated scripts.
  • pyinstaller - Converts Python programs into stand-alone executables (cross-platform).
  • shiv - A command line utility for building fully self-contained zipapps (PEP 441), but with all their dependencies included.

Documentation

Libraries for generating project documentation.

  • sphinx - Python Documentation generator.
  • pdoc - Epydoc replacement to auto generate API documentation for Python libraries.

Downloader

Libraries for downloading.

  • akshare - A financial data interface library, built for human beings!
  • s3cmd - A command line tool for managing Amazon S3 and CloudFront.
  • youtube-dl - A command-line program to download videos from YouTube and other video sites.

Editor Plugins and IDEs

  • Emacs
    • elpy - Emacs Python Development Environment.
  • Vim
    • jedi-vim - Vim bindings for the Jedi auto-completion library for Python.
    • python-mode - An all in one plugin for turning Vim into a Python IDE.
    • YouCompleteMe - Includes Jedi-based completion engine for Python.
  • Visual Studio
    • PTVS - Python Tools for Visual Studio.
  • Visual Studio Code
    • Python - The official VSCode extension with rich support for Python.
  • IDE
    • PyCharm - Commercial Python IDE by JetBrains. Has free community edition available.
    • spyder - Open Source Python IDE.

Email

Libraries for sending and parsing email.

  • Mail Servers
    • modoboa - A mail hosting and management platform including a modern Web UI.
    • salmon - A Python Mail Server.
  • Clients
    • imbox - Python IMAP for Humans.
    • yagmail - Yet another Gmail/SMTP client.
  • Others
    • flanker - An email address and Mime parsing library.
    • mailer - High-performance extensible mail delivery framework.

Environment Management

Libraries for Python version and virtual environment management.

  • pyenv - Simple Python version management.
  • virtualenv - A tool to create isolated Python environments.

File Manipulation

Libraries for file manipulation.

  • mimetypes - (Python standard library) Map filenames to MIME types.
  • pathlib - (Python standard library) An cross-platform, object-oriented path library.
  • path.py - A module wrapper for os.path.
  • python-magic - A Python interface to the libmagic file type identification library.
  • watchdog - API and shell utilities to monitor file system events.

Functional Programming

Functional Programming with Python.

  • coconut - A variant of Python built for simple, elegant, Pythonic functional programming.
  • funcy - A fancy and practical functional tools.
  • more-itertools - More routines for operating on iterables, beyond itertools.
  • returns - A set of type-safe monads, transformers, and composition utilities.
  • cytoolz - Cython implementation of Toolz: High performance functional utilities.
  • toolz - A collection of functional utilities for iterators, functions, and dictionaries.

GUI Development

Libraries for working with graphical user interface applications.

  • curses - Built-in wrapper for ncurses used to create terminal GUI applications.
  • Eel - A library for making simple Electron-like offline HTML/JS GUI apps.
  • enaml - Creating beautiful user-interfaces with Declarative Syntax like QML.
  • Flexx - Flexx is a pure Python toolkit for creating GUI's, that uses web technology for its rendering.
  • Gooey - Turn command line programs into a full GUI application with one line.
  • kivy - A library for creating NUI applications, running on Windows, Linux, Mac OS X, Android and iOS.
  • pyglet - A cross-platform windowing and multimedia library for Python.
  • PyGObject - Python Bindings for GLib/GObject/GIO/GTK+ (GTK+3).
  • PyQt - Python bindings for the Qt cross-platform application and UI framework.
  • PySimpleGUI - Wrapper for tkinter, Qt, WxPython and Remi.
  • pywebview - A lightweight cross-platform native wrapper around a webview component.
  • Tkinter - Tkinter is Python's de-facto standard GUI package.
  • Toga - A Python native, OS native GUI toolkit.
  • urwid - A library for creating terminal GUI applications with strong support for widgets, events, rich colors, etc.
  • wxPython - A blending of the wxWidgets C++ class library with the Python.
  • DearPyGui - A Simple GPU accelerated Python GUI framework

GraphQL

Libraries for working with GraphQL.

  • graphene - GraphQL framework for Python.

Game Development

Awesome game development libraries.

  • Arcade - Arcade is a modern Python framework for crafting games with compelling graphics and sound.
  • Cocos2d - cocos2d is a framework for building 2D games, demos, and other graphical/interactive applications.
  • Harfang3D - Python framework for 3D, VR and game development.
  • Panda3D - 3D game engine developed by Disney.
  • Pygame - Pygame is a set of Python modules designed for writing games.
  • PyOgre - Python bindings for the Ogre 3D render engine, can be used for games, simulations, anything 3D.
  • PyOpenGL - Python ctypes bindings for OpenGL and it's related APIs.
  • PySDL2 - A ctypes based wrapper for the SDL2 library.
  • RenPy - A Visual Novel engine.

Geolocation

Libraries for geocoding addresses and working with latitudes and longitudes.

  • django-countries - A Django app that provides a country field for models and forms.
  • geodjango - A world-class geographic web framework.
  • geojson - Python bindings and utilities for GeoJSON.
  • geopy - Python Geocoding Toolbox.

HTML Manipulation

Libraries for working with HTML and XML.

  • beautifulsoup - Providing Pythonic idioms for iterating, searching, and modifying HTML or XML.
  • bleach - A whitelist-based HTML sanitization and text linkification library.
  • cssutils - A CSS library for Python.
  • html5lib - A standards-compliant library for parsing and serializing HTML documents and fragments.
  • lxml - A very fast, easy-to-use and versatile library for handling HTML and XML.
  • markupsafe - Implements a XML/HTML/XHTML Markup safe string for Python.
  • pyquery - A jQuery-like library for parsing HTML.
  • untangle - Converts XML documents to Python objects for easy access.
  • WeasyPrint - A visual rendering engine for HTML and CSS that can export to PDF.
  • xmldataset - Simple XML Parsing.
  • xmltodict - Working with XML feel like you are working with JSON.

HTTP Clients

Libraries for working with HTTP.

  • httpx - A next generation HTTP client for Python.
  • requests - HTTP Requests for Humans.
  • treq - Python requests like API built on top of Twisted's HTTP client.
  • urllib3 - A HTTP library with thread-safe connection pooling, file post support, sanity friendly.

Hardware

Libraries for programming with hardware.

  • keyboard - Hook and simulate global keyboard events on Windows and Linux.
  • mouse - Hook and simulate global mouse events on Windows and Linux.
  • pynput - A library to control and monitor input devices.
  • scapy - A brilliant packet manipulation library.

Image Processing

Libraries for manipulating images.

  • pillow - Pillow is the friendly PIL fork.
  • python-barcode - Create barcodes in Python with no extra dependencies.
  • pymatting - A library for alpha matting.
  • python-qrcode - A pure Python QR Code generator.
  • pywal - A tool that generates color schemes from images.
  • pyvips - A fast image processing library with low memory needs.
  • quads - Computer art based on quadtrees.
  • scikit-image - A Python library for (scientific) image processing.
  • thumbor - A smart imaging service. It enables on-demand crop, re-sizing and flipping of images.
  • wand - Python bindings for MagickWand, C API for ImageMagick.

Implementations

Implementations of Python.

  • cpython - Default, most widely used implementation of the Python programming language written in C.
  • cython - Optimizing Static Compiler for Python.
  • clpython - Implementation of the Python programming language written in Common Lisp.
  • ironpython - Implementation of the Python programming language written in C#.
  • micropython - A lean and efficient Python programming language implementation.
  • numba - Python JIT compiler to LLVM aimed at scientific Python.
  • peachpy - x86-64 assembler embedded in Python.
  • pypy - A very fast and compliant implementation of the Python language.
  • pyston - A Python implementation using JIT techniques.

Interactive Interpreter

Interactive Python interpreters (REPL).

Internationalization

Libraries for working with i18n.

  • Babel - An internationalization library for Python.
  • PyICU - A wrapper of International Components for Unicode C++ library (ICU).

Job Scheduler

Libraries for scheduling jobs.

  • Airflow - Airflow is a platform to programmatically author, schedule and monitor workflows.
  • APScheduler - A light but powerful in-process task scheduler that lets you schedule functions.
  • django-schedule - A calendaring app for Django.
  • doit - A task runner and build tool.
  • gunnery - Multipurpose task execution tool for distributed systems with web-based interface.
  • Joblib - A set of tools to provide lightweight pipelining in Python.
  • Plan - Writing crontab file in Python like a charm.
  • Prefect - A modern workflow orchestration framework that makes it easy to build, schedule and monitor robust data pipelines.
  • schedule - Python job scheduling for humans.
  • Spiff - A powerful workflow engine implemented in pure Python.
  • TaskFlow - A Python library that helps to make task execution easy, consistent and reliable.

Logging

Libraries for generating and working with logs.

  • logbook - Logging replacement for Python.
  • logging - (Python standard library) Logging facility for Python.
  • loguru - Library which aims to bring enjoyable logging in Python.
  • sentry-python - Sentry SDK for Python.
  • structlog - Structured logging made easy.

Machine Learning

Libraries for Machine Learning. Also see awesome-machine-learning.

  • gym - A toolkit for developing and comparing reinforcement learning algorithms.
  • H2O - Open Source Fast Scalable Machine Learning Platform.
  • Metrics - Machine learning evaluation metrics.
  • NuPIC - Numenta Platform for Intelligent Computing.
  • scikit-learn - The most popular Python library for Machine Learning.
  • Spark ML - Apache Spark's scalable Machine Learning library.
  • vowpal_porpoise - A lightweight Python wrapper for Vowpal Wabbit.
  • xgboost - A scalable, portable, and distributed gradient boosting library.
  • MindsDB - MindsDB is an open source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning models using standard queries.

Microsoft Windows

Python programming on Microsoft Windows.

  • Python(x,y) - Scientific-applications-oriented Python Distribution based on Qt and Spyder.
  • pythonlibs - Unofficial Windows binaries for Python extension packages.
  • PythonNet - Python Integration with the .NET Common Language Runtime (CLR).
  • PyWin32 - Python Extensions for Windows.
  • WinPython - Portable development environment for Windows ⅞.

Miscellaneous

Useful libraries or tools that don't fit in the categories above.

  • blinker - A fast Python in-process signal/event dispatching system.
  • boltons - A set of pure-Python utilities.
  • itsdangerous - Various helpers to pass trusted data to untrusted environments.
  • magenta - A tool to generate music and art using artificial intelligence.
  • pluginbase - A simple but flexible plugin system for Python.
  • tryton - A general purpose business framework.

Natural Language Processing

Libraries for working with human languages.

  • General
    • gensim - Topic Modeling for Humans.
    • langid.py - Stand-alone language identification system.
    • nltk - A leading platform for building Python programs to work with human language data.
    • pattern - A web mining module.
    • polyglot - Natural language pipeline supporting hundreds of languages.
    • pytext - A natural language modeling framework based on PyTorch.
    • PyTorch-NLP - A toolkit enabling rapid deep learning NLP prototyping for research.
    • spacy - A library for industrial-strength natural language processing in Python and Cython.
    • Stanza - The Stanford NLP Group's official Python library, supporting 60+ languages.
  • Chinese
    • funNLP - A collection of tools and datasets for Chinese NLP.
    • jieba - The most popular Chinese text segmentation library.
    • pkuseg-python - A toolkit for Chinese word segmentation in various domains.
    • snownlp - A library for processing Chinese text.

Network Virtualization

Tools and libraries for Virtual Networking and SDN (Software Defined Networking).

  • mininet - A popular network emulator and API written in Python.
  • napalm - Cross-vendor API to manipulate network devices.
  • pox - A Python-based SDN control applications, such as OpenFlow SDN controllers.

News Feed

Libraries for building user's activities.

ORM

Libraries that implement Object-Relational Mapping or data mapping techniques.

  • Relational Databases
    • Django Models - The Django ORM.
    • SQLAlchemy - The Python SQL Toolkit and Object Relational Mapper.
    • dataset - Store Python dicts in a database - works with SQLite, MySQL, and PostgreSQL.
    • orator - The Orator ORM provides a simple yet beautiful ActiveRecord implementation.
    • orm - An async ORM.
    • peewee - A small, expressive ORM.
    • pony - ORM that provides a generator-oriented interface to SQL.
    • pydal - A pure Python Database Abstraction Layer.
  • NoSQL Databases
    • hot-redis - Rich Python data types for Redis.
    • mongoengine - A Python Object-Document-Mapper for working with MongoDB.
    • PynamoDB - A Pythonic interface for Amazon DynamoDB.
    • redisco - A Python Library for Simple Models and Containers Persisted in Redis.

Package Management

Libraries for package and dependency management.

  • pip - The package installer for Python.
    • pip-tools - A set of tools to keep your pinned Python dependencies fresh.
    • PyPI
  • conda - Cross-platform, Python-agnostic binary package manager.
  • poetry - Python dependency management and packaging made easy.

Package Repositories

Local PyPI repository server and proxies.

  • bandersnatch - PyPI mirroring tool provided by Python Packaging Authority (PyPA).
  • devpi - PyPI server and packaging/testing/release tool.
  • localshop - Local PyPI server (custom packages and auto-mirroring of pypi).
  • warehouse - Next generation Python Package Repository (PyPI).

Penetration Testing

Frameworks and tools for penetration testing.

  • fsociety - A Penetration testing framework.
  • setoolkit - A toolkit for social engineering.
  • sqlmap - Automatic SQL injection and database takeover tool.

Permissions

Libraries that allow or deny users access to data or functionality.

  • django-guardian - Implementation of per object permissions for Django 1.2+
  • django-rules - A tiny but powerful app providing object-level permissions to Django, without requiring a database.

Processes

Libraries for starting and communicating with OS processes.

Recommender Systems

Libraries for building recommender systems.

  • annoy - Approximate Nearest Neighbors in C++/Python optimized for memory usage.
  • fastFM - A library for Factorization Machines.
  • implicit - A fast Python implementation of collaborative filtering for implicit datasets.
  • libffm - A library for Field-aware Factorization Machine (FFM).
  • lightfm - A Python implementation of a number of popular recommendation algorithms.
  • spotlight - Deep recommender models using PyTorch.
  • Surprise - A scikit for building and analyzing recommender systems.
  • tensorrec - A Recommendation Engine Framework in TensorFlow.

Refactoring

Refactoring tools and libraries for Python

  • Bicycle Repair Man - Bicycle Repair Man, a refactoring tool for Python.
  • Bowler - Safe code refactoring for modern Python.
  • Rope - Rope is a python refactoring library.

RESTful API

Libraries for building RESTful APIs.

  • Django
  • Flask
    • eve - REST API framework powered by Flask, MongoDB and good intentions.
    • flask-api - Browsable Web APIs for Flask.
    • flask-restful - Quickly building REST APIs for Flask.
  • Pyramid
    • cornice - A RESTful framework for Pyramid.
  • Framework agnostic
    • falcon - A high-performance framework for building cloud APIs and web app backends.
    • fastapi - A modern, fast, web framework for building APIs with Python 3.6+ based on standard Python type hints.
    • hug - A Python 3 framework for cleanly exposing APIs.
    • sandman2 - Automated REST APIs for existing database-driven systems.
    • sanic - A Python 3.6+ web server and web framework that's written to go fast.

Robotics

Libraries for robotics.

  • PythonRobotics - This is a compilation of various robotics algorithms with visualizations.
  • rospy - This is a library for ROS (Robot Operating System).

RPC Servers

RPC-compatible servers.

  • RPyC (Remote Python Call) - A transparent and symmetric RPC library for Python
  • zeroRPC - zerorpc is a flexible RPC implementation based on ZeroMQ and MessagePack.

Science

Libraries for scientific computing. Also see Python-for-Scientists.

  • astropy - A community Python library for Astronomy.
  • bcbio-nextgen - Providing best-practice pipelines for fully automated high throughput sequencing analysis.
  • bccb - Collection of useful code related to biological analysis.
  • Biopython - Biopython is a set of freely available tools for biological computation.
  • cclib - A library for parsing and interpreting the results of computational chemistry packages.
  • Colour - Implementing a comprehensive number of colour theory transformations and algorithms.
  • Karate Club - Unsupervised machine learning toolbox for graph structured data.
  • NetworkX - A high-productivity software for complex networks.
  • NIPY - A collection of neuroimaging toolkits.
  • NumPy - A fundamental package for scientific computing with Python.
  • ObsPy - A Python toolbox for seismology.
  • Open Babel - A chemical toolbox designed to speak the many languages of chemical data.
  • PyDy - Short for Python Dynamics, used to assist with workflow in the modeling of dynamic motion.
  • PyMC - Markov Chain Monte Carlo sampling toolkit.
  • QuTiP - Quantum Toolbox in Python.
  • RDKit - Cheminformatics and Machine Learning Software.
  • SciPy - A Python-based ecosystem of open-source software for mathematics, science, and engineering.
  • SimPy - A process-based discrete-event simulation framework.
  • statsmodels - Statistical modeling and econometrics in Python.
  • SymPy - A Python library for symbolic mathematics.
  • Zipline - A Pythonic algorithmic trading library.

Libraries and software for indexing and performing search queries on data.

Serialization

Libraries for serializing complex data types

Serverless Frameworks

Frameworks for developing serverless Python code.

  • python-lambda - A toolkit for developing and deploying Python code in AWS Lambda.
  • Zappa - A tool for deploying WSGI applications on AWS Lambda and API Gateway.

Shell

Shells based on Python.

  • xonsh - A Python-powered, cross-platform, Unix-gazing shell language and command prompt.

Specific Formats Processing

Libraries for parsing and manipulating specific text formats.

  • General
    • tablib - A module for Tabular Datasets in XLS, CSV, JSON, YAML.
  • Office
    • docxtpl - Editing a docx document by jinja2 template
    • openpyxl - A library for reading and writing Excel 2010 xlsx/xlsm/xltx/xltm files.
    • pyexcel - Providing one API for reading, manipulating and writing csv, ods, xls, xlsx and xlsm files.
    • python-docx - Reads, queries and modifies Microsoft Word 2007/2008 docx files.
    • python-pptx - Python library for creating and updating PowerPoint (.pptx) files.
    • unoconv - Convert between any document format supported by LibreOffice/OpenOffice.
    • XlsxWriter - A Python module for creating Excel .xlsx files.
    • xlwings - A BSD-licensed library that makes it easy to call Python from Excel and vice versa.
    • xlwt / xlrd - Writing and reading data and formatting information from Excel files.
  • PDF
    • pdfminer.six - Pdfminer.six is a community maintained fork of the original PDFMiner.
    • PyPDF2 - A library capable of splitting, merging and transforming PDF pages.
    • ReportLab - Allowing Rapid creation of rich PDF documents.
  • Markdown
    • Mistune - Fastest and full featured pure Python parsers of Markdown.
    • Python-Markdown - A Python implementation of John Gruber’s Markdown.
  • YAML
    • PyYAML - YAML implementations for Python.
  • CSV
    • csvkit - Utilities for converting to and working with CSV.
  • Archive
    • unp - A command line tool that can unpack archives easily.

Static Site Generator

Static site generator is a software that takes some text + templates as input and produces HTML files on the output.

  • lektor - An easy to use static CMS and blog engine.
  • mkdocs - Markdown friendly documentation generator.
  • makesite - Simple, lightweight, and magic-free static site/blog generator (< 130 lines).
  • nikola - A static website and blog generator.
  • pelican - Static site generator that supports Markdown and reST syntax.

Tagging

Libraries for tagging items.

Task Queues

Libraries for working with task queues.

  • celery - An asynchronous task queue/job queue based on distributed message passing.
  • dramatiq - A fast and reliable background task processing library for Python 3.
  • huey - Little multi-threaded task queue.
  • mrq - A distributed worker task queue in Python using Redis & gevent.
  • rq - Simple job queues for Python.

Template Engine

Libraries and tools for templating and lexing.

  • Genshi - Python templating toolkit for generation of web-aware output.
  • Jinja2 - A modern and designer friendly templating language.
  • Mako - Hyperfast and lightweight templating for the Python platform.

Testing

Libraries for testing codebases and generating test data.

  • Testing Frameworks
    • hypothesis - Hypothesis is an advanced Quickcheck style property based testing library.
    • nose2 - The successor to nose, based on `unittest2.
    • pytest - A mature full-featured Python testing tool.
    • Robot Framework - A generic test automation framework.
    • unittest - (Python standard library) Unit testing framework.
  • Test Runners
    • green - A clean, colorful test runner.
    • mamba - The definitive testing tool for Python. Born under the banner of BDD.
    • tox - Auto builds and tests distributions in multiple Python versions
  • GUI / Web Testing
    • locust - Scalable user load testing tool written in Python.
    • PyAutoGUI - PyAutoGUI is a cross-platform GUI automation Python module for human beings.
    • Schemathesis - A tool for automatic property-based testing of web applications built with Open API / Swagger specifications.
    • Selenium - Python bindings for Selenium WebDriver.
    • sixpack - A language-agnostic A/B Testing framework.
    • splinter - Open source tool for testing web applications.
  • Mock
    • doublex - Powerful test doubles framework for Python.
    • freezegun - Travel through time by mocking the datetime module.
    • httmock - A mocking library for requests for Python 2.6+ and 3.2+.
    • httpretty - HTTP request mock tool for Python.
    • mock - (Python standard library) A mocking and patching library.
    • mocket - A socket mock framework with gevent/asyncio/SSL support.
    • responses - A utility library for mocking out the requests Python library.
    • VCR.py - Record and replay HTTP interactions on your tests.
  • Object Factories
    • factory_boy - A test fixtures replacement for Python.
    • mixer - Another fixtures replacement. Supports Django, Flask, SQLAlchemy, Peewee and etc.
    • model_mommy - Creating random fixtures for testing in Django.
  • Code Coverage
  • Fake Data
    • fake2db - Fake database generator.
    • faker - A Python package that generates fake data.
    • mimesis - is a Python library that help you generate fake data.
    • radar - Generate random datetime / time.

Text Processing

Libraries for parsing and manipulating plain texts.

  • General
    • chardet - Python ⅔ compatible character encoding detector.
    • difflib - (Python standard library) Helpers for computing deltas.
    • ftfy - Makes Unicode text less broken and more consistent automagically.
    • fuzzywuzzy - Fuzzy String Matching.
    • Levenshtein - Fast computation of Levenshtein distance and string similarity.
    • pangu.py - Paranoid text spacing.
    • pyfiglet - An implementation of figlet written in Python.
    • pypinyin - Convert Chinese hanzi (漢字) to pinyin (拼音).
    • textdistance - Compute distance between sequences with 30+ algorithms.
    • unidecode - ASCII transliterations of Unicode text.
  • Slugify
    • awesome-slugify - A Python slugify library that can preserve unicode.
    • python-slugify - A Python slugify library that translates unicode to ASCII.
    • unicode-slugify - A slugifier that generates unicode slugs with Django as a dependency.
  • Unique identifiers
    • hashids - Implementation of hashids in Python.
    • shortuuid - A generator library for concise, unambiguous and URL-safe UUIDs.
  • Parser
    • ply - Implementation of lex and yacc parsing tools for Python.
    • pygments - A generic syntax highlighter.
    • pyparsing - A general purpose framework for generating parsers.
    • python-nameparser - Parsing human names into their individual components.
    • python-phonenumbers - Parsing, formatting, storing and validating international phone numbers.
    • python-user-agents - Browser user agent parser.
    • sqlparse - A non-validating SQL parser.

Third-party APIs

Libraries for accessing third party services APIs. Also see List of Python API Wrappers and Libraries.

URL Manipulation

Libraries for parsing URLs.

  • furl - A small Python library that makes parsing and manipulating URLs easy.
  • purl - A simple, immutable URL class with a clean API for interrogation and manipulation.
  • pyshorteners - A pure Python URL shortening lib.
  • webargs - A friendly library for parsing HTTP request arguments with built-in support for popular web frameworks.

Video

Libraries for manipulating video and GIFs.

  • moviepy - A module for script-based movie editing with many formats, including animated GIFs.
  • scikit-video - Video processing routines for SciPy.
  • vidgear - Most Powerful multi-threaded Video Processing framework.

Web Asset Management

Tools for managing, compressing and minifying website assets.

  • django-compressor - Compresses linked and inline JavaScript or CSS into a single cached file.
  • django-pipeline - An asset packaging library for Django.
  • django-storages - A collection of custom storage back ends for Django.
  • fanstatic - Packages, optimizes, and serves static file dependencies as Python packages.
  • fileconveyor - A daemon to detect and sync files to CDNs, S3 and FTP.
  • flask-assets - Helps you integrate webassets into your Flask app.
  • webassets - Bundles, optimizes, and manages unique cache-busting URLs for static resources.

Web Content Extracting

Libraries for extracting web contents.

  • html2text - Convert HTML to Markdown-formatted text.
  • lassie - Web Content Retrieval for Humans.
  • micawber - A small library for extracting rich content from URLs.
  • newspaper - News extraction, article extraction and content curation in Python.
  • python-readability - Fast Python port of arc90's readability tool.
  • requests-html - Pythonic HTML Parsing for Humans.
  • sumy - A module for automatic summarization of text documents and HTML pages.
  • textract - Extract text from any document, Word, PowerPoint, PDFs, etc.
  • toapi - Every web site provides APIs.

Web Crawling

Libraries to automate web scraping.

  • feedparser - Universal feed parser.
  • grab - Site scraping framework.
  • mechanicalsoup - A Python library for automating interaction with websites.
  • scrapy - A fast high-level screen scraping and web crawling framework.

Web Frameworks

Traditional full stack web frameworks. Also see RESTful API.

WebSocket

Libraries for working with WebSocket.

  • autobahn-python - WebSocket & WAMP for Python on Twisted and asyncio.
  • channels - Developer-friendly asynchrony for Django.
  • websockets - A library for building WebSocket servers and clients with a focus on correctness and simplicity.

WSGI Servers

WSGI-compatible web servers.

  • gunicorn - Pre-forked, ported from Ruby's Unicorn project.
  • uwsgi - A project aims at developing a full stack for building hosting services, written in C.
  • waitress - Multi-threaded, powers Pyramid.
  • werkzeug - A WSGI utility library for Python that powers Flask and can easily be embedded into your own projects.

Resources

Where to discover learning resources or new Python libraries.

Newsletters

Podcasts

Contributing

Your contributions are always welcome! Please take a look at the contribution guidelines first.


If you have any question about this opinionated list, do not hesitate to contact me @VintaChen on Twitter or open an issue on GitHub.

BibTeX Generator

Have you ever found yourself weary and uninspired from the tedious task of manually creating BibTeX entries for your paper?

There are, indeed, support tools and plugins that are bundled with reference managers such as Zotero, Mendeley, etc. These tools can automate the generation of a .bib file. To use them, you need to install a reference manager, its associated plugins, and a library of papers on your computer. However, these tools are not flawless. The BibTeX entries they generate often contain incomplete information, are poorly formatted, and include numerous unnecessary fields. You then still need to manually check and correct the entries.

There are the times you just need to cite a paper or two, and you don't want to go through the hassle of the aforementioned complex process. In such situations, a simple tool that allows you to quickly copy and paste a BibTeX entry into your .bib file would be ideal. Think of such a simple tool, I have looked around the Chrome extension store to see if there is any that can pick up the Bibtex while you are browsing the paper. I found some, but they do not really work.

Therefore, I decided to create my own tool to address this dilemma. I developed a Chrome extension that can generate the BibTeX entry for any browsing URL with just one click. I named it the 1click BibTeX. It delivers exactly what it is expected and has proven to be quite helpful. This extension, along with the Latex tools, will ensure that the manuscript's citations are properly formatted before they are delivered to the journal.

Usage

Install the 1click BibTeX extension on your Chrome browser. Then, whenever you're browsing a paper or any URL, just click on the extension icon, and the BibTeX entry will be instantly generated and copied to your clipboard. The remaining thing is just paste it to your .bib file.

BibTeX generator

I've tested the extension on numerous publishers and websites with varying structures and it works consistently as it was designed. The tested publishers include Elsevier, Wiley, ACS, IOP, AIP, APS, arXiv,...

Below are some examples of BibTeX entries generated by the extension 1click BibTeX:

@article{nguyen2019pattern,
    title = {Pattern transformation induced by elastic instability of metallic porous structures},
    author = {Cao Thang Nguyen and Duc Tam Ho and Seung Tae Choi and Doo-Man Chun and Sung Youb Kim },
    year = {2019},
    month = {2},
    journal = {Computational Materials Science},
    publisher = {Elsevier},
    volume = {157},
    pages = {17-24},
    doi = {10.1016/j.commatsci.2018.10.023},
    url = {https://www.sciencedirect.com/science/article/abs/pii/S0927025618306955?via%3Dihub},
    accessDate = {Jan 25, 2024}
}
@article{nguyen2024an,
    title = {An Enhanced Sampling Approach for Computing the Free Energy of Solid Surface and Solid–Liquid Interface},
    author = {Cao Thang Nguyen and Duc Tam Ho and Sung Youb Kim},
    year = {2024},
    month = {1},
    journal = {Advanced Theory and Simulations},
    publisher = {John Wiley & Sons, Ltd},
    volume = {7},
    number = {1},
    pages = {2300538},
    doi = {10.1002/adts.202300538},
    url = {https://onlinelibrary.wiley.com/doi/10.1002/adts.202300538},
    accessDate = {Jan 25, 2024}
}
@book{daum2003america,,
    title = {America, the Vietnam War, and the World},
    author = {Andreas W. Daum and Lloyd C. Gardner and Wilfried Mausbach},
    year = {2003},
    month = {7},
    publisher = {Cambridge University Press},
    isbn = {052100876X},
    url = {https://www.google.co.kr/books/edition/America_the_Vietnam_War_and_the_World/9kn6qYwsGs4C?hl=en&gbpv=0},
    accessDate = {Jan 25, 2024}
}
@book{rickards2011currency,
    title = {Currency Wars},
    author = {James Rickards},
    year = {2011},
    month = {11},
    publisher = {Penguin},
    isbn = {110155889X},
    url = {https://books.google.co.kr/books?id=-GDwL2s5sJoC&source=gbs_book_other_versions},
    accessDate = {Jan 25, 2024}
}
@misc{deci2024introducing,
    title = {Introducing DeciCoder-6B: The Best Multi-Language Code LLM in Its Class},
    author = {Deci},
    year = {2024},
    month = {1},
    publisher = {Deci},
    url = {https://deci.ai/blog/decicoder-6b-the-best-multi-language-code-generation-llm-in-its-class/},
    accessDate = {Jan 25, 2024}
}
@misc{kai2023forcefield,
    title = {Force-field files for "Noble gas (He, Ne and Ar) solubilities in high-pressure silicate melts calculated based on deep potential modeling"},
    author = {Wang, Kai and Lu, Xiancai and Liu, Xiandong and Yin, Kun},
    year = {2023},
    month = {3},
    publisher = {Zenodo},
    doi = {10.5281/zenodo.7751762},
    url = {https://zenodo.org/records/7751762},
    accessDate = {Jan 25, 2024}
}
  • Bibtex this page
@misc{nguyen2024bibtex,
    title = {BibTeX Generator},
    author = {Cao Thang Nguyen},
    year = {2024},
    month = {1},
    url = {https://thang.eu.org/blog/2024/01/25/bibtex_generator},
    accessDate = {Jan 25, 2024}
}

In summary, the new extension 1click BibTeX works well for most websites with varying data structures.

Accelerated Molecular Simulation Using Deep Potential Workflow with NGC

Credit: NVIDIA's blog

Molecular simulation communities have faced the accuracy-versus-efficiency dilemma in modeling the potential energy surface and interatomic forces for decades. Deep Potential, the artificial neural network force field, solves this problem by combining the speed of classical molecular dynamics (MD) simulation with the accuracy of density functional theory (DFT) calculation.1 This is achieved by using the GPU-optimized package DeePMD-kit, which is a deep learning package for many-body potential energy representation and MD simulation.2

This post provides an end-to-end demonstration of training a neural network potential for the 2D material graphene and using it to drive MD simulation in the open-source platform Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).3 Training data can be obtained either from the Vienna Ab initio Simulation Package (VASP)4, or Quantum ESPRESSO (QE).5

A seamless integration of molecular modeling, machine learning, and high-performance computing (HPC) is demonstrated with the combined efficiency of molecular dynamics with ab initio accuracy — that is entirely driven through a container-based workflow. Using AI techniques to fit the interatomic forces generated by DFT, the accessible time and size scales can be boosted several orders of magnitude with linear scaling.

Deep potential is essentially a combination of machine learning and physical principles, which start a new computing paradigm as shown in Figure 1.

The image shows the new computing paradigm that combines molecular modeling, machine learning and high-performance computing to understand the interatomic forces of molecules compared to the traditional methods.


Figure 1. A new computing paradigm composed of molecular modeling, AI, and HPC. (Figure courtesy: Dr. Linfeng Zhang, DP Technology)

The entire workflow is shown in Figure 2. The data generation step is done with VASP and QE. The data preparation, model training, testing, and compression steps are done using DeePMD-kit. The model deployment is in LAMMPS.

This figure displays the workflow of training and deploying a deep potential model. The workflow includes data generation, data preparation, model training, model testing, model compression, and model deployment.


Figure 2. Diagram of the DeePMD workflow.

Why Containers?

A container is a portable unit of software that combines the application, and all its dependencies, into a single package that is agnostic to the underlying host OS.

The workflow in this post involves AIMD, DP training, and LAMMPS MD simulation. It is nontrivial and time-consuming to install each software package from source with the correct setup of the compiler, MPI, GPU library, and optimization flags.

Containers solve this problem by providing a highly optimized GPU-enabled computing environment for each step, and eliminates the time to install and test software.

The NGC catalog, a hub of GPU-optimized HPC and AI software, carries a whole of HPC and AI containers that can be readily deployed on any GPU system. The HPC and AI containers from the NGC catalog are updated frequently and are tested for reliability and performance — necessary to speed up the time to solution.

These containers are also scanned for Common Vulnerabilities and Exposure (CVEs), ensuring that they are devoid of any open ports and malware. Additionally, the HPC containers support both Docker and Singularity runtimes, and can be deployed on multi-GPU and multinode systems running in the cloud or on-premises.

Training data generation

The first step in the simulation is data generation. We will show you how you can use VASP and Quantum ESPRESSO to run AIMD simulations and generate training datasets for DeePMD. All input files can be downloaded from the GitHub repository using the following command:

git clone https://github.com/deepmodeling/SC21_DP_Tutorial.git

VASP

A two-dimensional graphene system with 98-atoms is used as shown in Figure 3.6 To generate the training datasets, 0.5ps NVT AIMD simulation at 300 K is performed. The time step chosen is 0.5fs. The DP model is created using 1000 time steps from a 0.5ps MD trajectory at a fixed temperature.

Due to the short simulation time, the training dataset contains consecutive system snapshots, which are highly correlated. Generally, the training dataset should be sampled from uncorrelated snapshots with various system conditions and configurations. For this example, we used a simplified training data scheme. For production DP training, using DP-GEN is recommended to utilize the concurrent learning scheme to efficiently explore more combinations of conditions.7

The projector-augmented wave pseudopotentials are employed to describe the interactions between the valence electrons and frozen cores. The generalized gradient approximation exchange−correlation functional of Perdew−Burke−Ernzerhof. Only the Γ-point was used for k-space sampling in all systems.

This figure displays the top view of a single layer graphene system with 98 carbon atoms.


Figure 3. A graphene system composed of 98 carbon atoms is used in AIMD simulation.

Quantum Espresso

The AIMD simulation can also be carried out using Quantum ESPRESSO, available as a container from the NGC Catalog. Quantum ESPRESSO is an integrated suite of open-source computer codes for electronic-structure calculations and materials modeling at the nanoscale based on density-functional theory, plane waves, and pseudopotentials. The same graphene structure is used in the QE calculations. The following command can be used to start the AIMD simulation:

$ singularity exec --nv docker://nvcr.io/hpc/quantum_espresso:qe-6.8 cp.x
< c.md98.cp.in

Training data preparation

Once the training data is obtained from AIMD simulation, we want to convert its format using dpdata so that it can be used as input to the deep neural network. The dpdata package is a format conversion toolkit between AIMD, classical MD, and DeePMD-kit.

You can use the convenient tool dpdata to convert data directly from the output of first-principles packages to the DeePMD-kit format. For deep potential training, the following information of a physical system has to be provided: atom type, box boundary, coordinate, force, viral, and system energy.

A snapshot, or a frame of the system, contains all these data points for all atoms at one-time step, which can be stored in two formats, that is raw and npy.

The first format raw is plain text with all information in one file, and each line of the file represents a snapshot. Different system information is stored in different files named as box.raw, coord.raw, force.raw, energy.raw, and virial.raw. We recommended you follow these naming conventions when preparing the training files.

An example of force.raw:

$ cat force.raw
-0.724  2.039 -0.951  0.841 -0.464  0.363
 6.737  1.554 -5.587 -2.803  0.062  2.222
-1.968 -0.163  1.020 -0.225 -0.789  0.343

This force.raw contains three frames, with each frame having the forces of two atoms, resulting in three lines and six columns. Each line provides all three force components of two atoms in one frame. The first three numbers are the three force components of the first atom, while the next three numbers are the force components of the second atom.

The coordinate file coord.raw is organized similarly. In box.raw, the nine components of the box vectors should be provided on each line. In virial.raw, the nine components of the virial tensor should be provided on each line in the order XX XY XZ YX YY YZ ZX ZY ZZ. The number of lines of all raw files should be identical. We assume that the atom types do not change in all frames. It is provided by type.raw, which has one line with the types of atoms written one by one.

The atom types should be integers. For example, the type.raw of a system that has two atoms with zero and one:

$ cat type.raw
0 1

It is not a requirement to convert the data format to raw, but this process should give a sense on the types of data that can be used as inputs to DeePMD-kit for training.

The easiest way to convert the first-principles results to the training data is to save them as numpy binary data.

For VASP output, we have prepared an outcartodata.py script to process the VASP OUTCAR file. By running the commands:

$ cd SC21_DP_Tutorial/AIMD/VASP/
$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 python outcartodata.py
$ mv deepmd_data ../../DP/

For QE output:

$ cd SC21_DP_Tutorial/AIMD/QE/
$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 python logtodata.py
$ mv deepmd_data ../../DP/

A folder called deepmd_data is generated and moved to the training directory. It generates five sets 0/set.000, 1/set.000, 2/set.000, 3/set.000, 4/set.000, with each set containing 200 frames. It is not required to take care of the binary data files in each of the set.* directories. The path containing the set.* folder and type.raw file is called a system. If you want to train a nonperiodic system, an empty nopbc file should be placed under the system directory. box.raw is not necessary as it is a nonperiodic system.

We are going to use three of the five sets for training, one for validating, and the remaining one for testing.

Deep Potential model training

The input of the deep potential model is a descriptor vector containing the system information mentioned previously. The neural network contains several hidden layers with a composition of linear and nonlinear transformations. In this post, a three layer-neural network with 25, 50 and 100 neurons in each layer is used. The target value, or the label, for the neural network to learn is the atomic energies. The training process optimizes the weights and the bias vectors by minimizing the loss function.

The training is initiated by the command where input.json contains the training parameters:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp train input.json

The DeePMD-kit prints detailed information on the training and validation data sets. The data sets are determined by training_data and validation_data as defined in the training section of the input script. The training dataset is composed of three data systems, while the validation data set is composed of one data system. The number of atoms, batch size, number of batches in the system, and the probability of using the system are all shown in Figure 4. The last column presents if the periodic boundary condition is assumed for the system.

This image is a screenshot of the DP training output. Summaries of the training and validation dataset are shown with detailed information on the number of atoms, batch size, number of batches in the system and the probability of using the system.


Figure 4. Screenshot of the DP training output.

During the training, the error of the model is tested every disp_freq training step with the batch used to train the model and with numb_btch batches from the validating data. The training error and validation error are printed correspondingly in the file disp_file (default is lcurve.out). The batch size can be set in the input script by the key batch_size in the corresponding sections for training and validation data set.

An example of the output:

#  step      rmse_val    rmse_trn    rmse_e_val  rmse_e_trn    rmse_f_val  rmse_f_trn         lr
      0      3.33e+01    3.41e+01      1.03e+01    1.03e+01      8.39e-01    8.72e-01    1.0e-03
    100      2.57e+01    2.56e+01      1.87e+00    1.88e+00      8.03e-01    8.02e-01    1.0e-03
    200      2.45e+01    2.56e+01      2.26e-01    2.21e-01      7.73e-01    8.10e-01    1.0e-03
    300      1.62e+01    1.66e+01      5.01e-02    4.46e-02      5.11e-01    5.26e-01    1.0e-03
    400      1.36e+01    1.32e+01      1.07e-02    2.07e-03      4.29e-01    4.19e-01    1.0e-03
    500      1.07e+01    1.05e+01      2.45e-03    4.11e-03      3.38e-01    3.31e-01    1.0e-03

The training error reduces monotonically with training steps as shown in Figure 5. The trained model is tested on the test dataset and compared with the AIMD simulation results. The test command is:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp test -m frozen_model.pb -s deepmd_data/4/ -n 200 -d detail.out

This image shows the total training loss, energy loss, force loss and learning rate decay with training steps from 0 to 1,000,000. Both the training and validation loss decrease monotonically with training steps.


Figure 5. Training loss with steps

The results are shown in Figure 6.

This image displays the inferenced energy and force in the y-axis, and the ground true on the x-axis. The inferenced values soundly coincide with the ground truth with all data distributed in the diagonal direction.


Figure 6. Test of the prediction accuracy of trained DP model with AIMD energies and forces.

Model export and compression

After the model has been trained, a frozen model is generated for inference in MD simulation. The process of saving neural network from a checkpoint is called “freezing” a model:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp freeze -o graphene.pb

After the frozen model is generated, the model can be compressed without sacrificing its accuracy; while greatly speeding up the inference performance in MD. Depending on simulation and training setup, model compression can boost performance by 10X, and reduce memory consumption by 20X when running on GPUs.

The frozen model can be compressed using the following command where -i refers to the frozen model and -o points to the output name of the compressed model:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp compress -i graphene.pb -o graphene-compress.pb

Model deployment in LAMMPS

A new pair-style has been implemented in LAMMPS to deploy the trained neural network in prior steps. For users familiar with the LAMMPS workflow, only minimal changes are needed to switch to deep potential. For instance, a traditional LAMMPS input with Tersoff potential has the following setting for potential setup:

pair_style      tersoff
pair_coeff      * * BNC.tersoff C

To use deep potential, replace previous lines with:

pair_style      deepmd graphene-compress.pb
pair_coeff      * *

The pair_style command in the input file uses the DeePMD model to describe the atomic interactions in the graphene system.

The graphene-compress.pb file represents the frozen and compressed model for inference. The graphene system in MD simulation contains 1,560 atoms. Periodic boundary conditions are applied in the lateral x– and y-directions, and free boundary is applied to the z-direction. The time step is set as 1 fs. The system is placed under NVT ensemble at temperature 300 K for relaxation, which is consistent with the AIMD setup. The system configuration after NVT relaxation is shown in Figure 7. It can be observed that the deep potential can describe the atomic structures with small ripples in the cross-plane direction. After 10ps NVT relaxation, the system is placed under NVE ensemble to check system stability.

The image displays the side view of the single layer graphene system after thermal relaxation in LAMMPS.


Figure 7. Atomic configuration of the graphene system after relaxation with deep potential.

The system temperature is shown in Figure 8.

The image displays the temperature profiles of the graphene system under NVT and NVE ensembles from 0 to 20 picoseconds. The first 10 picosecond is NVT and the second 10 picosecond is NVE.


Figure 8. System temperature under NVT and NVE ensembles. The MD system driven by deep potential is very stable after relaxation.

To validate the accuracy of the trained DP model, the calculated radial distribution function (RDF) from AIMD, DP and Tersoff, are plotted in Figure 9. The DP model-generated RDF is very close to that of AIMD, which indicates that the crystalline structure of graphene can be well presented by the DP model.

This image displays the plotted radial distribution function from three different methods, including DP, Tersoff and AIMD, which are denoted in black, red and blue solid lines respectively.


Figure 9. Radial distribution function calculated by AIMD, DP and Tersoff potential, respectively. It can be observed that the RDF calculated by DP is very close to that of AIMD.

Conclusion

This post demonstrates a simple case study of graphene under given conditions. The DeePMD-kit package streamlines the workflow from AIMD to classical MD with deep potential, providing the following key advantages:

Highly automatic and efficient workflow implemented in the TensorFlow framework. APIs with popular DFT and MD packages such as VASP, QE, and LAMMPS. Broad applications in organic molecules, metals, semiconductors, insulators, and more. Highly efficient code for HPC with MPI and GPU support. Modularization for easy adoption by other deep learning potential models. Furthermore, the use of GPU-optimized containers from the NGC catalog simplifies and accelerates the overall workflow by eliminating the steps to install and configure software. To train a comprehensive model for other applications, download the DeepMD Kit Container from the NGC catalog.

References

[1] Jia W, Wang H, Chen M, Lu D, Lin L, Car R, E W and Zhang L 2020 Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning IEEE Press 5 1-14

[2] Wang H, Zhang L, Han J and E W 2018 DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics Computer Physics Communications 228 178-84

[3] Plimpton S 1995 Fast Parallel Algorithms for Short-Range Molecular Dynamics Journal of Computational Physics 117 1-19

[4] Kresse G and Hafner J 1993 Ab initio molecular dynamics for liquid metals Physical Review B 47 558-61

[5] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials Journal of Physics: Condensed Matter 21 395502

[6] Humphrey W, Dalke A and Schulten K 1996 VMD: Visual molecular dynamics Journal of Molecular Graphics 14 33-8

[7] Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Computer Physics Communications, 2020, 107206.